Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,098)

Search Parameters:
Keywords = habitat degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 803 KB  
Article
Coevolving Citizen Science, Bats, and Urban Planning to Support More-than-Human Healthy Cities: Lessons from Florida
by Nicole Sarver, Glen Cousquer and Peter Lurz
Environments 2025, 12(11), 438; https://doi.org/10.3390/environments12110438 - 13 Nov 2025
Abstract
Urbanisation has resulted in habitat degradation and destruction for native bat species in Florida, USA, posing a continuing threat to bat populations and ecosystem health. Citizen science has been documented to fill population data gaps and outline bat responses to urbanisation, but an [...] Read more.
Urbanisation has resulted in habitat degradation and destruction for native bat species in Florida, USA, posing a continuing threat to bat populations and ecosystem health. Citizen science has been documented to fill population data gaps and outline bat responses to urbanisation, but an understanding of how this influences societal perceptions of bats and can shape and evolve urban planning initiatives are under-researched and poorly understood. This paper explores how citizen science could contribute to urban planning for bat conservation. A literature review of citizen science projects and native species’ responses to urbanisation mapped the current situation and was supplemented by an analysis of semi-structured interviews with three key informants in the field of bat conservation. Only four of Florida’s thirteen species were featured in the citizen science projects reported in the literature. There was a clear lack of attention to the impact of urbanisation on these species, demonstrating a need for reimagining how data collection and public participation can be improved. An analysis of interviews identified themes of evolving individual perspectives and complex societal connections whose interdependence and coevolution influences the success of both citizen science and urban planning. Understanding this coevolution of society and bat conservation alongside our current knowledge could provide future opportunities for bat-friendly urban planning in Florida with the potential for this to be framed in terms of healthy more-than-human cities. Full article
18 pages, 1938 KB  
Review
Bibliometric Analysis of Global Research on Sugarcane Production and Its Effects on Biodiversity: Trends, Critical Points, and Knowledge Gaps
by Eduardo Rodrigues dos Santos, William Douglas Carvalho and Karen Mustin
Conservation 2025, 5(4), 67; https://doi.org/10.3390/conservation5040067 - 11 Nov 2025
Viewed by 169
Abstract
The rising global demand for renewable energy and the urgency of mitigating climate change have positioned biofuels, particularly sugarcane ethanol, at the forefront of sustainability and conservation debates. Although promoted as a renewable alternative, sugarcane cultivation can cause habitat loss, biodiversity decline, soil [...] Read more.
The rising global demand for renewable energy and the urgency of mitigating climate change have positioned biofuels, particularly sugarcane ethanol, at the forefront of sustainability and conservation debates. Although promoted as a renewable alternative, sugarcane cultivation can cause habitat loss, biodiversity decline, soil degradation, and water contamination. This study presents a bibliometric assessment of 217 publications addressing the biodiversity impacts of sugarcane production, based on searches in the Web of Science Core Collection for papers published between 1998 and 2023. Using the bibliometrix package in R, we identified key publication trends, collaboration networks, and thematic structures. Between 1998 and 2006, no studies were returned by our searches, after which research activity increased substantially, peaking in 2021. Brazil, the world’s largest sugarcane producer, was the most frequent contributor to scientific output, while other major sugarcane producers, such as Thailand and India, showed limited engagement. Thematic mapping of the studies returned by our searches revealed three clusters: (1) cross-cutting themes linking sugarcane, biodiversity, and sustainability; (2) niche themes on pest and soil dynamics; and (3) emerging themes on the ecological role of bats in sugarcane landscapes. Overall, the findings highlight the growing academic engagement in reconciling bioenergy development with biodiversity conservation. Full article
Show Figures

Figure 1

24 pages, 9429 KB  
Article
Spatial–Temporal Patterns of Mammal Diversity and Abundance in Three Vegetation Types in a Semi-Arid Landscape in Southeastern Coahuila, Mexico
by Erika J. Cruz-Bazan, Jorge E. Ramírez-Albores, Juan A. Encina-Domínguez, José A. Hernández-Herrera and Eber G. Chavez-Lugo
Diversity 2025, 17(11), 788; https://doi.org/10.3390/d17110788 - 10 Nov 2025
Viewed by 95
Abstract
The grasslands and shrublands of northern and central Mexico cover nearly 25% of the country and harbor high biodiversity. However, they are increasingly degraded by agriculture, urbanization, infrastructure development, and water overexploitation. To assess the status of medium- and large-sized mammals in these [...] Read more.
The grasslands and shrublands of northern and central Mexico cover nearly 25% of the country and harbor high biodiversity. However, they are increasingly degraded by agriculture, urbanization, infrastructure development, and water overexploitation. To assess the status of medium- and large-sized mammals in these threatened ecosystems, we quantified species richness, relative abundance, and naïve occupancy across vegetation types and seasons. From April 2023 to February 2024, monthly track surveys and camera trapping were performed, and the data were analyzed in R. We documented 16 species representing four orders and nine families, with Carnivora being the most diverse (eight species). The species richness varied by habitat, ranging from 11 in montane forest to 13 in semi-desert grassland, the latter habitat having the highest Shannon and Simpson indices, particularly in the dry season. Odocoileus virginianus and Sylvilagus audubonii were consistently the most abundant species in montane forest and desert scrub, whereas Cynomys mexicanus predominated in semi-desert grasslands, accounting for >90% of detections during the rainy season. Rare species included Lynx rufus, Taxidea taxus, and Ursus americanus, each with isolated detections. Rarefaction and sample coverage curves approached asymptotes (>99%), indicating sufficient sampling effort. Naïve occupancy and encounter rates were highest for O. virginianus (0.82) and S. audubonii (0.68), with a strong positive correlation between the two metrics (r2 = 0.92). These findings provide robust baseline information on mammalian diversity, abundance, and habitat associations in semi-arid anthropogenic landscapes, supporting future monitoring and conservation strategies. Full article
(This article belongs to the Special Issue Wildlife in Natural and Altered Environments)
Show Figures

Graphical abstract

16 pages, 3863 KB  
Article
Alpine Grassland Ecological Restoration Approaches Shape Insect Trophic Guild Diversity: A Multi-Dimensional Assessment from Alpha to Dark Diversity
by Kuanyan Tang, Hongru Yue, Haijuan Qu, Yifang Xing, Bingshuang Qin, Aosheng Wang, Kejian Lin, Kun Shi and Ning Wang
Insects 2025, 16(11), 1140; https://doi.org/10.3390/insects16111140 - 7 Nov 2025
Viewed by 332
Abstract
The severe degradation of alpine grasslands on the Qinghai–Tibet Plateau poses a significant threat to regional ecological security. While insects are critical for ecosystem functions, their responses to restoration measures in these fragile habitats are poorly documented. This study assessed the initial impacts [...] Read more.
The severe degradation of alpine grasslands on the Qinghai–Tibet Plateau poses a significant threat to regional ecological security. While insects are critical for ecosystem functions, their responses to restoration measures in these fragile habitats are poorly documented. This study assessed the initial impacts of four restoration approaches—grazing exclusion fencing (FE), no-till reseeding (FR), planting grass (GC), and grazing control (CK)—on insect trophic guilds (herbivores, predators, saprophagous, and omnivores) in the Qilian Mountains. Using a multi-dimensional indicator (alpha, zeta, and dark diversity), we systematically assessed community assembly and recovery potential. The results revealed the following: (1) FE supported the highest insect abundance, dominated by phytophagous insects. FR significantly enhanced species’ richness and diversity across multiple functional groups (p < 0.05). GC significantly increased the richness of omnivorous insects, but caused a significant decrease in the Shannon–Wiener index for saprophagous insects (p < 0.05). (2) Zeta diversity revealed stable, widespread-species-dominated communities under FR and FE, while CK and GC favored rare-species-driven succession. Dark diversity analysis indicated high recovery potential for phytophagous insects under FR and FE, while GC enhanced saprophagous latent diversity. However, we emphasize that mechanistic interpretations require further validation. Our findings highlight no-till reseeding as a promising initial strategy, though longer-term studies are essential to evaluate successional trajectories and establish definitive management protocols for alpine grassland restoration. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Graphical abstract

22 pages, 5662 KB  
Article
Coastal Wetland Conservation and Urban Sustainable Development Synergy Pathway Research: Insights from Qingdao and Weihai for Qinhuangdao
by Wei Xiong, Junjie Li and Bangfan Liu
Sustainability 2025, 17(21), 9902; https://doi.org/10.3390/su17219902 - 6 Nov 2025
Viewed by 286
Abstract
This study addresses the critical challenge of balancing coastal wetland conservation with urban sustainable development, a pivotal issue for ecological civilization in rapidly developing regions. Through an in-depth analysis of Qingdao and Weihai—exemplary cases in Shandong Province—this research systematically investigates mechanisms for achieving [...] Read more.
This study addresses the critical challenge of balancing coastal wetland conservation with urban sustainable development, a pivotal issue for ecological civilization in rapidly developing regions. Through an in-depth analysis of Qingdao and Weihai—exemplary cases in Shandong Province—this research systematically investigates mechanisms for achieving synergistic win–win outcomes. Employing a mixed-methods approach, including systems analysis to deconstruct governance frameworks, comparative case study to identify transferable strategies, and policy deduction to formulate actionable pathways, the study reveals how integrated approaches yield tangible results. Qingdao’s “Five Ocean Usages” concept and Weihai’s segmented coastal zoning have significantly improved key ecological metrics. By contrast, Qinhuangdao faces pronounced challenges, including degraded wetlands, spatial conflict between ports and core habitats, and underdeveloped synergistic governance. To address these, the study proposes a targeted strategy for Qinhuangdao, emphasizing a data-informed “wetland+” multi-format integration plan, the establishment of wetland mitigation banking and green finance instruments, digitally enabled public participation, and deeper policy alignment with national strategies such as Maritime Power. This research provides both a replicable analytical framework and practical guidance for coastal cities seeking to realize “development within protection and protection within development”. Full article
Show Figures

Figure 1

22 pages, 8409 KB  
Article
Climate Change vs. Human Activities: Conflicting Future Impacts on a High-Altitude Endangered Snake (Thermophis baileyi)
by Yuxue Pan, Ruiying Han, Fengbin Dai, Yu Liu, Tianjian Song, Yueheng Ren, Song Huang and Jiang Chang
Biology 2025, 14(11), 1531; https://doi.org/10.3390/biology14111531 - 31 Oct 2025
Viewed by 348
Abstract
Endemic ectotherms in high-altitude regions face dual threats from climate change and human activities, yet quantifiable indicators to disentangle these stressors remain limited. We developed a novel multi-scenario framework to disentangle the independent and synergistic impacts of climate change and anthropogenic landscape change [...] Read more.
Endemic ectotherms in high-altitude regions face dual threats from climate change and human activities, yet quantifiable indicators to disentangle these stressors remain limited. We developed a novel multi-scenario framework to disentangle the independent and synergistic impacts of climate change and anthropogenic landscape change on the habitat suitability of the Tibetan hot-spring snake (Thermophis baileyi) across the Tibetan Plateau. Our analysis was based on field survey data and species occurrence records, utilizing the species distribution model and the CA–Markov model. We identified temperature seasonality (41.8% contribution) as the primary environmental factor influencing its distribution, followed by precipitation of the coldest quarter (15.1%) and land cover (13.8%). The results showed that moderate climate warming would benefit the survival of the species, with a 24.03–38.55% gain in high-suitability habitat (HSH) area under climate change-only scenarios. However, extreme warming (exceeding SSP5-8.5) would surpass the thermal tolerance threshold of T. baileyi, reducing its HSH and triggering a northward shift in its distribution centroid. Landscape change reduced the HSH (5.98% reduction under land cover change-only scenario), and attenuated climate-driven gains by 4.99–11.31% under combined climate–landscape change scenarios. In addition, only one-fifth of the current HSH was covered by national natural reserves. Synergistic anthropogenic pressures critically offset climate benefits, demonstrating the need for integrated conservation strategies to address the challenges posed by both extreme climate warming and land cover change threats to mitigate future habitat degradation. The quantification of climate–land cover change impacts on T. baileyi offers critical insights for high-altitude ectotherm distributions under global changes and evidence-based conservation planning. Full article
Show Figures

Figure 1

15 pages, 5545 KB  
Article
Predicting Rapid, Climate-Driven Shifts in North American Habitat Suitability for the Purple Pitcher Plant (Sarracenia purpurea L.)
by Christian H. Brown, Benjamin L. Frick and Jacqueline E. Mohan
Plants 2025, 14(21), 3337; https://doi.org/10.3390/plants14213337 - 31 Oct 2025
Viewed by 306
Abstract
Climate change is shifting where suitable habitats occur for many species across the planet. Sarracenia purpurea L., the most widely distributed pitcher plant species in North America, already faces significant threats from land use change. While S. purpurea is well studied at physiological [...] Read more.
Climate change is shifting where suitable habitats occur for many species across the planet. Sarracenia purpurea L., the most widely distributed pitcher plant species in North America, already faces significant threats from land use change. While S. purpurea is well studied at physiological and local scales, threat assessments for this species at biogeographic scales are absent. Here, we remedy this by using Habitat Suitability Models to predict current suitable habitats and estimate climate-based shifts in the suitable habitat for S. purpurea in the near (2040) and long term (2100). The models predicted large areas of habitat loss in the southeastern United States and the western portion of the Great Lakes region by 2040. While the models also predict significant gains in suitable habitats north of the current S. purpurea range, the limited dispersal ability of this species precludes the possibility of natural migration to newly suitable habitats. Our results suggest that the degradation of considerable portions of current suitable habitats is already occurring and will continue in the future. Particularly threatened are the southern subspecies (e.g., Sarracenia purpurea subsp. venosa) of S. purpurea. We therefore urge land managers to make conservation efforts targeting threatened subspecies and encourage further the biogeographic investigation of less widely distributed congenerics of S. purpurea. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

20 pages, 13466 KB  
Article
Habitat Quality and Degradation in the West Qinling Mountains, China: From Spatiotemporal Assessment to Sustainable Management (1990–2020)
by Li Luo, Chen Yin and Xuelu Liu
Sustainability 2025, 17(21), 9700; https://doi.org/10.3390/su17219700 - 31 Oct 2025
Viewed by 231
Abstract
To address land space issues in the West Qinling Mountains—including habitat degradation, ecosystem damage, spatial pattern imbalance and unsustainable resource use—this study employed the InVEST habitat quality model and spatial autocorrelation analysis. Based on land use remote sensing data from 1990 to 2020, [...] Read more.
To address land space issues in the West Qinling Mountains—including habitat degradation, ecosystem damage, spatial pattern imbalance and unsustainable resource use—this study employed the InVEST habitat quality model and spatial autocorrelation analysis. Based on land use remote sensing data from 1990 to 2020, we simulated and evaluated habitat quality and degradation over this 30-year period to propose scientific recommendations and optimization strategies. The results showed that: (1) The area of grassland and farmland in the West Qinling Mountains decreased significantly, the area of construction land, bare land and forest land increased mainly; (2) The habitat quality of the West Qinling Mountains was generally high, and the average of the habitat quality showed an overall decreasing trend in the period of 1990–2020. The proportion of worst habitat increased from 4.11% to 5.21%. The habitat quality is in the process of polarization, the spatial distribution of habitat quality in West Qinling shows a pattern of “high in the west, low in the north and southeast”; (3) The hot and cold spots of habitat quality in West Qinling are spatially manifested as “hotter in the west and the south; colder in the center and the east”; (4) The spatial clustering of habitat quality in the West Qinling Mountains is obvious, with the area of the high–high area and the low–low area increasing with time, the high–low area decreasing, and the low–high area slightly increasing. (5) The degree of habitat degradation in the West Qinling Mountains is generally low, the average value of degradation from 1990 to 2020 showed an upward trend, habitat degradation is in the process of converging to medium risk. The area of medium habitat degradation expanded by nearly 1.5 times between 1990 and 2020. The spatial distribution of habitat degradation in the West Qinling Mountains generally shows a pattern of low in the west and high in the north and high in the southeast. In future planning and management, the west Qinling Mountains should formulate and carry out scientific ecological restoration plans and projects in terms of improving the quality of habitats, curbing habitat degradation, optimizing the direction of regional land use and reasonably protecting land resources, in an effort to balance urban development and ecological protection, curbing ecological degradation, guaranteeing the sustainable development of the habitats in a benign direction. Full article
Show Figures

Figure 1

22 pages, 10135 KB  
Article
Modeling the Impact of Climate Change on the Distribution of Populus adenopoda in China Using the MaxEnt Model
by Yang Tian, Jia Song, Baochang Cheng, Ruobing Wei, Yong Zeng, Jingkai Zhang, Jianguo Zhang and Zhaoshan Wang
Forests 2025, 16(11), 1662; https://doi.org/10.3390/f16111662 - 30 Oct 2025
Viewed by 220
Abstract
Populus adenopoda, an endemic tree species in China with considerable ecological and industrial value, is threatened by climate change-induced habitat loss. Understanding its spatial response is critical for conservation. This study employed the MaxEnt model with 181 occurrence records and seven environmental [...] Read more.
Populus adenopoda, an endemic tree species in China with considerable ecological and industrial value, is threatened by climate change-induced habitat loss. Understanding its spatial response is critical for conservation. This study employed the MaxEnt model with 181 occurrence records and seven environmental variables to project its current and future suitable habitats under multiple climate scenarios (SSP126, SSP245, SSP370, SSP585 for the 2050s and 2090s). The model exhibited high predictive performance (AUC = 0.947 and TSS = 0.817). Annual precipitation and the minimum temperature of the coldest month were the dominant factors shaping its distribution. Currently, the total suitable habitat spans approximately 228.19 × 104 km2, predominantly in subtropical China. Future projections consistently revealed a stark degradation of highly suitable habitat, with losses of up to 78.81% under SSP585 by the 2090s, partially offset by an expansion of low-suitability areas. A pronounced northwestward shift of the habitat centroid indicates a potential migration toward higher elevations. These results provide a critical scientific foundation for developing climate-adaptive conservation strategies, including identifying priority areas and planning assisted migration, to ensure the long-term sustainability of P. adenopoda. Full article
(This article belongs to the Special Issue Climate Change Impacts on Forest Dynamics: Use of Modern Technology)
Show Figures

Figure 1

12 pages, 1971 KB  
Article
The Complete Mitochondrial Genome of the Stingless Bee Meliplebeia beccarii (Hymenoptera: Apidae: Meliponini) and Insights into Unusual Gene Rearrangement
by Shi-Jie Wang, Jiao Wu, Abebe Jenberie Wubie and Cheng-Ye Wang
Int. J. Mol. Sci. 2025, 26(21), 10588; https://doi.org/10.3390/ijms262110588 - 30 Oct 2025
Viewed by 174
Abstract
The stingless bee Meliplebeia beccarii, endemic to Ethiopia, plays a crucial ecological and economic role through pollination and high-quality honey production. However, habitat degradation and anthropogenic pressures threaten its survival. In this study, we present the complete mitochondrial genome (mitogenome) of M. [...] Read more.
The stingless bee Meliplebeia beccarii, endemic to Ethiopia, plays a crucial ecological and economic role through pollination and high-quality honey production. However, habitat degradation and anthropogenic pressures threaten its survival. In this study, we present the complete mitochondrial genome (mitogenome) of M. beccarii, revealing a compact structure of 15,458 bp with 13 protein-coding genes (PCGs), 19 tRNAs, and two rRNAs, characterized by an A + T bias (83.9%). Unique features include the absence of trnI, trnK, and trnA, translocation of trnQ and a novel inversion in the trnT-trnP combination. These findings highlight species-specific genomic adaptations. Phylogenetic analysis based on concatenated PCGs places M. beccarii within the Apidae lineage, contributing to a deeper understanding of stingless bee evolution. Our results underscore the utility of mitogenomic studies in biodiversity conservation and evolutionary biology, providing foundational insights for the management and preservation of M. beccarii. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

12 pages, 1371 KB  
Article
Conservation in the Andean Highlands of South America: A Habitat Enhancement Plan for Tematobius philippii, a Critically Endangered Species in the Ascotán Salt Flat in Chile
by Alejandra Alzamora, Hugo Salinas, Juan Carlos Trujillo and Gabriel Lobos
Animals 2025, 15(21), 3156; https://doi.org/10.3390/ani15213156 - 30 Oct 2025
Viewed by 526
Abstract
Amphibians face a global conservation crisis, driven largely by habitat degradation. Effective and practical strategies for habitat restoration are urgently needed, particularly for Critically Endangered species in human-impacted ecosystems. Telmatobius philippii is a species classified as Critically Endangered by the IUCN. Its habitat [...] Read more.
Amphibians face a global conservation crisis, driven largely by habitat degradation. Effective and practical strategies for habitat restoration are urgently needed, particularly for Critically Endangered species in human-impacted ecosystems. Telmatobius philippii is a species classified as Critically Endangered by the IUCN. Its habitat is restricted to a few thermal springs in the Ascotán salt flat in Chile. A significant portion of one of these springs, V11, dried up in 2005 due to industrial groundwater withdrawals, leading to the loss of natural refuges and population decline. As part of a recovery plan for this spring we implemented a habitat improvement program by installing artificial refuges (clay tiles, bricks, and rock piles) and monitored their use over a two-year period. The results indicated that the refuges, particularly the clay tiles, were utilized by T. philippii at all life stages (larvae, juveniles, and adults). Refuge occupancy increased over time, reaching 75% by the end of the study, and the presence of eggs and early-stage larvae confirmed successful breeding associated with the artificial structures. This demonstrates the positive effect of artificial refuges as a practical tool for the recovery of Telmatobius populations. To our knowledge, this study provides the first documented case of successful habitat enhancement for this threatened group of high Andean amphibians, offering a replicable strategy for conservation in fragile ecosystems. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

15 pages, 2111 KB  
Article
Reproductive Characteristics of Odontobutis potamophila: Implications for Sustainable Fisheries Management
by Miao Xiang, Shasha Zhao, Bo Li, Li Li, Man Wang, Jie Wang, Ruru Lin and Lei Zhang
Animals 2025, 15(21), 3150; https://doi.org/10.3390/ani15213150 - 30 Oct 2025
Viewed by 263
Abstract
Odontobutis potamophila, a small benthic carnivorous fish endemic to the Yangtze River basin, holds considerable ecological and commercial value. However, overfishing and habitat degradation have led to a severe decline in its wild population. A lack of quantitative reproductive data has further [...] Read more.
Odontobutis potamophila, a small benthic carnivorous fish endemic to the Yangtze River basin, holds considerable ecological and commercial value. However, overfishing and habitat degradation have led to a severe decline in its wild population. A lack of quantitative reproductive data has further hampered effective conservation and resource management. To address this, we conducted monthly sampling, collecting a total of 894 individuals from Nansi Lake between August 2017 and July 2018. By integrating gonadal histological staging, gonadosomatic index (GSI) analysis, logistic regression, and fecundity assessments, we provide a foundational understanding of the species’ reproductive biology. The annual sex ratio was 1.06:1, with a temporary female bias in April (2.14:1) shifting due to male nest-guarding behavior. Both sexes reached maturity at one year and approximately 73.6 mm in length. Spawning occurred from March to June, peaking in May (GSI = 28.92%). Absolute fecundity ranged 2306 ± 1430 eggs and correlated positively with body size and age, while relative fecundity stabilized after age two. Individuals aged two years and older contributed over 80% of total egg production, reflecting a strategy of early maturation with high reproductive output at older ages. This study aims to systematically understand the reproductive biology of O. potamophila. These results support science-based measures such as Covering the entire window from gonadal maturation to fry dispersal, an annual fish ban established from March to June, a minimum catch size of 80 mm, and improved broodstock management for aquaculture and conservation efforts aimed at this and related benthic fishes in shallow lake ecosystems. Full article
(This article belongs to the Special Issue Fish Reproductive Biology and Embryogenesis)
Show Figures

Figure 1

16 pages, 1007 KB  
Review
Non-Invasive Sampling for Population Genetics of Wild Terrestrial Mammals (2015–2025): A Systematic Review
by Jesús Gabriel Ramírez-García, Sandra Patricia Maciel-Torres, Martha Hernández-Rodríguez, Pablo Arenas-Báez, José Felipe Orzuna-Orzuna and Lorenzo Danilo Granados-Rivera
Diversity 2025, 17(11), 760; https://doi.org/10.3390/d17110760 - 30 Oct 2025
Viewed by 589
Abstract
Genetic variability in terrestrial mammals is essential for understanding population and evolutionary dynamics, as well as for establishing effective strategies in conservation biology. This comprehensive review aimed to critically analyze invasive and non-invasive techniques used to assess genetic variability in wild terrestrial mammals. [...] Read more.
Genetic variability in terrestrial mammals is essential for understanding population and evolutionary dynamics, as well as for establishing effective strategies in conservation biology. This comprehensive review aimed to critically analyze invasive and non-invasive techniques used to assess genetic variability in wild terrestrial mammals. Using the PICO (Population, Intervention, Comparison, Outcome) format and following PRISMA guidelines, a comprehensive literature search was conducted in Web of Science, Scopus and Science Direct databases, including articles published in English from January 2015 to April 2025. Thirty-one experimental studies were selected that met specific criteria related to genetic evaluation using invasive (direct blood or tissue collection) and non-invasive (stool, hair and saliva collection) techniques. The results indicate that invasive techniques provide samples of high genetic quality, albeit with important ethical and animal welfare considerations. In contrast, non-invasive techniques offer less disruptive methods, although they present significant challenges in terms of quantity and purity of DNA obtained, potentially affecting the accuracy and confidence of genetic analysis. Detailed analysis of selected studies showed diverse patterns of heterozygosity and inbreeding coefficients between different taxonomic orders (Carnivora, Artiodactyla, Proboscidea, Primates and Rodentia). In addition, the main anthropogenic threats and current conservation strategies implemented in different species were identified. An overall genetic variability ranging from high to moderate was observed, with large species being more vulnerable to genetic reduction due to changes in habitat and human activities. Rather than a static comparison, our synthesis traces a clear methodological arc from small short tandem repeats (STR, or microsatellites) panels towards SNP-based approaches enabled by next-generation sequencing, including reduced representation (ddRAD), amplicon panels (GT-seq), and hybridisation capture tailored to degraded DNA from hair, faeces, and environmental substrates. Over 2015–2025, study designs shifted from presence/absence and coarse diversity estimates to robust inference of relatedness, assignment, effective population size, and gene flow using hundreds–thousands of SNPs and genotype-likelihood frameworks tolerant of allelic dropout and low coverage. Laboratory practice converged on multi-tube replication, synthetic blocking oligos, and capture-based enrichment; bioinformatics adopted probabilistic genotype calling, error-aware filtering, and replication-based consensus. This review provides a solid basis for optimizing genetic sampling methods, allowing for more ethical and efficient studies. Furthermore, it contributes to strengthening conservation strategies by underlining the importance of adapting the sampling method to the biological and ecological particularities of each species studied. Ultimately, these findings can significantly improve genetic conservation decision-making, benefiting the sustainability and resilience of wild land mammal populations. Full article
Show Figures

Figure 1

11 pages, 3815 KB  
Communication
Storage-Induced Fruit Breakdown in Cryptocarya alba: Implications for the Conservation of a Keystone Mediterranean Recalcitrant Species
by Viviana Darricarrere, Javier Santa Cruz, Diego Calbucheo, Samuel Valdebenito, Mayra Providell, Mauricio Cisternas, Victoria Muena and Patricia Peñaloza
Plants 2025, 14(21), 3307; https://doi.org/10.3390/plants14213307 - 29 Oct 2025
Viewed by 241
Abstract
Recalcitrant species are highly sensitive to drought and climate stress, posing urgent challenges for their conservation. Propagation for ex situ management and habitat restoration depends on adequate fruit handling, yet postharvest protocols remain insufficiently examined to support practical implementation. Cryptocarya alba, a [...] Read more.
Recalcitrant species are highly sensitive to drought and climate stress, posing urgent challenges for their conservation. Propagation for ex situ management and habitat restoration depends on adequate fruit handling, yet postharvest protocols remain insufficiently examined to support practical implementation. Cryptocarya alba, a dominant tree of the Chilean Mediterranean biome, reflects this gap. Despite its ecological relevance and central role in forest planning, the biological basis of its recalcitrant behavior has yet to be fully elucidated, constraining informed decision-making on its propagation. Accordingly, this study examined the progressive breakdown of fruit integrity under two contrasting storage conditions—refrigeration (5 °C) and room temperature (20 °C)—over 150 days, using a multiscale approach combining physical measurements, histology, and scanning electron microscopy. Fruit weight, moisture, pericarp thickness, and cotyledon starch exhibited a significant linear decline over time. The rate was consistently higher at room temperature—except for starch, which showed no quantitative differences across treatments, though the severity of granule alterations was greater. Overall evidence indicates a close association among these variables, suggesting that desiccation and metabolism-driven degradation result in the structural collapse of C. alba fruits. These findings highlight the need to integrate environmental conditions alongside complementary strategies targeted at physiological regulation, guiding the development of robust, science-based handling protocols to support the species’ conservation. Full article
Show Figures

Figure 1

34 pages, 9932 KB  
Article
Assessment and Prediction of Ecosystem Services and Identification of Key Areas for Ecological Restoration: A Case Study of the Loess Plateau in China
by Ying Liu, Haitao Wu, Kaixuan Fan, Yong Li and Xiaoyang Chen
Land 2025, 14(11), 2158; https://doi.org/10.3390/land14112158 - 29 Oct 2025
Viewed by 504
Abstract
Ecosystem services play a crucial role in maintaining ecological balance and supporting socio-economic development. However, long-term human activities and climate change have led to severe ecosystem degradation and exacerbated soil erosion on the Loess Plateau. This study takes the Loess Plateau as a [...] Read more.
Ecosystem services play a crucial role in maintaining ecological balance and supporting socio-economic development. However, long-term human activities and climate change have led to severe ecosystem degradation and exacerbated soil erosion on the Loess Plateau. This study takes the Loess Plateau as a case study and using key models such as Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) to analyze the spatiotemporal variations of five ecosystem services—water yield, habitat quality, windbreak and sand fixation, soil conservation, and net primary productivity (NPP)—from 2000 to 2020. Based on the land use types projected by the Patch-generating Land Use Simulation (PLUS) model for 2025 and 2030 under natural development, ecological protection, and cropland protection scenarios, the study simulates these five ecosystem services and the comprehensive ecosystem service index for the Loess Plateau in 2025 and 2030. Finally, an ecological risk assessment model based on the inverse transformation of ecosystem services is constructed to identify key ecological restoration areas on the Loess Plateau by 2030. The results indicate: (1) From 2000 to 2020, water yield, soil conservation services, and NPP on the Loess Plateau showed a significant increasing trend, The unit area sand fixation capacity displayed a spatial pattern of higher values in the Northwest and lower values in the Southeast, while soil conservation and NPP exhibited the opposite trend, with higher values in the Southeast and lower values in the Northwest. Water yield decreased from the Southeast to the Northwest. During this period, the comprehensive ecosystem service index of the Loess Plateau generally declines, but the balance and synchronicity of ecosystem services improve, with a reduction in regional disparities. (2) Different future scenarios have different effects on the regional pattern of ecosystem services and restoration. Among future scenarios, the ecological protection scenario is most conducive to enhancing comprehensive ecosystem services, reducing the proportion of medium- and high-priority restoration zones. The cropland protection scenario has the lowest proportion of general restoration zones, but local ecological risks increase. The findings of this study can provide a scientific basis for ecological restoration and land-use planning on the Loess Plateau, promoting the long-term stability and sustainable development of ecosystem services. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

Back to TopTop