Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = harmonic analysis of time series (HANTS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6045 KiB  
Article
Advancing County-Level Potato Cultivation Area Extraction: A Novel Approach Utilizing Multi-Source Remote Sensing Imagery and the Shapley Additive Explanations–Sequential Forward Selection–Random Forest Model
by Qiao Li, Xueliang Fu, Honghui Li and Hao Zhou
Agriculture 2025, 15(1), 92; https://doi.org/10.3390/agriculture15010092 - 3 Jan 2025
Cited by 4 | Viewed by 1215
Abstract
Potato, a vital food and cash crop, necessitates precise identification and area estimation for effective planting planning, market regulation, and yield forecasting. However, extracting large-scale crop areas using satellite remote sensing is fraught with challenges, such as low spatial resolution, cloud interference, and [...] Read more.
Potato, a vital food and cash crop, necessitates precise identification and area estimation for effective planting planning, market regulation, and yield forecasting. However, extracting large-scale crop areas using satellite remote sensing is fraught with challenges, such as low spatial resolution, cloud interference, and revisit cycle limitations, impeding the creation of high-quality time–series datasets. In this study, we developed a high-resolution vegetation index time–series by calculating coordination coefficients and integrating reflectance data from Landsat-8, Landsat-9, and Sentinel-2 satellites. The vegetation index time–series were enhanced through using linear interpolation and Savitzky–Golay (S-G) filtering to reconstruct high-quality data. We employed the harmonic analysis of NDVI time–series (HANTS) method to extract features from the time–series and evaluated the classification accuracy across five feature sets: vegetation index time–series features, band means, vegetation index means, texture features, and color space features. The Random Forest (RF) model, utilizing the full feature set, emerged as the most accurate, achieving a precision rate of 0.97 and a kappa value of 0.94. We further refined the feature subset using the SHAP-SFS feature selection method, leading to the SHAP-SFS-RF classification approach for differentiating potato from non-potato crops. This approach enhanced accuracy by approximately 0.1 and kappa value by around 0.2 compared to the RF model, with the extracted areas closely aligning with statistical yearbook data. Our study successfully achieved the accurate extraction of potato planting areas at the county level, offering novel insights and methodologies for related research fields. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

25 pages, 10341 KiB  
Article
Typhoon-Induced Forest Damage Mapping in the Philippines Using Landsat and PlanetScope Images
by Benjamin Jonah Perez Magallon and Satoshi Tsuyuki
Land 2024, 13(7), 1031; https://doi.org/10.3390/land13071031 - 9 Jul 2024
Viewed by 2837
Abstract
Forests provide valuable resources for households in the Philippines, particularly in poor and upland communities. This makes forests an integral part of building resilient communities. This relationship became complex during extreme events such as typhoon occurrence as forests can be a contributor to [...] Read more.
Forests provide valuable resources for households in the Philippines, particularly in poor and upland communities. This makes forests an integral part of building resilient communities. This relationship became complex during extreme events such as typhoon occurrence as forests can be a contributor to the intensity and impact of disasters. However, little attention has been paid to forest cover losses due to typhoons during disaster assessments. In this study, forest damage caused by typhoons was measured using harmonic analysis of time series (HANTS) with Landsat-8 Operation Land Imager (OLI) images. The ΔHarmonic Vegetation Index was computed by calculating the difference between HANTS and the actual observed vegetation index value. This was used to identify damaged areas in the forest regions and create a damage map. To validate the reliability of the results, the resulting maps produced using ΔHarmonic VI were compared with the damage mapped from PlanetScope’s high-resolution pre- and post-typhoon images. The method achieved an overall accuracy of 69.20%. The accuracy of the results was comparable to the traditional remote sensing techniques used in forest damage assessment, such as ΔVI and land cover change detection. To further the understanding of the relationship between forest and typhoon occurrence, the presence of time lag in the observations was investigated. Additionally, different contributing factors in forest damage were identified. Most of the forest damage observed was in forest areas with slopes facing the typhoon direction and in vulnerable areas such as near the coast and hill tops. This study will help the government and forest management sectors preserve forests, which will ultimately result in the development of a more resilient community, by making it easier to identify forest areas that are vulnerable to typhoon damage. Full article
(This article belongs to the Special Issue Geospatial Data in Landscape Ecology and Biodiversity Conservation)
Show Figures

Figure 1

20 pages, 2451 KiB  
Article
Improved Wetland Mapping of a Highly Fragmented Agricultural Landscape Using Land Surface Phenological Features
by Li Wen, Tanya Mason, Megan Powell, Joanne Ling, Shawn Ryan, Adam Bernich and Guyo Gufu
Remote Sens. 2024, 16(10), 1786; https://doi.org/10.3390/rs16101786 - 17 May 2024
Cited by 2 | Viewed by 2333
Abstract
Wetlands are integral components of agricultural landscapes, providing a wide range of ecological, economic, and social benefits essential for sustainable development and rural livelihoods. Globally, they are vulnerable ecological assets facing several significant threats including water extraction and regulation, land clearing and reclamation, [...] Read more.
Wetlands are integral components of agricultural landscapes, providing a wide range of ecological, economic, and social benefits essential for sustainable development and rural livelihoods. Globally, they are vulnerable ecological assets facing several significant threats including water extraction and regulation, land clearing and reclamation, and climate change. Classification and mapping of wetlands in agricultural landscapes is crucial for conserving these ecosystems to maintain their ecological integrity amidst ongoing land-use changes and environmental pressures. This study aims to establish a robust framework for wetland classification and mapping in intensive agricultural landscapes using time series of Sentinel-2 imagery, with a focus on the Gwydir Wetland Complex situated in the northern Murray–Darling Basin—Australia’s largest river system. Using the Google Earth Engine (GEE) platform, we extracted two groups of predictors based on six vegetation indices time series calculated from multi-temporal Sentinel-2 surface reflectance (SR) imagery: the first is statistical features summarizing the time series and the second is phenological features based on harmonic analysis of time series data (HANTS). We developed and evaluated random forest (RF) models for each level of classification with combination of different groups of predictors. Our results show that RF models involving both HANTS and statistical features perform strongly with significantly high overall accuracy and class-weighted F1 scores (p < 0.05) when comparing with models with either statistical or HANTS variables. While the models have excellent performance (F-score greater than 0.9) in distinguishing wetlands from other landcovers (croplands, terrestrial uplands, and open waters), the inter-class discriminating power among wetlands is class-specific: wetlands that are frequently inundated (including river red gum forests and wetlands dominated by common reed, water couch, and marsh club-rush) are generally better identified than the ones that are flooded less frequently, such as sedgelands and woodlands dominated by black box and coolabah. This study demonstrates that HANTS features extracted from time series Sentinel data can significantly improve the accuracy of wetland mapping in highly fragmentated agricultural landscapes. Thus, this framework enables wetland classification and mapping to be updated on a regular basis to better understand the dynamic nature of these complex ecosystems and improve long-term wetland monitoring. Full article
Show Figures

Graphical abstract

17 pages, 5691 KiB  
Article
Estimating the CSLE Biological Conservation Measures’ B-Factor Using Google Earth’s Engine
by Youfu Wu, Haijing Shi and Xihua Yang
Remote Sens. 2024, 16(5), 847; https://doi.org/10.3390/rs16050847 - 28 Feb 2024
Cited by 5 | Viewed by 1742
Abstract
The biological conservation measures factor (B) in the Chinese Soil loss Equation (CSLE) model is one of the main components in evaluating soil erosion, and the accurate calculation of the B-factor at the regional scale is fundamental in predicting regional soil erosion and [...] Read more.
The biological conservation measures factor (B) in the Chinese Soil loss Equation (CSLE) model is one of the main components in evaluating soil erosion, and the accurate calculation of the B-factor at the regional scale is fundamental in predicting regional soil erosion and dynamic changes. In this study, we developed an optimal computational procedure for estimating and mapping the B-factor in the Google Earth Engine (GEE) cloud computing environment using multiple data sources through data suitability assessment and image fusion. Taking the Yanhe River Basin in the Loess Plateau of China as an example, we evaluated the availability of daily precipitation data (CHIRPS, ERA5, and PERSIANN-CDR data) against the data at national meteorological stations. We estimated the B-factor from Sentinel-2 data and proposed a new method, namely the trend migration method, to patch the missing values in Sentinel-2 data using three other remote sensing data (MOD09GA, Landsat 7, and Landsat 8). We then calculated and mapped the B-factor in the Yanhe River Basin based on rainfall erosivity, vegetation coverage, and land use types. The results show that the ERA5 precipitation dataset outperforms the CHIRPS and PERSIANN-CDR data in estimating rainfall and rainfall erosivity, and it can be utilized as an alternative data source for meteorological stations in soil erosion modeling. Compared to the harmonic analysis of time series (HANTS), the trend migration method proposed in this study is more suitable for patching the missing parts of Sentinel-2 data. The restored high-resolution Sentinel-2 data fit nicely with the 10 m resolution land use data, enhancing the B-factor calculation accuracy at local and region scales. The B-factor computation procedure developed in this study is applicable to various river basin and regional scales for soil erosion monitoring. Full article
(This article belongs to the Special Issue Soil Erosion Estimation Based on Remote Sensing Data)
Show Figures

Figure 1

16 pages, 10300 KiB  
Article
Accurate Monitoring of Submerged Aquatic Vegetation in a Macrophytic Lake Using Time-Series Sentinel-2 Images
by Shuang Liang, Zhaoning Gong, Yingcong Wang, Jiafu Zhao and Wenji Zhao
Remote Sens. 2022, 14(3), 640; https://doi.org/10.3390/rs14030640 - 28 Jan 2022
Cited by 32 | Viewed by 5467
Abstract
Submerged aquatic vegetation (SAV) is one of the most important biological groups in shallow lakes ecosystems, and it plays a vital role in stabilizing the structure and function of water ecosystems. The study area of this research is Baiyangdian, which is a typical [...] Read more.
Submerged aquatic vegetation (SAV) is one of the most important biological groups in shallow lakes ecosystems, and it plays a vital role in stabilizing the structure and function of water ecosystems. The study area of this research is Baiyangdian, which is a typical macrophytic lake with complex land cover types. This research aims to solve the low accuracy problem of the remote sensing extraction of SAV, which is mainly caused by water level fluctuations, differences in life-history characteristics, and mixed-pixel phenomena. Here, we developed a phenology–pixel method to determine the spatial distribution of SAV and the start and end dates of its growing season by using all Sentinel-2 images collected over a year on the Google Earth Engine platform. The experimental results show the following: (1) The phenology–pixel algorithm can effectively identify the maximum spatial distribution and growth period of submerged aquatic vegetation in Baiyangdian Lake throughout the year. The unique normalized difference vegetation index (NDVI) peak characteristics of Potamogeton crispus from March to May were used to effectively distinguish it from the low Phragmites australis population. Textural features based on the modified normalized difference water index (MNDWI) index effectively removed the mixed-pixel phenomenon of macrophytic lakes (such as dikes and sparse reeds). (2) A complete five-day interval NDVI time-series dataset was obtained, which removes potential noise on the temporal scale and fills in noisy observations by the harmonic analysis of time series (HANTS) method. We determined the two phenological periods of typical SAV by analyzing the intrayear variation characteristics of NDVI and MNDWI. (3) Using field-survey data for accuracy verification, the overall accuracy of our method was determined to be 94.8%, and the user’s accuracy and producer’s accuracy were 93.3% and 87.3%, respectively. Determining the temporal and spatial distribution of different SAV populations provides important technical support for actively promoting the maintenance and reconstruction of lake and reservoir ecosystems. Full article
(This article belongs to the Special Issue Remote Sensing of Floodplain Rivers and Freshwater Ecosystems)
Show Figures

Graphical abstract

20 pages, 4056 KiB  
Article
Optimal Estimate of Global Biome—Specific Parameter Settings to Reconstruct NDVI Time Series with the Harmonic ANalysis of Time Series (HANTS) Method
by Jie Zhou, Li Jia, Massimo Menenti and Xuan Liu
Remote Sens. 2021, 13(21), 4251; https://doi.org/10.3390/rs13214251 - 22 Oct 2021
Cited by 33 | Viewed by 3550
Abstract
Terrestrial remote sensing data products retrieved from radiometric measurements in the optical and thermal infrared spectrum such as vegetation spectral indices can be heavily contaminated by atmospheric conditions, including cloud and aerosol layers. This contamination results in gaps or noisy observations. The harmonic [...] Read more.
Terrestrial remote sensing data products retrieved from radiometric measurements in the optical and thermal infrared spectrum such as vegetation spectral indices can be heavily contaminated by atmospheric conditions, including cloud and aerosol layers. This contamination results in gaps or noisy observations. The harmonic analysis of time series (HANTS) has been widely used for time series reconstruction of remote sensing imagery in recent decades. To use HANTS model, a series of parameters, such as number of frequencies (NF), fitting error tolerance (FET), degree of over-determinedness (DoD), and regularization factor (Delta), need to be defined by users. These parameters provide flexibilities, but also make it difficult for non-expert users to determine appropriate settings for specific applications. This study systematically evaluated the reconstruction performance of the model under different parameter setting scenarios by simulating pixel-wise reference and noisy NDVI time series. The results of these numerical experiments were further used to identify optimal settings and improve global NDVI reconstruction performance. The results suggested optimal settings for different areas (local optimization). If a user opts to use unique settings for global reconstruction, the setting NF = 4, FET = 0.05, DoD = 5, and Delta = 0.5 can produce the best performance across all setting scenarios (global optimization). In addition, several internal improvements, such as dynamic weighting scheme, polynomial and inter-annual harmonic components, and ancillary attributes of input data can be used to further improve the performance of reconstruction. With these results, future non-expert users can easily determine appropriate settings of HANTS for specific applications in different regions. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

14 pages, 4841 KiB  
Technical Note
An Adaptive Piecewise Harmonic Analysis Method for Reconstructing Multi-Year Sea Surface Chlorophyll-A Time Series
by Yueqi Wang, Zhiqiang Gao and Jicai Ning
Remote Sens. 2021, 13(14), 2727; https://doi.org/10.3390/rs13142727 - 11 Jul 2021
Cited by 2 | Viewed by 2925
Abstract
High-quality remotely sensed satellite data series are important for many ecological and environmental applications. Unfortunately, irregular spatiotemporal samples, frequent image gaps and inevitable observational biases can greatly hinder their application. As one of the most effective gap filling and noise reduction approaches, the [...] Read more.
High-quality remotely sensed satellite data series are important for many ecological and environmental applications. Unfortunately, irregular spatiotemporal samples, frequent image gaps and inevitable observational biases can greatly hinder their application. As one of the most effective gap filling and noise reduction approaches, the harmonic analysis of time series (HANTS) method has been widely used to reconstruct geographical variables; however, when applied on multi-year time series over large spatial areas, the optimal harmonic formulas are generally varied in different locations or change across different years. The question of how to choose the optimal harmonic formula is still unanswered due to the deficiency of appropriate criteria. In this study, an adaptive piecewise harmonic analysis method (AP-HA) is proposed to reconstruct multi-year seasonal data series. The method introduces a cross-validation scheme to adaptively determine the optimal harmonic model and employs an iterative piecewise scheme to better track the local traits. Whenapplied to the satellite-derived sea surface chlorophyll-a time series over the Bohai and Yellow Seas of China, the AP-HA obtains reliable reconstruction results and outperforms the conventional HANTS methods, achieving improved accuracy. Due to its generic approach to filling missing observations and tracking detailed traits, the AP-HA method has a wide range of applications for other seasonal geographical variables. Full article
(This article belongs to the Special Issue GIS and RS in Ocean, Island and Coastal Zone)
Show Figures

Graphical abstract

22 pages, 7328 KiB  
Article
A Novel Strategy to Reconstruct NDVI Time-Series with High Temporal Resolution from MODIS Multi-Temporal Composite Products
by Linglin Zeng, Brian D. Wardlow, Shun Hu, Xiang Zhang, Guoqing Zhou, Guozhang Peng, Daxiang Xiang, Rui Wang, Ran Meng and Weixiong Wu
Remote Sens. 2021, 13(7), 1397; https://doi.org/10.3390/rs13071397 - 5 Apr 2021
Cited by 30 | Viewed by 7070
Abstract
Vegetation indices (VIs) data derived from satellite imageries play a vital role in land surface vegetation and dynamic monitoring. Due to the excessive noises (e.g., cloud cover, atmospheric contamination) in daily VI data, temporal compositing methods are commonly used to produce composite data [...] Read more.
Vegetation indices (VIs) data derived from satellite imageries play a vital role in land surface vegetation and dynamic monitoring. Due to the excessive noises (e.g., cloud cover, atmospheric contamination) in daily VI data, temporal compositing methods are commonly used to produce composite data to minimize the negative influence of noise over a given compositing time interval. However, VI time series with high temporal resolution were preferred by many applications such as vegetation phenology and land change detections. This study presents a novel strategy named DAVIR-MUTCOP (DAily Vegetation Index Reconstruction based on MUlti-Temporal COmposite Products) method for normalized difference vegetation index (NDVI) time-series reconstruction with high temporal resolution. The core of the DAVIR-MUTCOP method is a combination of the advantages of both original daily and temporally composite products, and selecting more daily observations with high quality through the temporal variation of temporally corrected composite data. The DAVIR-MUTCOP method was applied to reconstruct high-quality NDVI time-series using MODIS multi-temporal products in two study areas in the continental United States (CONUS), i.e., three field experimental sites near Mead, Nebraska from 2001 to 2012 and forty-six AmeriFlux sites evenly distributed across CONUS from 2006 to 2010. In these two study areas, the DAVIR-MUTCOP method was also compared to several commonly used methods, i.e., the Harmonic Analysis of Time-Series (HANTS) method using original daily observations, Savitzky–Golay (SG) filtering using daily observations with cloud mask products as auxiliary data, and SG filtering using temporally corrected composite data. The results showed that the DAVIR-MUTCOP method significantly improved the temporal resolution of the reconstructed NDVI time series. It performed the best in reconstructing NDVI time-series across time and space (coefficient of determination (R2 = 0.93 ~ 0.94) between reconstructed NDVI and ground-observed LAI). DAVIR-MUTCOP method presented the highest robustness and accuracy with the change of the filtering parameter (R2 = 0.99 ~ 1.00, bias = 0.001, root mean square error (RMSE) = 0.020). Only MODIS data were used in this study; nevertheless, the DAVIR-MUTCOP method proposed a universal and potential way to reconstruct daily time series of other VIs or from other operational sensors, e.g., AVHRR and VIIRS. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

21 pages, 9986 KiB  
Article
Gap Filling for Historical Landsat NDVI Time Series by Integrating Climate Data
by Wentao Yu, Jing Li, Qinhuo Liu, Jing Zhao, Yadong Dong, Xinran Zhu, Shangrong Lin, Hu Zhang and Zhaoxing Zhang
Remote Sens. 2021, 13(3), 484; https://doi.org/10.3390/rs13030484 - 29 Jan 2021
Cited by 25 | Viewed by 6388
Abstract
High-quality Normalized Difference Vegetation Index (NDVI) time series are essential in studying vegetation phenology, dynamic monitoring, and global change. Gap filling is the most important issue in reconstructing NDVI time series from satellites with high spatial resolution, e.g., the Landsat series and Chinese [...] Read more.
High-quality Normalized Difference Vegetation Index (NDVI) time series are essential in studying vegetation phenology, dynamic monitoring, and global change. Gap filling is the most important issue in reconstructing NDVI time series from satellites with high spatial resolution, e.g., the Landsat series and Chinese GaoFen-1/6 series. Due to the sparse revisit frequencies of high-resolution satellites, traditional reconstruction approaches face the challenge of dealing with large gaps in raw NDVI time series data. In this paper, a climate incorporated gap-filling (CGF) method is proposed for the reconstruction of Landsat historical NDVI time series data. The CGF model considers the relationship of the NDVI time series and climate conditions between two adjacent years. Climate variables, including downward solar shortwave radiation, precipitation, and temperature, are used to characterize the constrain factors of vegetation growth. Radial basis function networks (RBFNs) are used to link the NDVI time series between two adjacent years with variabilities in climatic conditions. An RBFN predicted a background NDVI time series in the target year, and the observed NDVI values in this year were used to adjust the predicted NDVI time series. Finally, the NDVI time series were recursively reconstructed from 2018 to 1986. The experiments were performed in a heterogeneous region in the Qilian Mountains. The results demonstrate that the proposed method can accurately reconstruct and generate continuous 30 m 8-day NDVI time series using Landsat observations. The CGF method outperforms traditional time series reconstruction methods (e.g., the harmonic analysis of time series (HANTS) and Savitzky-Golay (SG) filter methods) when the raw time series is contaminated with large gaps, which widely exist in Landsat images. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Graphical abstract

26 pages, 7914 KiB  
Article
Comparison of Remote Sensing Time-Series Smoothing Methods for Grassland Spring Phenology Extraction on the Qinghai–Tibetan Plateau
by Nan Li, Pei Zhan, Yaozhong Pan, Xiufang Zhu, Muyi Li and Dujuan Zhang
Remote Sens. 2020, 12(20), 3383; https://doi.org/10.3390/rs12203383 - 16 Oct 2020
Cited by 32 | Viewed by 4876
Abstract
Accurate evaluation of start of season (SOS) changes is essential to assess the ecosystem’s response to climate change. Smoothing method is an understudied factor that can lead to great uncertainties in SOS extraction, and the applicable situation for different smoothing methods and the [...] Read more.
Accurate evaluation of start of season (SOS) changes is essential to assess the ecosystem’s response to climate change. Smoothing method is an understudied factor that can lead to great uncertainties in SOS extraction, and the applicable situation for different smoothing methods and the impact of smoothing parameters on SOS extraction accuracy are of critical importance to be clarified. In this paper, we use MOD13Q1 normalized difference vegetation index (NDVI) data and SOS observations from eight agrometeorological stations on the Qinghai–Tibetan Plateau (QTP) during 2001–2011 to compare the SOS extraction accuracies of six popular smoothing methods (Changing Weight (CW), Savitzky-Golay (SG), Asymmetric Gaussian (AG), Double-logistic (DL), Whittaker Smoother (WS) and Harmonic Analysis of NDVI Time-Series (HANTS)) for two types of different SOS extraction methods (dynamic threshold (DT) with 9 different thresholds and double logistic (Zhang)). Furthermore, a parameter sensitivity analysis for each smoothing method is performed to quantify the impacts of smoothing parameters on SOS extraction. Finally, the suggested smoothing methods and reference ranges for the parameters of different smoothing methods were given for grassland phenology extraction on the QTP. The main conclusions are as follows: (1) the smoothing methods and SOS extraction methods jointly determine the SOS extraction accuracy, and a bad denoising performance of smoothing method does not necessarily lead to a low SOS extraction accuracy; (2) the default parameters for most smoothing methods can result in acceptable SOS extraction accuracies, but for some smoothing methods (e.g., WS) a parameter optimization is necessary, and the optimal parameters of the smoothing method can increase the R2 and reduce the RMSE of SOS extraction by up to 25% and 331%; (3) The main influencing factor of the SOS extraction using the DT method is the stability of the minimum value in the NDVI curve, and for the Zhang method the curve shape before the peak of the NDVI curve impacts the most; (4) HANTS is the most stable method no matter with (fitness = 35.05) or without parameter optimization (fitness = 33.52), which is recommended for QTP grassland SOS extraction. The findings of this study imply that remote sensing-based vegetation phenology extraction can be highly uncertain, and a careful selection and parameterization of the time-series smoothing method should be taken to achieve an accurate result. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Graphical abstract

22 pages, 11373 KiB  
Article
Comparison of Harmonic Analysis of Time Series (HANTS) and Multi-Singular Spectrum Analysis (M-SSA) in Reconstruction of Long-Gap Missing Data in NDVI Time Series
by Hamid Reza Ghafarian Malamiri, Hadi Zare, Iman Rousta, Haraldur Olafsson, Emma Izquierdo Verdiguier, Hao Zhang and Terence Darlington Mushore
Remote Sens. 2020, 12(17), 2747; https://doi.org/10.3390/rs12172747 - 25 Aug 2020
Cited by 33 | Viewed by 7297
Abstract
Monitoring vegetation changes over time is very important in dry areas such as Iran, given its pronounced drought-prone agricultural system. Vegetation indices derived from remotely sensed satellite imageries are successfully used to monitor vegetation changes at various scales. Atmospheric dust as well as [...] Read more.
Monitoring vegetation changes over time is very important in dry areas such as Iran, given its pronounced drought-prone agricultural system. Vegetation indices derived from remotely sensed satellite imageries are successfully used to monitor vegetation changes at various scales. Atmospheric dust as well as airborne particles, particularly gases and clouds, significantly affect the reflection of energy from the surface, especially in visible, short and infrared wavelengths. This results in imageries with missing data (gaps) and outliers while vegetation change analysis requires integrated and complete time series data. This study investigated the performance of HANTS (Harmonic ANalysis of Time Series) algorithm and (M)-SSA ((Multi-channel) Singular Spectrum Analysis) algorithm in reconstruction of wide-gap of missing data. The time series of Normalized Difference Vegetation Index (NDVI) retrieved from Landsat TM in combination with 250m MODIS NDVI time image products are used to simulate and find periodic components of the NDVI time series from 1986 to 2000 and from 2000 to 2015, respectively. This paper presents the evaluation of the performance of gap filling capability of HANTS and M-SSA by filling artificially created gaps in data using Landsat and MODIS data. The results showed that the RMSEs (Root Mean Square Errors) between the original and reconstructed data in HANTS and M-SSA algorithms were 0.027 and 0.023 NDVI value, respectively. Further, RMSEs among 15 NDVI images extracted from the time series artificially and reconstructed by HANTS and M-SSA algorithms were 0.030 and 0.025 NDVI value, respectively. RMSEs of the original and reconstructed data in HANTS and M-SSA algorithms were 0.10 and 0.04 for time series 6, respectively. The findings of this study present a favorable option for solving the missing data challenge in NDVI time series. Full article
Show Figures

Graphical abstract

30 pages, 4180 KiB  
Article
Estimation of Gross Primary Productivity (GPP) Phenology of a Short-Rotation Plantation Using Remotely Sensed Indices Derived from Sentinel-2 Images
by Maral Maleki, Nicola Arriga, José Miguel Barrios, Sebastian Wieneke, Qiang Liu, Josep Peñuelas, Ivan A. Janssens and Manuela Balzarolo
Remote Sens. 2020, 12(13), 2104; https://doi.org/10.3390/rs12132104 - 1 Jul 2020
Cited by 33 | Viewed by 7225
Abstract
This study aimed to understand which vegetation indices (VIs) are an ideal proxy for describing phenology and interannual variability of Gross Primary Productivity (GPP) in short-rotation coppice (SRC) plantations. Canopy structure- and chlorophyll-sensitive VIs derived from Sentinel-2 images were used to estimate the [...] Read more.
This study aimed to understand which vegetation indices (VIs) are an ideal proxy for describing phenology and interannual variability of Gross Primary Productivity (GPP) in short-rotation coppice (SRC) plantations. Canopy structure- and chlorophyll-sensitive VIs derived from Sentinel-2 images were used to estimate the start and end of the growing season (SOS and EOS, respectively) during the period 2016–2018, for an SRC poplar (Populus spp.) plantation in Lochristi (Belgium). Three different filtering methods (Savitzky–Golay (SavGol), polynomial (Polyfit) and Harmonic Analysis of Time Series (HANTS)) and five SOS- and EOS threshold methods (first derivative function, 10% and 20% percentages and 10% and 20% percentiles) were applied to identify the optimal methods for the determination of phenophases. Our results showed that the MEdium Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI) had the best fit with GPP phenology, as derived from eddy covariance measurements, in identifying SOS- and EOS-dates. For SOS, the performance was only slightly better than for several other indices, whereas for EOS, MTCI performed markedly better. The relationship between SOS/EOS derived from GPP and VIs varied interannually. MTCI described best the seasonal pattern of the SRC plantation’s GPP (R2 = 0.52 when combining all three years). However, during the extreme dry year 2018, the Chlorophyll Red Edge Index performed slightly better in reproducing growing season GPP variability than MTCI (R2 = 0.59; R2 = 0.49, respectively). Regarding smoothing functions, Polyfit and HANTS methods showed the best (and very similar) performances. We further found that defining SOS as the date at which the 10% or 20% percentile occurred, yielded the best agreement between the VIs and the GPP; while for EOS the dates of the 10% percentile threshold came out as the best. Full article
(This article belongs to the Section Biogeosciences Remote Sensing)
Show Figures

Graphical abstract

18 pages, 6905 KiB  
Article
Weighted Double-Logistic Function Fitting Method for Reconstructing the High-Quality Sentinel-2 NDVI Time Series Data Set
by Yingpin Yang, Jiancheng Luo, Qiting Huang, Wei Wu and Yingwei Sun
Remote Sens. 2019, 11(20), 2342; https://doi.org/10.3390/rs11202342 - 9 Oct 2019
Cited by 49 | Viewed by 7116
Abstract
The time series (TS) of the normalized difference vegetation index (NDVI) has been widely used to trace the temporal and spatial variability of terrestrial vegetation. However, many factors such as atmospheric noise and radiometric correction residuals conceal the actual variation in the land [...] Read more.
The time series (TS) of the normalized difference vegetation index (NDVI) has been widely used to trace the temporal and spatial variability of terrestrial vegetation. However, many factors such as atmospheric noise and radiometric correction residuals conceal the actual variation in the land surface, and thus hamper the TS information extraction. To minimize the negative effects of these noise factors, we propose a new method to produce a synthetic gap-free NDVI TS from the original contaminated observation. First, the key temporal points are identified from the NDVI time profiles based on a generally used rule-based strategy, making the TS segmented into several adjacent segments. Then, the observed data points in each segment are fitted with a weighted double-logistic function. The proposed dynamic weight reassignment process effectively emphasizes cloud-free points and deemphasizes cloud-contaminated points. Finally, the proposed method is evaluated on more than 3,000 test points from three selected Sentinel-2 tiles, and is compared with the generally used Savitzky-Golay (S-G) and harmonic analysis of time series (HANTS) methods from qualitative and quantitative aspects. The results indicate that the proposed method has a higher capability of retaining cloud-free data points and identifying outliers than the others, and can generate a gap-free NDVI time profile derived from a medium-resolution satellite sensor. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

20 pages, 6398 KiB  
Article
Relating Spatiotemporal Patterns of Forest Fires Burned Area and Duration to Diurnal Land Surface Temperature Anomalies
by Carmine Maffei, Silvia Maria Alfieri and Massimo Menenti
Remote Sens. 2018, 10(11), 1777; https://doi.org/10.3390/rs10111777 - 9 Nov 2018
Cited by 35 | Viewed by 6909
Abstract
Forest fires are a major source of ecosystem disturbance. Vegetation reacts to meteorological factors contributing to fire danger by reducing stomatal conductance, thus leading to an increase of canopy temperature. The latter can be detected by remote sensing measurements in the thermal infrared [...] Read more.
Forest fires are a major source of ecosystem disturbance. Vegetation reacts to meteorological factors contributing to fire danger by reducing stomatal conductance, thus leading to an increase of canopy temperature. The latter can be detected by remote sensing measurements in the thermal infrared as a deviation of observed land surface temperature (LST) from climatological values, that is as an LST anomaly. A relationship is thus expected between LST anomalies and forest fires burned area and duration. These two characteristics are indeed controlled by a large variety of both static and dynamic factors related to topography, land cover, climate, weather (including those affecting LST) and anthropic activity. To investigate the predicting capability of remote sensing measurements, rather than constructing a comprehensive model, it would be relevant to determine whether anomalies of LST affect the probability distributions of burned area and fire duration. This research approached the outlined knowledge gap through the analysis of a dataset of forest fires in Campania (Italy) covering years 2003–2011 against estimates of LST anomaly. An LST climatology was first computed from time series of daily Aqua-MODIS LST data (product MYD11A1, collection 6) over the longest available sequence of complete annual datasets (2003–2017), through the Harmonic Analysis of Time Series (HANTS) algorithm. HANTS was also used to create individual annual models of LST data, to minimize the effect of varying observation geometry and cloud contamination on LST estimates while retaining its seasonal variation. LST anomalies where thus quantified as the difference between LST annual models and LST climatology. Fire data were intersected with LST anomaly maps to associate each fire with the LST anomaly value observed at its position on the day previous to the event. Further to this step, the closest probability distribution function describing burned area and fire duration were identified against a selection of parametric models through the maximization of the Anderson-Darling goodness-of-fit. Parameters of the identified distributions conditional to LST anomaly where then determined along their confidence intervals. Results show that in the study area log-transformed burned area is described by a normal distribution, whereas log-transformed fire duration is closer to a generalized extreme value (GEV) distribution. The parameters of these distributions conditional to LST anomaly show clear trends with increasing LST anomaly; significance of this observation was verified through a likelihood ratio test. This confirmed that LST anomaly is a covariate of both burned area and fire duration. As a consequence, it was observed that conditional probabilities of extreme events appear to increase with increasing positive deviations of LST from its climatology values. This confirms the stated hypothesis that LST anomalies affect forest fires burned area and duration and highlights the informative content of time series of LST with respect to fire danger. Full article
(This article belongs to the Special Issue Multitemporal Remote Sensing for Forestry)
Show Figures

Graphical abstract

17 pages, 4242 KiB  
Article
An Improved Rotation Forest for Multi-Feature Remote-Sensing Imagery Classification
by Yingchang Xiu, Wenbao Liu and Wenjing Yang
Remote Sens. 2017, 9(11), 1205; https://doi.org/10.3390/rs9111205 - 22 Nov 2017
Cited by 12 | Viewed by 7302
Abstract
Multi-feature, especially multi-temporal, remote-sensing data have the potential to improve land cover classification accuracy. However, sometimes it is difficult to utilize all the features efficiently. To enhance classification performance based on multi-feature imagery, an improved rotation forest, combining Principal Component Analysis (PCA) and [...] Read more.
Multi-feature, especially multi-temporal, remote-sensing data have the potential to improve land cover classification accuracy. However, sometimes it is difficult to utilize all the features efficiently. To enhance classification performance based on multi-feature imagery, an improved rotation forest, combining Principal Component Analysis (PCA) and a boosting naïve Bayesian tree (NBTree), is proposed. First, feature extraction was carried out with PCA. The feature set was randomly split into several disjoint subsets; then, PCA was applied to each subset, and new training data for linear extracted features based on original training data were obtained. These steps were repeated several times. Second, based on the new training data, a boosting naïve Bayesian tree was constructed as the base classifier, which aims to achieve lower prediction error than a decision tree in the original rotation forest. At the classification phase, the improved rotation forest has two-layer voting. It first obtains several predictions through weighted voting in a boosting naïve Bayesian tree; then, the first-layer vote predicts by majority to obtain the final result. To examine the classification performance, the improved rotation forest was applied to multi-feature remote-sensing images, including MODIS Enhanced Vegetation Index (EVI) imagery time series, MODIS Surface Reflectance products and ancillary data in Shandong Province for 2013. The EVI imagery time series was preprocessed using harmonic analysis of time series (HANTS) to reduce the noise effects. The overall accuracy of the final classification result was 89.17%, and the Kappa coefficient was 0.71, which outperforms the original rotation forest and other classifier ensemble results, as well as the NASA land cover product. However, this new algorithm requires more computational time, meaning the efficiency needs to be further improved. Generally, the improved rotation forest has a potential advantage in remote-sensing classification. Full article
Show Figures

Graphical abstract

Back to TopTop