Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = hard chrome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 21407 KB  
Article
Sealing Performance of Different Materials and Seal Products on Electroplated Chrome and High-Velocity Oxy-Fuel-Sprayed WC-10Co-4Cr Coatings
by Minmin Zhao, Jing Wei, Le Huang, Feng Tan, Yong Wang and Jinyu Hu
Lubricants 2026, 14(2), 63; https://doi.org/10.3390/lubricants14020063 - 30 Jan 2026
Viewed by 98
Abstract
This study first assessed the friction and wear properties of two polytetrafluoroethylene materials sliding against electroplated chrome and high-velocity oxy-fuel-sprayed WC-10Co-4Cr coatings. Subsequently, the sealing performance of three different structure seals made from these two polytetrafluoroethylene materials was investigated on both electroplated chrome [...] Read more.
This study first assessed the friction and wear properties of two polytetrafluoroethylene materials sliding against electroplated chrome and high-velocity oxy-fuel-sprayed WC-10Co-4Cr coatings. Subsequently, the sealing performance of three different structure seals made from these two polytetrafluoroethylene materials was investigated on both electroplated chrome and high-velocity oxy-fuel-sprayed WC-10Co-4Cr coatings. The study results indicate the following: in terms of changes in the counter-face surface roughness, both the electroplated chrome and high-velocity oxy-fuel-sprayed WC-10Co-4Cr surfaces exhibited an increase in surface roughness after sliding, demonstrating the phenomenon of “soft material wearing hard material.” Moreover, the changes in surface roughness were greater after sliding against wollastonite mineral-filled polytetrafluoroethylene than against polyether ether ketone-filled polytetrafluoroethylene, indicating that wollastonite mineral-filled polytetrafluoroethylene was more likely to cause damage to the metal surface. Regarding the friction coefficient and wear amount, under dry friction conditions, both materials exhibited higher friction coefficients but lower wear rates on high-velocity oxy-fuel-sprayed WC-10Co-4Cr surfaces, while showing lower friction coefficients but higher wear rates on electroplated chrome surfaces. This behavior was related to the ease of transfer film formation and the stability of the transfer films formed by polytetrafluoroethylene materials on the two surfaces. In terms of the products’ sealing performance, test results showed that, for composite seals with polytetrafluoroethylene as the counter-face, sealing performance was better on high-velocity oxy-fuel-sprayed WC-10Co-4Cr surfaces than on electroplated chrome surfaces. For seals with rubber as the counter-face, there was little difference in sealing performance between high-velocity oxy-fuel-sprayed WC-10Co-4Cr and electroplated chrome surfaces. Full article
(This article belongs to the Special Issue Mechanical Tribology and Surface Technology, 2nd Edition)
Show Figures

Figure 1

46 pages, 5142 KB  
Review
Optimization of the Effects of Electrodeposition Parameters on the Nickel-Based Composite Coatings’ Tribological Properties
by Yassine Abdesselam, Catalin Tampu, Abderrahim Belloufi, Imane Rezgui, Mourad Abdelkrim, Bogdan Chirita, Eugen Herghelegiu, Carol Schnakovszky and Raluca Tampu
Processes 2026, 14(1), 139; https://doi.org/10.3390/pr14010139 - 31 Dec 2025
Viewed by 505
Abstract
Mechanical forces, chemical and electrochemical reactions, and environmental variables can all lead to surface degradation of parts. Composite coatings can be applied to these materials to enhance their surface characteristics. Recently, nickel-based composite coatings have gained greater attention because of their remarkable wear [...] Read more.
Mechanical forces, chemical and electrochemical reactions, and environmental variables can all lead to surface degradation of parts. Composite coatings can be applied to these materials to enhance their surface characteristics. Recently, nickel-based composite coatings have gained greater attention because of their remarkable wear resistance. The efficiency, precision, and affordability of this process make it a popular method. In addition, electroplating nickel-based composites offers a more environmentally friendly alternative to traditional dangerous coatings such as hard chrome. Tribological and wear characteristics are highly dependent on several variables, such as particle parameters, deposition energy, fluid dynamics, and bath composition. Mass loss, coefficient of friction, hardness, and roughness are quantitative properties that provide useful information for coating optimization and selection. Under optimized electrodeposition conditions, the Ni-SiC-graphite coatings achieved a 57% reduction in surface roughness (Ra), a 38% increase in microhardness (HV), and a 25% reduction in wear rate (Ws) compared to pure Ni coatings, demonstrating significant improvements in tribological performance. Overall, the incorporation of SiC nanoparticles was found to consistently improve microhardness while graphite or MoS2 reduces friction. Differences in wear rate among studies appear to result from variations in current density, particle size, or test conditions. Furthermore, researchers run tribology studies and calculate the volume percentage using a variety of techniques, but they fall short in providing a sufficient description of the interface. This work primarily contributes to identifying gaps in tribological research. With this knowledge and a better understanding of electrodeposition parameters, researchers and engineers can improve the lifespan and performance of coatings by tailoring them to specific applications. Full article
Show Figures

Figure 1

16 pages, 6100 KB  
Article
Investigation of the Friction and Wear Behavior of Cr-Mo-V Steel with Different Surface Treatment Processes
by Wei Zhang, Jian Zhang, Shizhong Wei, Liuliang Chen, Wei Zhang, Zhenhuan Sun, Chong Chen, Feng Mao, Xiaodong Wang, Caihong Dou and Cheng Zhang
Lubricants 2025, 13(7), 313; https://doi.org/10.3390/lubricants13070313 - 18 Jul 2025
Viewed by 904
Abstract
Hot work die steel is an alloy steel with good high-temperature performance, which is widely used in mechanical manufacturing, aerospace, and other fields. During the working process of hot working mold steel, it is subjected to high temperature, wear, and other effects, which [...] Read more.
Hot work die steel is an alloy steel with good high-temperature performance, which is widely used in mechanical manufacturing, aerospace, and other fields. During the working process of hot working mold steel, it is subjected to high temperature, wear, and other effects, which can lead to a decrease in the surface hardness of the mold, accelerate surface damage, shorten the service life, and reduce the quality of the workpiece. In order to improve the wear resistance of the mold, this paper conducts two surface treatments, chrome plating and nitriding, on the surface of hot work mold steel, and compares the high-temperature wear behavior of the materials after the two surface treatments. The results indicate that the hot work die steel obtained higher surface hardness and wear resistance after nitriding surface modification. After nitriding treatment, the surface of hot work die steel contains ε phase (Fe2–3N), which improves its surface hardness and wear resistance, thus exhibiting better surface hardness and wear resistance than the chrome-plated sample. In this study, the high-temperature wear behavior of hot work die steel after two kinds of surface strengthening treatments was deeply discussed, and the high-temperature wear mechanism of steel after surface strengthening was revealed. It provides a theoretical basis and experimental basis for the surface modification of hot working die steel, and also provides new ideas and methods for improving the service life and workpiece quality of hot working die steel in industrial production. In this study, the advantages and disadvantages of high-temperature wear resistance of hot working die steel after chromium plating and nitriding were systematically compared for the first time, which provided a scientific basis for the selection of surface strengthening technology of hot working die steel and had important academic value and practical application significance. Full article
(This article belongs to the Special Issue Wear-Resistant Coatings and Film Materials)
Show Figures

Figure 1

31 pages, 4803 KB  
Review
Advanced HVOF-Sprayed Carbide Cermet Coatings as Environmentally Friendly Solutions for Tribological Applications: Research Progress and Current Limitations
by Basma Ben Difallah, Yamina Mebdoua, Chaker Serdani, Mohamed Kharrat and Maher Dammak
Technologies 2025, 13(7), 281; https://doi.org/10.3390/technologies13070281 - 3 Jul 2025
Cited by 1 | Viewed by 2493
Abstract
Thermally sprayed carbide cermet coatings, particularly those based on tungsten carbide (WC) and chromium carbide (Cr3C2) and produced with the high velocity oxygen fuel (HVOF) process, are used in tribological applications as environmentally friendly alternatives to electroplated hard chrome [...] Read more.
Thermally sprayed carbide cermet coatings, particularly those based on tungsten carbide (WC) and chromium carbide (Cr3C2) and produced with the high velocity oxygen fuel (HVOF) process, are used in tribological applications as environmentally friendly alternatives to electroplated hard chrome coatings. These functional coatings are especially prevalent in the automotive industry, offering excellent wear resistance. However, their mechanical and tribological performances are highly dependent on factors such as feedstock powders, spray parameters, and service conditions. This review aims to gain deeper insights into the above elements. It also outlines emerging advancements in HVOF technology—including in situ powder mixing, laser treatment, artificial intelligence integration, and the use of novel materials such as rare earth elements or transition metals—which can further enhance coating performance and broaden their applications to sectors such as the aerospace and hydro-machinery industries. Finally, this literature review focuses on process optimization and sustainability, including environmental and health impacts, critical material use, and operational limitations. It uses a life cycle assessment (LCA) as a tool for evaluating ecological performance and addresses current challenges such as exposure risks, process control constraints, and the push toward safer, more sustainable alternatives to traditional WC and Cr3C2 cermet coatings. Full article
Show Figures

Figure 1

14 pages, 6899 KB  
Article
Impact of hBN Content on the Tribological Behavior and Thermal Diffusivity of HVOF-Sprayed Cr3C2-NiCr Coatings
by Julian Eßler, Dino Woelk, Ion-Dragos Utu and Gabriela Marginean
Materials 2024, 17(22), 5470; https://doi.org/10.3390/ma17225470 - 9 Nov 2024
Cited by 4 | Viewed by 1552
Abstract
Considering the significant health risks posed by hard chrome plating during its application, thermally sprayed Cr3C2-NiCr cermet coatings represent a suitable alternative. Incorporating hexagonal boron nitride (hBN) as a dry lubricant into the feedstock powder can further enhance wear [...] Read more.
Considering the significant health risks posed by hard chrome plating during its application, thermally sprayed Cr3C2-NiCr cermet coatings represent a suitable alternative. Incorporating hexagonal boron nitride (hBN) as a dry lubricant into the feedstock powder can further enhance wear resistance and thermal conductivity, crucial for preventing premature failure caused by inadequate lubrication. In this study, the mass fraction of hBN was varied between 0 and 15 wt.% to assess its influence on the tribological performance of the coatings using pin-on-disk tests. The coating’s hardness was measured via the Vickers method, and its cracking tendency at the coating/substrate interface was evaluated. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to analyze the microstructure and phase composition, while thermal diffusivity was determined using the laser flash method. The findings revealed that the inclusion of hBN, at concentrations of up to 10 wt.%, leads to an improvement in thermal diffusivity and a reduction in the coefficient of friction. However, exceeding this threshold leads to a decrease in hardness and increased crack formation tendency, highlighting the trade-off between frictional and mechanical properties. Full article
(This article belongs to the Special Issue Advances in Tribological and Other Functional Properties of Materials)
Show Figures

Figure 1

28 pages, 6905 KB  
Article
Corrosion Behaviour of Heat-Treated Cold Spray Nickel Chromium/Chromium Carbides
by Cedric Tan, Kannoorpatti Krishnan and Naveen Kumar Elumalai
Metals 2024, 14(10), 1153; https://doi.org/10.3390/met14101153 - 10 Oct 2024
Cited by 6 | Viewed by 2071
Abstract
Chromium carbide powder agglomerated with nickel/chrome was deposited using a cold spray process onto a mild steel substrate. The deposits were heat-treated at 650 °C and 950 °C in ambient conditions to reduce porosity and improve adhesion between powder particles. The corrosion behaviour [...] Read more.
Chromium carbide powder agglomerated with nickel/chrome was deposited using a cold spray process onto a mild steel substrate. The deposits were heat-treated at 650 °C and 950 °C in ambient conditions to reduce porosity and improve adhesion between powder particles. The corrosion behaviour of these cold-sprayed materials was studied in artificial seawater conditions using electrochemical techniques. Heat treatment at 650 °C was found to best improve corrosion resistance, while the 950 °C treatment performed better than the as-sprayed condition but lower than the 650 °C sample. Microstructural analysis revealed complex phase transformations and structural refinements with increasing heat treatment temperature. The crystallite size of both Cr3C2 and NiCr phases decreased, while microstrain and dislocation density increased due to heat treatment. The formation of and subsequent reduction in Cr23C6 content indicated a complex sequence of carbide dissolution, transformation, and precipitation processes. The 650 °C heat-treated sample demonstrated superior corrosion resistance, evidenced by the highest corrosion potential, lowest passive current, and largest charge transfer resistance. This enhanced performance was attributed to the formation of a more stable and protective passive film, optimal carbide dissolution, and a homogeneous microstructure. Meanwhile, the 950 °C treatment led to excessive carbide dissolution and formed increased interfaces between the carbide and matrix. Mechanical property changes were also observed, with carbide hardness significantly decreasing after corrosion testing. These findings highlight the critical role of controlled heat treatment in optimising the performance of cold-sprayed Cr3C2-NiCr coatings, demonstrating that achieving superior corrosion resistance requires a delicate balance between microstructural refinement, phase transformations, and preservation of coating integrity. Full article
(This article belongs to the Special Issue Recent Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

13 pages, 2092 KB  
Article
Multi-Parameter Complex Control of Metal Coatings on Ball Plugs of Pipeline Shut-Off Valves
by Varvara Alekhnovich, Vladimir Syasko and Alexander Umanskii
Inventions 2024, 9(4), 78; https://doi.org/10.3390/inventions9040078 - 15 Jul 2024
Cited by 9 | Viewed by 2195
Abstract
The greatest losses during gas transportation occur in the elements of shut-off valves, the operating parameters of which, among other things, depend on the thickness and hardness of the protective coating of the ball plugs. The study of the parameters of nickel–phosphorus and [...] Read more.
The greatest losses during gas transportation occur in the elements of shut-off valves, the operating parameters of which, among other things, depend on the thickness and hardness of the protective coating of the ball plugs. The study of the parameters of nickel–phosphorus and chrome coatings on ball plugs of serially produced shut-off valves, including control of their thickness and hardness, was carried out. Based on the test results, deviations in the actual parameters of coatings from the requirements of technological documentation were revealed, the necessity of their complex control was substantiated, recommendations on the choice of methods and equipment were formulated, and the main provisions of the test methodology were developed. Full article
(This article belongs to the Section Inventions and Innovation in Biotechnology and Materials)
Show Figures

Figure 1

20 pages, 7313 KB  
Article
The Tribological Properties of Plasma Electrolytic Oxidation Layers Synthesized on Arc Spray Coatings on Aluminum Alloys in Contact with Various Friction Materials
by Volodymyr Hvozdets’kyi, Juozas Padgurskas, Mykhailo Student, Iryna Pohrelyuk, Oleksandra Student, Khrystyna Zadorozhna, Oleh Tkachuk and Raimundas Rukuiža
Coatings 2024, 14(4), 460; https://doi.org/10.3390/coatings14040460 - 10 Apr 2024
Cited by 3 | Viewed by 1655
Abstract
Oxide layers on the surface of the aluminum alloys D16 and AMg6 and on arc coatings sprayed with electrode wires made of the alloys D16 and AMg6 were synthesized using plasma electrolytic oxidation (PEO). The microstructure, phase composition and micro-hardness of the PEO [...] Read more.
Oxide layers on the surface of the aluminum alloys D16 and AMg6 and on arc coatings sprayed with electrode wires made of the alloys D16 and AMg6 were synthesized using plasma electrolytic oxidation (PEO). The microstructure, phase composition and micro-hardness of the PEO layers were studied. In addition to the two main phases (α-Al2O3 and γ-Al2O3), a small amount of a metastable crystalized Al2.427O3.64 phase was found in their structure. A comparison was made of the wear resistance and friction coefficients of the synthesized PEO layers during friction tests in pairs with other PEO layers, a galvanic chromium coating, cast iron, steels and bronze of the BrC30 type. The results of the friction tests for the various PEO layers on aluminum alloys in tribo-contact with high-hardness elements made of hardened or chrome-plated steel justify the possibility of their use in a friction pair. We experimentally showed the influence of glycerin additive in motor oil 15W30 on the change in the friction coefficient of the PEO layers synthesized on the aluminum alloys and on the arc-sprayed coatings on their surfaces in tribocouples with hardened steel. Full article
(This article belongs to the Section Tribology)
Show Figures

Figure 1

11 pages, 4427 KB  
Article
Replacing Toxic Hard Chrome Coatings: Exploring the Tribocorrosion Behaviour of Electroless Nickel-Boron Coatings
by Muslum Yunacti, Veronique Vitry, Alex Montagne and Mariana Henriette Staia
Coatings 2023, 13(12), 2046; https://doi.org/10.3390/coatings13122046 - 5 Dec 2023
Cited by 10 | Viewed by 2284
Abstract
Electroless nickel-boron coatings present outstanding properties such as high hardness, excellent wear resistance and uniform coating, and thus they are considered to be alternative to toxic hard chrome coatings. However, they contain lead that is toxic and used as stabilizer in the plating [...] Read more.
Electroless nickel-boron coatings present outstanding properties such as high hardness, excellent wear resistance and uniform coating, and thus they are considered to be alternative to toxic hard chrome coatings. However, they contain lead that is toxic and used as stabilizer in the plating bath. This study aims to investigate the tribocorrosion behaviour of lead-free electroless nickel-boron coatings. In the present research, several tests were carried out to investigate the behaviour of these coatings under both dry and tribocorrosion reciprocating sliding wear against alumina balls, at room temperature. The open circuit potential (OCP) method was used to determine the degradation mechanism of the coatings. The results of the tribocorrosion and dry wear tests showed that the performance of coatings was very different from each other. A steady state for the coefficient of friction (COF) is achieved during the tribocorrosion test, whereas the constant production of debris and their presence in the contact implied an increase in COF with distance during the dry wear test. The wear mechanisms of these coatings also presented variations in these tests. It was found that the wear area calculated from tribocorrosion is lower (56 µm2) than the one from dry sliding test (86 µm2). Full article
(This article belongs to the Special Issue Advances in Deposition and Characterization of Hard Coatings)
Show Figures

Figure 1

17 pages, 11441 KB  
Article
Comparison of Wear Resistance of Overlay Welded Layers and Thermal Sprayed Coatings in Real Conditions
by Michał Szymura, Grzegorz Gąsiorek, Artur Czupryński, Waldemar Kwaśny and Viktor Kvasnytskyi
Materials 2023, 16(22), 7215; https://doi.org/10.3390/ma16227215 - 17 Nov 2023
Cited by 1 | Viewed by 2012
Abstract
Tribological tests in real conditions enable obtaining full data on the life of interacting machine parts. This article presents the results of operational tests on the elements of the support ring guidance system in a vertical ball-race mill. The guide and active armour [...] Read more.
Tribological tests in real conditions enable obtaining full data on the life of interacting machine parts. This article presents the results of operational tests on the elements of the support ring guidance system in a vertical ball-race mill. The guide and active armour operate under abrasive wear conditions with moderate-impact loads. The wear resistance of elements with overlay welding layers deposited with flux cored wire with a structure of high-alloy chrome cast iron and with a coating flame-sprayed with nickel-based powder was compared. The wear intensity of the overlay weld deposits was much lower than that of the sprayed coatings. The scope of this study also included the analysis of the chemical and phase composition, macro- and microscopic metallographic examinations, and the measurement of the hardness of the deposited layers and coatings. Full article
Show Figures

Figure 1

16 pages, 4893 KB  
Article
Microhardness and Chemical Composition of Different Metallic Brackets: An In Vitro Study
by Marine Colmant, Paul Fawaz, Kenneth Stanton, Oisin MacMichael and Bart Vande Vannet
Dent. J. 2023, 11(9), 202; https://doi.org/10.3390/dj11090202 - 24 Aug 2023
Cited by 3 | Viewed by 3012
Abstract
The purpose of the study is to compare the hardness of different metallic brackets to enamel and to determine their chemical composition and microstructure. Five metallic brackets (0.022″ × 0.028″ inch) from seven orthodontic firms produced in different alloys (Discovery® Smart/Empower® [...] Read more.
The purpose of the study is to compare the hardness of different metallic brackets to enamel and to determine their chemical composition and microstructure. Five metallic brackets (0.022″ × 0.028″ inch) from seven orthodontic firms produced in different alloys (Discovery® Smart/Empower®/Genius®2 Metal/VictoryTM series/Equilibrium®/Damon Q) were chosen (n = 35). The hardness of the brackets and enamel was measured using a microhardness tester. The study of the chemical composition of brackets was carried out on a single bracket per series. A scanning electron microscope (SEM) equipped with an energy dispersive spectroscopy (EDS) detector was used. Analysis of the chemical composition of metallic brackets was obtained with Oxford Instruments Ultim Max Aztec software. Metallic brackets’ hardness varied from 203 to 439 HV. A significant difference exists between Ti Equilibrium® brackets, the rest of the brackets and the enamel (p-value = 0.003). No significant difference was found between SSa(stainless-steel alloy), Co-Cra(Cobalt-Chrome) brackets and the enamel. The chemical study confirms that the alloys used to produce metallic brackets validate all the data of the manufacturers except for Genius®2 Metal; according to this study, they are considered to be Co-Cra alloys. The study of the composition of brackets made it possible to confirm manufacturers’ data. Genius®2 Metal brackets, Empower®2 and VictoryTM series brackets filled the properties needed for orthodontic treatment. The hardness of metallic brackets is influenced by the alloy used and manufacturing method. Co-Cra brackets with hardness comparable to enamel can be considered as an alternative to SSa brackets in patients allergic to nickel. Full article
(This article belongs to the Section Dental Materials)
Show Figures

Figure 1

13 pages, 4297 KB  
Article
Comparative Micro-Scale Abrasive Wear Testing of Thermally Sprayed and Hard Chromium Coatings
by Georgiana Chișiu, Roxana-Alexandra Gheța, Alina-Maria Stoica and Nicolae-Alexandru Stoica
Lubricants 2023, 11(8), 350; https://doi.org/10.3390/lubricants11080350 - 17 Aug 2023
Cited by 2 | Viewed by 2111
Abstract
Nowadays, due to the carcinogenic effects of chrome, replacing the hard chromium used for hydraulic components like rods and cylinders is becoming increasingly requested. Thermally sprayed coatings are a solution to the problem; however, proper understanding and characterisation of their tribological behaviour are [...] Read more.
Nowadays, due to the carcinogenic effects of chrome, replacing the hard chromium used for hydraulic components like rods and cylinders is becoming increasingly requested. Thermally sprayed coatings are a solution to the problem; however, proper understanding and characterisation of their tribological behaviour are essential for the successful exploitation of surface engineering. Thus, the main aim of this study is to evaluate the abrasive wear characteristics of two metal sprayed layers, tungsten carbide (WC) deposited through the high-velocity oxygen fuel coating (HVOF) method and Fe alloy coating deposited through thermal spraying with an electric arc with a wire-electrode G3Si1, and compare the results with those of an electrochemically deposited hard chromium layer. Their wear resistance is then related to their hardness. The results highlight the tribological performances of the thermally sprayed coatings. The HVOF WC10Co4Cr coating has a wear coefficient and a material wear volume that are hundreds of times lower than those of the other two coatings. Full article
(This article belongs to the Special Issue Friction and Wear of Alloys)
Show Figures

Figure 1

13 pages, 6539 KB  
Article
Baru-Net: Surface Defects Detection of Highly Reflective Chrome-Plated Appearance Parts
by Junying Chen, Bin Zhang, Qingshan Jiang and Xiuyu Chen
Coatings 2023, 13(7), 1205; https://doi.org/10.3390/coatings13071205 - 5 Jul 2023
Cited by 2 | Viewed by 2215
Abstract
Chrome plating parts with highly reflective characteristics are often used as appearance parts and must undergo strict defect detection to ensure quality. The defect detection method based on machine vision is the best choice. But due to the characteristic of high reflection, image [...] Read more.
Chrome plating parts with highly reflective characteristics are often used as appearance parts and must undergo strict defect detection to ensure quality. The defect detection method based on machine vision is the best choice. But due to the characteristic of high reflection, image acquisition is hard. For diverse defect appearances, it is difficult to use traditional algorithm for feature extraction. In this paper, a reasonable lighting scheme was designed to collect images effectively, and artificial defect images were made to expand the dataset to improve the deficiency of defect samples. A network, Baru-Net (Bis-Attention Rule), based on Unet architecture, the CBAM module and the ASPP module, was designed, and a block-step training strategy was proposed. With hyperparameter debugging, the semantic segmentation and classification of defects were carried out, and an accuracy rate of 98.3% achieved. Finally, QT realized the call to the weight model so that the AI model could be integrated into the automatic detection system. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

15 pages, 13973 KB  
Article
Tribological Properties of TiN Coating on Cotton Picker Spindle
by Peng Pan, Jie Gao, Chaorun Si, Qiang Yao, Zhanhong Guo and Youqiang Zhang
Coatings 2023, 13(5), 959; https://doi.org/10.3390/coatings13050959 - 20 May 2023
Cited by 5 | Viewed by 2301
Abstract
The spindle is the key working part of the horizontal cotton picker, and the wear resistance of its surface directly affects the service life of the spindle. Improving the surface performance of the spindle is fundamental for improving the performance of cotton pickers. [...] Read more.
The spindle is the key working part of the horizontal cotton picker, and the wear resistance of its surface directly affects the service life of the spindle. Improving the surface performance of the spindle is fundamental for improving the performance of cotton pickers. To enhance the wear resistance of the spindle surface, this study used the physical vapor deposition (PVD) technique to prepare TiN coating on the spindle substrate surface of the cotton-picking machine to improve the spindle surface rather than the original electroplated chromium coating. The microscopic morphology of the spindle was analyzed by scanning electron microscope (SEM), the mechanical and frictional properties of the spindle were tested by a nanoindentation tester and a friction wear tester, and the morphology of the worn spindle was observed by a portable microscope and a 3D surface profiler. The test results indicated that after the PVD treatment, the surface hardness of the spindle was about 2.5 times that of the electroplated chromium spindle, and the H/E value was 2.2 times that of the electroplated chromium spindle. PVD-TiN spindle showed better mechanical properties. In the friction test, under the same conditions, the wear rate of the PVD-TiN spindle was less than that of the chrome plating spindle. In a field test of 100 hm2, the average wear area of the second tooth tip surface of the electroplated chromium spindle was about 2.17 times that of the PVD-TiN spindle. It was verified that the PVD-TiN spindle surface had better wear resistance than the electroplated chromium spindle. This study has certain research significance for the performance optimization of cotton pickers. Also, it is indicated that PVD-TiN coating can effectively improve the wear resistance of the spindle surface and provides a new method for enhancing the service life of the spindle. Full article
(This article belongs to the Section Tribology)
Show Figures

Figure 1

17 pages, 6504 KB  
Article
Tribocorrosion Performance of WC-12Co HVOF-Sprayed Coatings Reinforced with Carbon Nanotubes
by Mariana Henriette Staia, Alberto Mejias, Stephania Kossman and Eli Saul Puchi-Cabrera
Crystals 2023, 13(3), 457; https://doi.org/10.3390/cryst13030457 - 6 Mar 2023
Cited by 4 | Viewed by 2403
Abstract
WC-12Co HVOF-sprayed coatings (~400 µm in thickness) reinforced with multiwalled carbon nanotubes (MWCNTs), were deposited on a steel substrate. The aim of this work is to provide and analyze data from HVOF WC-12Co sprayed coatings, concerning the influence of the addition of MWCNTs [...] Read more.
WC-12Co HVOF-sprayed coatings (~400 µm in thickness) reinforced with multiwalled carbon nanotubes (MWCNTs), were deposited on a steel substrate. The aim of this work is to provide and analyze data from HVOF WC-12Co sprayed coatings, concerning the influence of the addition of MWCNTs on their tribocorrosion performance, in a 3.5% NaCl electrolyte. Electrochemical data (current density and corrosion potential from potentiodynamic polarization curves) and wear data (coefficients of friction, coating volume losses and wear constants) are reported for the coatings, with and without the addition of MWCNTs (labeled WCCNT and WCAS-RECEIVED, respectively), considering the synergistic effects of wear and corrosion coupling. Scanning electron microscopy (SEM) and profilometry are used to explain both the wear and corrosion mechanisms that account for each coating’s performance in this environment. During the tribocorrosion tests, similar wear constants, of the order of approximately 10−12 m3/Nm, were found for all samples, with an increase of ~20% due to the MWCNTs presence. However, for the coatings reinforced with MWCNTs, a remarkable increase in icorr, representing almost 3 times the icorr of the WCAS-RECEIVED coating, was determined. The above results illustrate the complex mechanisms that occur when these coatings are tested under tribocorrosion conditions, which give rise to concurrent interacting phenomena, involving both electrochemical and mechanical responses. Full article
(This article belongs to the Special Issue Thermal Sprayed Coatings)
Show Figures

Figure 1

Back to TopTop