Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = halogenated by-products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1013 KiB  
Review
Reviewing Treatment Options for Organohalogen Contamination: From Established Methods to Fungal Prospects
by Gerardo Aguilar, Leadin Khudur, Attila Tottszer, Julie A. Besedin, Sali K. Biek and Andrew S. Ball
Environments 2025, 12(6), 194; https://doi.org/10.3390/environments12060194 - 9 Jun 2025
Viewed by 1733
Abstract
Persistent organohalogen pollutants—including halogenated nitrophenols (HNCs), trichloroethylene (TCE), and per- and polyfluoroalkyl substances (PFAS)—pose serious environmental and health risks due to their stability, toxicity, and bioaccumulation potential. This review critically assesses current remediation technologies including advanced oxidation processes (AOPs), adsorption, membrane filtration, and [...] Read more.
Persistent organohalogen pollutants—including halogenated nitrophenols (HNCs), trichloroethylene (TCE), and per- and polyfluoroalkyl substances (PFAS)—pose serious environmental and health risks due to their stability, toxicity, and bioaccumulation potential. This review critically assesses current remediation technologies including advanced oxidation processes (AOPs), adsorption, membrane filtration, and thermal treatments. While these methods can be effective, they are often limited by high costs, energy demands, toxic byproduct formation, and sustainability concerns. Emerging biological approaches offer promising alternatives. Among these, fungal-based degradation methods (mycodegradation) remain significantly underrepresented in the literature, despite fungi demonstrating a high tolerance to contaminants and the ability to degrade structurally complex compounds. Key findings reveal that white-rot fungi such as Phanerochaete chrysosporium and Trametes versicolor possess enzymatic systems capable of breaking down persistent organohalogens under conditions that inhibit bacterial activity. This review also identifies critical research gaps, including the need for direct comparative studies between fungal and bacterial systems. The findings suggest that integrating mycodegradation into broader treatment frameworks could enhance the environmental performance and reduce the long-term remediation costs. Overall, this review highlights the importance of diversifying remediation strategies to include scalable, low-impact biological methods for addressing the global challenge of organohalogen contamination. Full article
Show Figures

Figure 1

10 pages, 2853 KiB  
Article
Enabling a Reversible Six-Electron Redox Reaction Based on I/I+ and Br/Br0 for Aqueous Zinc-Bromine Batteries
by Jing Zhang, Xiaoxing Ji, Qingxiu Yu, Xixi Zhang, Chuanlin Li, Na Li, Mengzhen Kong, Dingzheng Li, Wenjie Liu, Chenggang Wang and Xijin Xu
Chemistry 2025, 7(3), 75; https://doi.org/10.3390/chemistry7030075 - 2 May 2025
Cited by 1 | Viewed by 640
Abstract
Zinc-halogen batteries are usually based on two-electron transfer reactions from X to X2. However, the halogen is capable of being further oxidized to higher valence states, thereby achieving the higher capacity of zinc- halogen batteries. Here, a six-electron reaction based [...] Read more.
Zinc-halogen batteries are usually based on two-electron transfer reactions from X to X2. However, the halogen is capable of being further oxidized to higher valence states, thereby achieving the higher capacity of zinc- halogen batteries. Here, a six-electron reaction based on I/I+ and Br/Br0 is activated successfully by introducing KI into the electrolyte. ZIF-8-derived porous carbon (ZPC), serving as the host of halogen, effectively suppresses polybromide/polyiodide shuttle owing to the chemisorption/physical adsorption. Additionally, the adsorption of I on the surface of the zinc anode effectively inhibits the growth of dendrites and the formation of by-products. Consequently, zinc-bromine batteries exhibit outstanding electrochemical performance, including a specific capacity of 345 mAh g−1 at 1 A g−1 and an excellent capacity retention of 80% after 3000 cycles at 2 A g−1. This strategy provides a novel way for enhancing the electrochemical performance of zinc-halogen batteries. Full article
(This article belongs to the Topic Advanced Energy Storage in Aqueous Zinc Batteries)
Show Figures

Figure 1

15 pages, 5722 KiB  
Article
Novel MIL-53(Fe)@C Magnetic Composite Electrode for Efficient Dechlorination of Disinfection By-Product Trichloroacetic Acid in Water Treatment
by Xiaoyan Ma, Rongbin Quan, Wenqing Cao, Weijie Zhang, Su Jiang, Jiao Feng, Jiulong Wang and Stefanos Giannakis
Water 2025, 17(9), 1309; https://doi.org/10.3390/w17091309 - 27 Apr 2025
Cited by 1 | Viewed by 500
Abstract
Electrochemical reduction is a promising strategy for the dechlorination of halogenated organic compounds, offering advantages such as enhanced electron transfer efficiency and increased hydrogen atom concentration. It has garnered significant attention for application in mitigating halogenated disinfection by-products (DBPs) in drinking water, owing [...] Read more.
Electrochemical reduction is a promising strategy for the dechlorination of halogenated organic compounds, offering advantages such as enhanced electron transfer efficiency and increased hydrogen atom concentration. It has garnered significant attention for application in mitigating halogenated disinfection by-products (DBPs) in drinking water, owing to its high efficiency and simple operation. In this study, trichloroacetic acid (TCAA), a representative DBP, was selected as the target contaminant. A novel composite cathode comprising a metal–organic framework MIL-53(Fe)@C supported on an Nd magnet (MIL-53(Fe)@C-MAG) and its dechlorination performance for TCAA were systematically investigated. The innovative aspect of this study is the magnetic attachment of the MOF catalyst to the carbonized cathode surface treated through carbonization, which fundamentally differs from conventional solvent-based adhesion methods. Compared to the bare electrode, the MIL-53(Fe)@C-MAG achieved a TCAA removal efficiency exceeding 96.03% within 8 h of contact time. The structural characterization revealed that the α-Fe0 crystalline phase serves as the primary active center within the MIL-53(Fe)@C catalyst, facilitating efficient electron transfer and TCAA degradation. The scavenger experiments revealed that TCAA reduction involves a dual pathway: direct electron transfer and atomic hydrogen generation. The modified MIL-53(Fe)@C-MAG electrode exhibited robust electrolytic performance over a broad pH range of 3–7, with TCAA removal efficiency showing a positive correlation with current density within the range of 10–50 mA/cm2. Furthermore, the electrode maintained exceptional stability, retaining more than 90% removal efficiency after five consecutive operational cycles. The versatility of the system was further validated by the rapid and efficient dechlorination of various chlorinated DBPs, demonstrating the broad applicability of the electrode. The innovative magnetic composite electrode demonstrates a significant advancement in electrochemical dechlorination technology, offering a reliable and efficient solution for the purification of drinking water contaminated with diverse halogenated DBPs. These results provide valuable insights into the development of electrolysis for dechlorination in water treatment applications. Full article
Show Figures

Figure 1

12 pages, 2379 KiB  
Article
Photochemical Degradation of Some Halogenated Anesthetics in Air
by Shruthi Srinivasan, Amandeep Kaur, Carol Moralejo and William A. Anderson
Environments 2024, 11(12), 286; https://doi.org/10.3390/environments11120286 - 12 Dec 2024
Cited by 1 | Viewed by 1249
Abstract
Anesthetic gases enter the environment primarily through patient exhalation and venting from scavenging systems directly into the atmosphere. Emissions of halogenated anesthetic gases like halothane, isoflurane and sevoflurane are of concern due to their high global warming potential, highlighting the need to mitigate [...] Read more.
Anesthetic gases enter the environment primarily through patient exhalation and venting from scavenging systems directly into the atmosphere. Emissions of halogenated anesthetic gases like halothane, isoflurane and sevoflurane are of concern due to their high global warming potential, highlighting the need to mitigate their environmental impact. Photocatalytic oxidation has been proposed as a potential option for emission control and indoor air treatment, but data on its use for various halogenated anesthetics is very limited. In this work, photocatalytic oxidation efficiency for the degradation of halothane was studied by varying the method for catalyst support and catalyst mass loading. Approximately 99.9% of halothane (1296 mg/m3) in air was degraded with a TiO2 photocatalyst under UVC light (254 nm) in 35 min in a recirculating batch photoreactor. The optimized conditions for halothane demonstrated a similar although faster photocatalytic degradation efficiency for isoflurane (99.8% in 20 min, 911 mg/m3) and sevoflurane (>98% in 10 min, 847 mg/m3). The results presented here suggest that a UV–photocatalysis is a promising technique to treat such anesthetic gases before being released into the environment by scavenging systems, although significant work remains to identify the potential by-products and optimal photoreactor designs for efficient long-term operation. Full article
(This article belongs to the Special Issue Environments: 10 Years of Science Together)
Show Figures

Figure 1

21 pages, 7077 KiB  
Review
Transition-Metal-Catalyzed C(sp3)–H Alkylation of Methyl Heteroarenes with Alcohols
by Bin Guo, Jing Zhang, Lin He, Xin-Yuan Zhou, Kai-Wen Xing, David J. Young and Hong-Xi Li
Catalysts 2024, 14(12), 881; https://doi.org/10.3390/catal14120881 - 3 Dec 2024
Cited by 1 | Viewed by 1559
Abstract
Transition-metal-catalyzed C(sp3)-H bond functionalization is a useful transformation for the construction of C–C bonds. A versatile and easy-to-perform protocol in this respect is the C-alkylation of methyl heteroarenes with alcohols using auto-transfer hydrogenative (ATH) reactions. Various transition metal catalysts based on [...] Read more.
Transition-metal-catalyzed C(sp3)-H bond functionalization is a useful transformation for the construction of C–C bonds. A versatile and easy-to-perform protocol in this respect is the C-alkylation of methyl heteroarenes with alcohols using auto-transfer hydrogenative (ATH) reactions. Various transition metal catalysts based on Ir, Pt, Ru, Ni, Co, Fe and Mn have been employed for the construction of chain-elongated alkyl-substituted heterocyclic compounds using this chemistry. Water is the only byproduct and the starting alcohols are less toxic, readily available, more easily handled and more atom-economical substrates than their halogen counterparts. This review details recent advances in this synthetic methodology, describing the scope, reaction mechanism, chemo-selectivity and applications. Full article
(This article belongs to the Special Issue Catalysis in Heterocyclic and Organometallic Synthesis, 3rd Edition)
Show Figures

Figure 1

12 pages, 2332 KiB  
Article
Dechlorination of Hexachlorobenzene by Ni/Fe Bimetallic Nanoparticles and the Influence of Co-Existing Heavy Metal Ions
by Yuanying Huang, Siwen Liu, Qian Wang, Guoxin Huang, Xueqi Zhang and Yang Liu
Water 2024, 16(19), 2855; https://doi.org/10.3390/w16192855 - 8 Oct 2024
Viewed by 1098
Abstract
Hexachlorobenzene (HCB) is one of the most persistent environmental pollutants of global concern. Ni/Fe nanoparticles, with their small particle size, large surface area, and high reactivity, are a promising candidate for HCB degradation. In this work, we investigated the kinetics and products of [...] Read more.
Hexachlorobenzene (HCB) is one of the most persistent environmental pollutants of global concern. Ni/Fe nanoparticles, with their small particle size, large surface area, and high reactivity, are a promising candidate for HCB degradation. In this work, we investigated the kinetics and products of the dechlorination of HCB by Ni/Fe nanoparticles and how the presence of heavy metal ions Cd(Ⅱ) and Zn(Ⅱ) influences the reaction. It is found that 400 μg/L HCB can be rapidly removed by 7.5 g/L Ni/Fe nanoparticles and the removal percentage reaches 99% in 48 h. The removal is facilitated by adsorption and sequential dechlorination of HCB, producing PCB, 1,2,3,4-TeCB, and 1,2,3-TCB as the main products, with 1,2,3,5/1,2,4,5-TeCB, 1,2,4-TCB, and 1,2-DCB as the minor products. The addition of heavy metal ions Cd(Ⅱ) and Zn(Ⅱ) does not significantly affect the removal rate of HCB but hinders the adsorption and degradation of the byproducts through competitive adsorption. Additionally, the concentration of both Cd(Ⅱ) and Zn(Ⅱ) decreases rapidly and achieves over 98% removal in 4 h. Our study reveals that Ni/Fe nanoparticles can remove HCB and heavy metals Cd(Ⅱ) and Zn(Ⅱ) concurrently, with the extent of HCB dechlorination reduced compared to that without heavy metal. These findings may inform the application of Ni/Fe nanoparticles in the treatment of water bodies and soil contaminated by both halogenated aromatics and heavy metal. Full article
(This article belongs to the Special Issue Mine and Water)
Show Figures

Figure 1

24 pages, 799 KiB  
Review
Breast Cancer-Related Chemical Exposures in Firefighters
by Bethsaida Cardona, Kathryn M. Rodgers, Jessica Trowbridge, Heather Buren and Ruthann A. Rudel
Toxics 2024, 12(10), 707; https://doi.org/10.3390/toxics12100707 - 28 Sep 2024
Cited by 2 | Viewed by 4088
Abstract
To fill a research gap on firefighter exposures and breast cancer risk, and guide exposure reduction, we aimed to identify firefighter occupational exposures linked to breast cancer. We conducted a systematic search and review to identify firefighter chemical exposures and then identified the [...] Read more.
To fill a research gap on firefighter exposures and breast cancer risk, and guide exposure reduction, we aimed to identify firefighter occupational exposures linked to breast cancer. We conducted a systematic search and review to identify firefighter chemical exposures and then identified the subset that was associated with breast cancer. To do this, we compared the firefighter exposures with chemicals that have been shown to increase breast cancer risk in epidemiological studies or increase mammary gland tumors in experimental toxicology studies. For each exposure, we assigned a strength of evidence for the association with firefighter occupation and for the association with breast cancer risk. We identified twelve chemicals or chemical groups that were both linked to breast cancer and were firefighter occupational exposures, including polycyclic aromatic hydrocarbons, volatile aromatics, per- and polyfluoroalkyl substances, persistent organohalogens, and halogenated organophosphate flame retardants. Many of these were found at elevated levels in firefighting environments and were statistically significantly higher in firefighters after firefighting or when compared to the general population. Common exposure sources included combustion byproducts, diesel fuel and exhaust, firefighting foams, and flame retardants. Our findings highlight breast-cancer-related chemical exposures in the firefighting profession to guide equitable worker’s compensation policies and exposure reduction. Full article
(This article belongs to the Special Issue Firefighters’ Occupational Exposures and Health Risks)
Show Figures

Figure 1

11 pages, 1350 KiB  
Article
The Selectively Nontargeted Analysis of Halogenated Disinfection Byproducts in Tap Water by Micro-LC QTOFMS
by Jing Wu, Yulin Zhang, Qiwei Zhang, Fang Tan, Qiongyu Liu and Xiaoqiu Yang
Toxics 2024, 12(9), 630; https://doi.org/10.3390/toxics12090630 - 26 Aug 2024
Viewed by 1068
Abstract
With the rapid development of society, more and more unknown halogenated disinfection byproducts (DBPs) enter into drinking water and pose potential risks to humans. To explore the unknown halogenated DBPs in tap water, a selectively nontargeted analysis (SNTA) method was developed by conducting [...] Read more.
With the rapid development of society, more and more unknown halogenated disinfection byproducts (DBPs) enter into drinking water and pose potential risks to humans. To explore the unknown halogenated DBPs in tap water, a selectively nontargeted analysis (SNTA) method was developed by conducting micro-liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (micro-LC-QTOFMS). In this method, two runs were employed: in the first run, the modes of TOFMS and precursor ion (the fragments were set as Cl35/Cl37, Br79/Br81, and I126.9) were performed, and the molecular ions or precursor ions of the halogenated organics could be obtained; in the second run, the product ion mode was conducted by setting the molecular ion screened above, and the MS/MS spectrums could be acquired to speculate concerning the structure. Two kinds of model DBPs (one kind had an aliphatic structure and the other was an aromatic compound) were used to optimize the parameters of the MS, and their MS characteristics were summarized. With this SNTA method, 15 halogenated DBPs were screened in two tap water samples and their structures were proposed. Of them, six DBPs had not been reported before and were assumed to be new DBPs. Overall, the detected halogenated DBPs were mostly acidic substances. Full article
Show Figures

Figure 1

30 pages, 5344 KiB  
Review
Bio-Sourced Flame Retardants for Textiles: Where We Are and Where We Are Going
by Giulio Malucelli
Molecules 2024, 29(13), 3067; https://doi.org/10.3390/molecules29133067 - 27 Jun 2024
Cited by 10 | Viewed by 2133
Abstract
After the period of halogenated compounds, the period of nano-structured systems, and that of phosphorus (and nitrogen)-based additives (still in progress), following the increasingly demanding circular economy concept, about ten years ago the textile flame retardant world started experiencing the design and exploitation [...] Read more.
After the period of halogenated compounds, the period of nano-structured systems, and that of phosphorus (and nitrogen)-based additives (still in progress), following the increasingly demanding circular economy concept, about ten years ago the textile flame retardant world started experiencing the design and exploitation of bio-sourced products. Indeed, since the demonstration of the potential of such bio(macro)molecules as whey proteins, milk proteins (i.e., caseins), and nucleic acids as effective flame retardants, both natural and synthetic fibers and fabrics can take advantage of the availability of several low-environmental impact/“green” compounds, often recovered from wastes or by-products, which contain all the elements that typically compose standard flame-retardant recipes. The so-treated textiles often exhibit flame-retardant features that are similar to those provided by conventional fireproof treatments. Further, the possibility of using the same deposition techniques already available in the textile industry makes these products very appealing, considering that the application methods usually do not require hazardous or toxic chemicals. This review aims to present an overview of the development of bio-sourced flame retardants, focusing attention on the latest research outcomes, and finally discussing some current challenging issues related to their efficient application, paving the way toward further future implementations. Full article
(This article belongs to the Special Issue Recent Developments in Flame Retardant Polymeric Materials)
Show Figures

Graphical abstract

14 pages, 2026 KiB  
Article
Mucolytic Drugs Ambroxol and Bromhexine: Transformation under Aqueous Chlorination Conditions
by Sergey A. Sypalov, Ilya S. Varsegov, Nikolay V. Ulyanovskii, Albert T. Lebedev and Dmitry S. Kosyakov
Int. J. Mol. Sci. 2024, 25(10), 5214; https://doi.org/10.3390/ijms25105214 - 10 May 2024
Cited by 2 | Viewed by 2190
Abstract
Bromhexine and ambroxol are among the mucolytic drugs most widely used to treat acute and chronic respiratory diseases. Entering the municipal wastewater and undergoing transformations during disinfection with active chlorine, these compounds can produce nitrogen- and bromine-containing disinfection by-products (DBPs) that are dangerous [...] Read more.
Bromhexine and ambroxol are among the mucolytic drugs most widely used to treat acute and chronic respiratory diseases. Entering the municipal wastewater and undergoing transformations during disinfection with active chlorine, these compounds can produce nitrogen- and bromine-containing disinfection by-products (DBPs) that are dangerous for aquatic ecosystems. In the present study, primary and deep degradation products of ambroxol and bromhexine obtained in model aquatic chlorination experiments were studied via the combination of high-performance liquid and gas chromatography with high-resolution mass spectrometry. It was shown that at the initial stages, the reactions of cyclization, hydroxylation, chlorination, electrophilic ipso-substitution of bromine atoms with chlorine, and oxidative N-dealkylation occur. Along with known metabolites, a number of novel primary DBPs were tentatively identified based on their elemental compositions and tandem mass spectra. Deep degradation of bromhexine and ambroxol gives twenty-four identified volatile and semi-volatile compounds of six classes, among which trihalomethanes account for more than 50%. The specific class of bromhexine- and ambroxol-related DBPs are bromine-containing haloanilines. Seven of them, including methoxy derivatives, were first discovered in the present study. One more novel class of DBPs associated with bromhexine and ambroxol is represented by halogenated indazoles formed through dealkylation of the primary transformation products containing pyrazoline or tetrahydropyrimidine cycle in their structure. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

14 pages, 4874 KiB  
Article
Effects of Massive Use of Disinfectants on the Plankton Communities in Lakes from Wuhan
by Gaofei Song, Pingping Xu, Yuxuan Zhu, Adilo Rediat Abate, Wujuan Mi and Yonghong Bi
Water 2023, 15(22), 3875; https://doi.org/10.3390/w15223875 - 7 Nov 2023
Viewed by 1887
Abstract
The outbreak of COVID-19 led to the extensive use of disinfectants in urban areas. These disinfectants, along with disinfection by-products (DBPs), eventually enter waters and affected the aquatic organisms. But little information could be obtained on disinfectants threatening aquatic ecosystems. This study was [...] Read more.
The outbreak of COVID-19 led to the extensive use of disinfectants in urban areas. These disinfectants, along with disinfection by-products (DBPs), eventually enter waters and affected the aquatic organisms. But little information could be obtained on disinfectants threatening aquatic ecosystems. This study was conducted to obtain insight into the effects of massive use of disinfectants on freshwater ecosystems, DBPs, phytoplankton, and zooplankton in nine urban and two country lakes in Wuhan during the COVID-19 pandemic; in addition, the residual chlorine in the South Lake (one of the urban lakes), was investigated. The concentration of residual chlorine in the South Lake ranged from 0.000 mg L−1 to 0.427mg L−1, with an average concentration of 0.092 mg L−1. The total concentrations of DBPs (halogenated aliphatic DBPs and aromatic halogenated DBPs) detected in the urban and country lakes ranged from 4.22 μg L−1 to 16.59 μg L−1 and 5.92 μg L−1 to 7.84 μg L−1, respectively. There was no significant difference in DBPs content between urban lakes and country lakes (p < 0.05). Mann–Whitney U tests showed no significant differences in plankton cell density, biomass, and alpha diversity indexes between urban and country lakes, except for the Shannon−Wiener diversity index of phytoplankton. Beta diversity demonstrated that plankton communities at different sampling stations in urban and country lakes were not significantly separated into two groups, but rather intersected each other. Variance partitioning analysis revealed that the composition of plankton communities was primarily influenced by other plankton organisms and community stability under the conditions of the investigated factors. Results indicated that the detected plankton communities in urban lakes from Wuhan were not significantly affected by the use of disinfectants. It could be deduced that the massive use of disinfectants in this outbreak had no significant impact on the plankton communities. Full article
Show Figures

Figure 1

13 pages, 1952 KiB  
Article
Removal of Membrane Fouling and Control of Halogenated By-Products by a Combined Cleaning Process with Peroxides and Sodium Hypochlorite
by Jiaqi Ding, Ying Wan, Yujia Zou, Songlin Wang, Xiaolong Huang and Pengchao Xie
Water 2023, 15(13), 2498; https://doi.org/10.3390/w15132498 - 7 Jul 2023
Cited by 3 | Viewed by 3108
Abstract
Sodium hypochlorite (NaClO) solution is wildly used to remove membrane fouling-derived organic materials and restore membrane flux, which can result in the formation of halogenated by-products. To reduce the halogenated by-products, a combined cleaning process with NaClO and peroxides including hydrogen peroxide (H [...] Read more.
Sodium hypochlorite (NaClO) solution is wildly used to remove membrane fouling-derived organic materials and restore membrane flux, which can result in the formation of halogenated by-products. To reduce the halogenated by-products, a combined cleaning process with NaClO and peroxides including hydrogen peroxide (H2O2), peroxydisulfate (PDS), and peroxymonosulfate (PMS) were applied in offline mode to remove the organic fouling. It was found that all the combined cleaning processes could effectively restore the membrane flux. Compared with the process of NaClO cleaning followed by peroxide cleaning (NaClO–peroxide), fewer halogenated by-products were generated in the NaClO post-combined cleaning process (peroxide–NaClO), and the PDS–NaClO cleaning process exhibited the best performance in controlling by-products. Overall, most by-product generation showed a positive correlation with reaction time and temperature. Full article
Show Figures

Figure 1

20 pages, 8324 KiB  
Review
Hemetsberger–Knittel and Ketcham Synthesis of Heteropentalenes with Two (1:1), Three (1:2)/(2:1) and Four (2:2) Heteroatoms
by Zita Tokárová, Renáta Gašparová, Natália Kabaňová, Marcela Gašparová and Róbert Balogh
Reactions 2023, 4(2), 254-273; https://doi.org/10.3390/reactions4020015 - 8 May 2023
Cited by 2 | Viewed by 2797
Abstract
The synthetic methods leading to furo[3,2-b]pyrroles and thiazolo [5,4-d]thiazoles are reviewed herein. Furo-, thieno- and seleno [3,2-b]pyrroles are related to heteropentalenes, containing two heteroatoms in the entire structure, one each per core. The synthetic approach follows the [...] Read more.
The synthetic methods leading to furo[3,2-b]pyrroles and thiazolo [5,4-d]thiazoles are reviewed herein. Furo-, thieno- and seleno [3,2-b]pyrroles are related to heteropentalenes, containing two heteroatoms in the entire structure, one each per core. The synthetic approach follows the Hemetsberger–Knittel protocol covering three reaction steps—the nucleophilic substitution of halogen-containing aliphatic carboxylic acid esters, Knoevenagel condensation and, finally, thermolysis promoting the intramolecular cyclocondensation to O,N-heteropentalene. The Hemetsberger–Knittel reaction sequence is also known for the preparation of O,N-heteropentalenes with three heteroatoms (2:1) and their sulphur and selen heteroatoms containing structural analogues and bispyrroles. The synthetic approach towards thiazolo [5,4-d] thiazoles represents a more straightforward route, according to the Ketcham cyclocondensation. Proceeding with the Ketcham process is more challenging since it occurs stepwise and the formation of by-products is obvious. Thiazolo [5,4-d]thiazole is a representative of the aromatic heteropentalene with four heteroatoms in the structure—twinned N and S, two for each of the five-membered rings. The synthetic approaches towards those particular heteropentalnes have been chosen as a consequence of our ongoing research dealing with the design, synthesis and applications of substituted furo [3,2-b]pyrroles and thiazolo [5,4-d]thiazole-based derivatives. While the furopyrroles are known for their pharmacological activity, thiazolothiazoles have become of interest to materials science. We are aware that from a “bank” of existing compounds/procedures not all are presented in this review, and we apologise to respective groups whose research have not been objectively included. Full article
Show Figures

Figure 1

19 pages, 8192 KiB  
Article
Enhanced Adsorption of Bromoform onto Microplastic Polyethylene Terephthalate Exposed to Ozonation and Chlorination
by Ximiao Zhu, Chenhui Hao, Mengze Zhang and Bingyan Lan
Molecules 2023, 28(1), 259; https://doi.org/10.3390/molecules28010259 - 28 Dec 2022
Cited by 11 | Viewed by 2230
Abstract
This paper selected microplastic polyethylene terephthalate (PET), commonly found in water/wastewater plant effluent, to investigate the changes of PET oxidized under ozonation (designated as ozonized PET), followed by sodium hypochlorite oxidation (designated as ozonized-chlorinated PET) and studied their influence on the adsorption of [...] Read more.
This paper selected microplastic polyethylene terephthalate (PET), commonly found in water/wastewater plant effluent, to investigate the changes of PET oxidized under ozonation (designated as ozonized PET), followed by sodium hypochlorite oxidation (designated as ozonized-chlorinated PET) and studied their influence on the adsorption of the disinfection by-product bromoform (TBM). Fragmentation and cracks appeared on the oxidized PET surface. As the oxidation degree increased, the contact angle decreased from 137° to 128.90° and 128.50°, suggesting hydrophilicity was enhanced. FTIR and XPS analyses suggested that carbonyl groups increased on the surface of ozonized PET and ozonized-chlorinated PET, while the formation of intermolecular halogen bonds was possible when PET experienced dual oxidation. These physiochemical changes enhanced the adsorption of TBM. The adsorption capacity of TBM followed the order of ozonized-chlorinated PET (2.64 × 10−6 μg/μg) > ozonized PET (2.58 × 10−6 μg/μg) > pristine PET (2.43 × 10−6 μg/μg). The impact of raw water characteristics on the adsorption of TBM onto PETs, such as the pH, and the coexistence of inorganic ions and macromolecules (humic acid, surfactant, and bovine serum albumin) were studied. A different predominant adsorption mechanism between TBM and pristine PET or oxidized PETs was proposed. Full article
Show Figures

Figure 1

12 pages, 2428 KiB  
Article
Inhibition of Phenol from Entering into Condensed Freshwater by Activated Persulfate during Solar-Driven Seawater Desalination
by Xiaojiao Zhou, Ningyao Tao, Wen Jin, Xingyuan Wang, Tuqiao Zhang and Miaomiao Ye
Molecules 2022, 27(21), 7160; https://doi.org/10.3390/molecules27217160 - 23 Oct 2022
Cited by 6 | Viewed by 2071
Abstract
Recently, solar-driven seawater desalination has received extensive attention since it can obtain considerable freshwater by accelerating water evaporation at the air–water interface through solar evaporators. However, the high air–water interface temperature can cause volatile organic compounds (VOCs) to enter condensed freshwater and result [...] Read more.
Recently, solar-driven seawater desalination has received extensive attention since it can obtain considerable freshwater by accelerating water evaporation at the air–water interface through solar evaporators. However, the high air–water interface temperature can cause volatile organic compounds (VOCs) to enter condensed freshwater and result in water quality safety risk. In this work, an antioxidative solar evaporator, which was composed of MoS2 as the photothermal material, expandable polyethylene (EPE) foam as the insulation material, polytetrafluoroethylene (PTFE) plate as the corrosion resistant material, and fiberglass membrane (FB) as the seawater delivery material, was fabricated for the first time. The activated persulfate (PS) methods, including peroxymonosulfate (PMS) and peroxodisulfate (PDS), were applied to inhibit phenol from entering condensed freshwater during desalination. The distillation concentration ratio of phenol (RD) was reduced from 76.5% to 0% with the addition of sufficient PMS or PDS, which means that there was no phenol in condensed freshwater. It was found that the Cl is the main factor in activating PMS, while for PDS, light, and heat are the dominant. Compared with PDS, PMS can make full utilization of the light, heat, Cl at the evaporator’s surface, resulting in more effective inhibition of the phenol from entering condensed freshwater. Finally, though phenol was efficiently removed by the addition of PMS or PDS, the problem of the formation of the halogenated distillation by-products in condensed freshwater should be given more attention in the future. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes for Removal of Emerging Pollutants)
Show Figures

Graphical abstract

Back to TopTop