Assessment and Prediction of Ecosystem Services and Identification of Key Areas for Ecological Restoration: A Case Study of the Loess Plateau in China
Abstract
1. Introduction
2. Data and Methods
2.1. Overview of the Study Area
2.2. Data Source and Preprocessing
2.3. Research Method
2.3.1. Ecosystem Service Assessment Method
- (1)
- Water Yield Assessment Method
- (2)
- Habitat Quality Assessment Method
- (3)
- Wind Erosion Control Service Assessment Method
- (4)
- Soil conservation service evaluation method
- (5)
- NPP evaluation method
- (6)
- Factor time series change trend test method
2.3.2. Ecosystem Service Verification Method
2.3.3. Construction Method of Comprehensive Service Indicators for Ecosystem Services
2.3.4. Analysis Method of Influencing Factors of Ecosystem Services Comprehensive Service
2.3.5. PLUS Model Parameter Setting
2.3.6. Scenario Mode Construction of the PLUS Model
- (1)
- Natural development scenario: Under the natural development scenario, the trend of changes in land use types on the Loess Plateau from 2000 to 2020 will be maintained, and the water area will be set as a restricted area at the same time. This scenario refers to the land and spatial planning of various places on the Loess Plateau and rationally adjusts the land transfer matrix and domain weights to ensure the scientific and coordinated land development and utilization.
- (2)
- Ecological protection scenario: Take ecological protection as the core goal, strictly abide by the red line of ecological protection, and avoid the conversion of woodland and grassland to other land use types. As a whole, it advocates eco-friendly development and sets up water areas and national ecological protected areas as restricted transformation areas. Increase the area weight of woodland and grassland by 0.01 and reduce the area weight of unused land by 0.02.
- (3)
- Arable land protection scenario: The main goal is to abide by the red line of arable land protection, limit the expansion of construction land, especially the occupation of arable land, and at the same time prevent the transformation of arable land to other land types. The water area is set as a restricted area, and except for construction land, other land types can be converted into arable land. The domain weight of cultivated land was increased by 0.03, and the domain weight of construction land and unused land was reduced by 0.02 and 0.01.
2.3.7. Accuracy Validation of Land Use Simulation
2.3.8. Identification Method for Ecological Restoration Priority Areas
3. Results and Analysis
3.1. Spatiotemporal Variations of Ecosystem Services
3.1.1. Spatiotemporal Variation Characteristics of Water Yield
- (1)
- Temporal variation characteristics
- (2)
- Spatial variation characteristics
3.1.2. Spatiotemporal Variation Characteristics of Habitat Quality
- (1)
- Temporal variation of habitat quality
- (2)
- Spatial variation of habitat quality
3.1.3. Spatiotemporal Variation Characteristics of Windbreak and Sand Fixation Services
- (1)
- Temporal variation of windbreak and sand fixation services
- (2)
- Spatial variation of windbreak and sand fixation services
3.1.4. Spatiotemporal Variation Characteristics of Soil Conservation Services
- (1)
- Temporal variation of soil conservation services
- (2)
- Spatial variation in soil conservation services
3.1.5. Spatiotemporal Characteristics of NPP
- (1)
- Temporal variation of NPP
- (2)
- Spatial variation of NPP
3.2. Validation Results of Ecosystem Services
3.3. Land Use Simulation Under Different Scenarios Based on the PLUS Model
3.4. Spatial Distribution Characteristics of Ecosystem Service Prediction Results in the Loess Plateau in 2025 and 2030
3.4.1. The Prediction Results of Water Yield Service in the Loess Plateau in 2025 and 2030
3.4.2. Prediction Results of Habitat Quality Service in the Loess Plateau in 2025 and 2030
3.4.3. Prediction Results of Windbreak and Sand Fixation Services on the Loess Plateau in 2025 and 2030
3.4.4. Prediction Results of Soil Conservation Services on the Loess Plateau in 2025 and 2030
3.4.5. The NPP Prediction Results on the Loess Plateau in 2025 and 2030
3.5. Prediction Results of the Comprehensive Ecosystem Service Index on the Loess Plateau in 2025 and 2030
3.6. Identification of Ecological Risk Levels and Key Restoration Areas for Ecological Restoration on the Loess Plateau
3.6.1. The Spatial Distribution of Ecological Risk Levels in the Loess Plateau Under Different Scenarios in 2030
3.6.2. Identification and Restoration Strategies of Key Restoration Areas for Ecological Restoration
4. Discussion
4.1. Analysis of Ecosystem Service Function Prediction Results
4.2. Recommendations for Ecological Restoration
4.3. Research Deficiencies and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Transfer Matrix Parameter Settings
| Scenario | Cultivated Land | Woodland | Grass Land | Waters | Construction Land | Unutilized Land | |
|---|---|---|---|---|---|---|---|
| Natural development scenarios | cultivated land | 1 | 1 | 1 | 1 | 1 | 1 | 
| woodland | 1 | 1 | 0 | 0 | 0 | 1 | |
| grass land | 1 | 1 | 1 | 1 | 1 | 1 | |
| waters | 0 | 0 | 1 | 1 | 1 | 1 | |
| construction land | 0 | 1 | 1 | 1 | 1 | 1 | |
| unutilized land | 1 | 1 | 1 | 1 | 1 | 1 | |
| Ecological protection scenario | cultivated land | 1 | 1 | 1 | 0 | 0 | 0 | 
| woodland | 0 | 1 | 0 | 0 | 0 | 0 | |
| grass land | 0 | 1 | 1 | 0 | 0 | 0 | |
| waters | 0 | 0 | 0 | 1 | 0 | 0 | |
| construction land | 0 | 0 | 0 | 0 | 1 | 0 | |
| unutilized land | 1 | 1 | 1 | 1 | 1 | 1 | |
| Farmland protection scenario | cultivated land | 1 | 0 | 0 | 0 | 0 | 0 | 
| woodland | 1 | 1 | 1 | 0 | 0 | 1 | |
| grass land | 1 | 1 | 1 | 1 | 1 | 1 | |
| waters | 1 | 0 | 1 | 1 | 0 | 1 | |
| construction land | 0 | 0 | 0 | 0 | 1 | 0 | |
| unutilized land | 1 | 1 | 1 | 1 | 1 | 1 | 
Appendix B. Risk Level Assessment Form
| Risk Level | Light Loss | Moderate Loss | Severe Loss | 
|---|---|---|---|
| Considerable | 3 | 4 | 5 | 
| moderate | 2 | 3 | 4 | 
| Minor | 1 | 2 | 3 | 
Appendix C. Selection of Driving Factors

References
- Boerema, A.; Rebelo, A.J.; Bodi, M.B.; Esler, K.J.; Meire, P. Are ecosystem services adequately quantified? J. Appl. Ecol. 2017, 54, 358–370. [Google Scholar] [CrossRef]
- Lu, P.J.; Wei, Y.F.; Tong, X.H.; Yao, S.; Su, P.Z.; Liu, X.; Huang, T.W.; Qin, W.T. Study on identification of key areas for ecological restoration of territorial space: Taking Xi’an City as an example. J. Environ. Eng. Technol. 2024, 14, 1877–1891. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Paul, W.; Peter, B.; R. Quentin, G.; Michael, V. Valuing and accounting for water-related ecosystem services for water pricing and management: An Australian case study. Ecosyst. Serv. 2025, 70, 101771. [Google Scholar] [CrossRef]
- Wang, X.H.; He, J.; Mou, X.J.; Zhu, Z.X.; Chai, H.X.; Liu, G.H.; Rao, S.; Zhang, X. 20 Years of Ecological Protection and Restoration in China: Review and Prospect. Chin. J. Environ. Manag. 2021, 13, 85–92. [Google Scholar] [CrossRef]
- Li, Z.Y.; Wei, W.; Zhou, L.; Liu, C.F.; Guo, Z.H.; Pang, S.F.; Zhang, J. Spatio-temporal evolution characteristics of terrestrial ecological sensitivity in China. Acta Geogr. Sin. 2022, 77, 150–163. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Zhao, P.Y.; Xu, Z.H.; Li, Z.G. Contribution of climate change and human activity to vegetation recovery in Shanxi Province from 2002 to 2022. Chin. J. Appl. Ecol. 2025, 36, 219–226. [Google Scholar] [CrossRef]
- Tian, Y.Q.; Wang, B.; Wang, J.F.; Bai, J. Influence of typical herbaceous root characteristics on soil shear properties in loess hilly regions. Res. Soil Water Conserv. 2024, 31, 153–159. [Google Scholar] [CrossRef]
- Wang, H.X.; Lan, J.Q.; Huang, L.T.; Jiao, X.Y.; Zhao, K.A.; Guo, W.X. Longitudinal path analysis of ecosystem water yield effects and its driving forces in the upper Yangtze River basin. Ecol. Indic. 2025, 172, 113273. [Google Scholar] [CrossRef]
- Wang, X.H.; Zhang, X.; Mou, X.J.; Zhu, Z.X. Discussion on the planning of land spatial ecological restoration. Environ. Prot. 2019, 47, 36–38. [Google Scholar] [CrossRef]
- Peng, J.; Lv, D.N.; Dong, J.Q.; Liu, Y.X.; Li, B. Processes coupling and spatial integration: Characterizing ecological restoration of territorial space in view of landscape ecology. J. Nat. Resour. 2020, 35, 3–13. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, Q.Y.; Bo, L.M. Research on “Human-oriented” Decision-making of Territorial Ecological Restoration:Take Quangang District, Quanzhou City as an Example. China Land Sci. 2021, 35, 17–26. [Google Scholar] [CrossRef]
- Lu, Y.S.; Han, R.; Shi, Y.; Guo, L. Ecosystem health assessment of Qiandongnan Miao and Dong Autonomous Prefecture. Acta Ecol. Sin. 2021, 41, 5557–5569. [Google Scholar] [CrossRef]
- Lv, T.; Kong, A.N.; Wang, L. Evaluation of Regional Ecological Security and Obstacle Diagnosis of Ecological Civilization Demonstration Area Based on PSR Model. Res. Soil Water Conserv. 2021, 28, 343–350. [Google Scholar] [CrossRef]
- Yang, N.T.; Xu, W.; You, Z.X. Strategies and Practice of Ecological Restoration Planning for National Land and Space in the New Era, Shenyang. Planners 2020, 36, 34–38+45. [Google Scholar]
- Meister, L.; Marques, M.C. Analysis of spatiotemporal changes in ecosystem services distribution in the southern part of the Atlantic Forest in Brazil. Ecosyst. Serv. 2025, 76, 101781. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, J.; Huang, L.Y.; Zhai, T.L. Determining and identifying key areas of ecosystem preservation and restoration for territorial spatial planning based on ecological security patterns: A case study of Yantai city. J. Nat. Resour. 2020, 35, 190–203. [Google Scholar] [CrossRef]
- Chen, D.L.; Hu, W.B.; Lu, X.H.; Li, Y.Y. Exploring the Influencing Mechanism of Newly-added Urban Construction Land Expansion:A Configuration Analysis Based on PSR Framework. China Land Sci. 2022, 36, 85–93. [Google Scholar] [CrossRef]
- Niu, Y.H.; Jiao, S.; Cao, T.T.; Xia, B.L.; Feng, Y.J. Urban Multi-hazard Risk Assessment and Planning Response Based on PSR Model. Urban Dev. Stud. 2022, 29, 39–48. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Yu, H.; Zhang, X.; Zhou, K. Comprehensive evaluation of land ecological security in the Sanjiangyuan National Park based on multi-source data. Acta Ecol. Sin. 2022, 42, 5665–5676. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhou, X.; Jiang, X.; Zhang, J.; Li, H.G. Research on ecological security maintenance of Guiyang City based on evaluation of ecosystem service functionx. Ecol. Sci. 2020, 39, 244–251. [Google Scholar] [CrossRef]
- William, S.H.; Jeppe, A.K. A framework to identify and value ecosystem services and disservices with supply and demand. Environ. Chall. 2025, 20, 10136. [Google Scholar] [CrossRef]
- Rong, Y.J.; Yan, Y.; Wang, C.X.; Zhang, W.; Zhu, J.Y.; Lu, H.T.; Zheng, T.C. Construction and optimization of ecological network in Xiong′an New Area based on the supply and demand of ecosystem services. Acta Ecol. Sin. 2020, 40, 7197–7206. [Google Scholar]
- Peng, J.; Zhao, H.J.; Liu, Y.X.; Wu, J.S. Research progress and prospect on regional ecological security pattern construction. Geogr. Res. 2017, 36, 407–419. [Google Scholar]
- Liu, J.H.; Yang, S.; Lv, Y.Q. Identification and diagnosis of critical areas for ecological rehabilitation based on eco-security patterns and ecological vulnerability assessment—A case study over Wenshang County. China Environ. Sci. 2022, 42, 3343–3352. [Google Scholar] [CrossRef]
- Guo, C.Q.; Xu, X.B.; Shu, Q. A review on the assessment methods of supply and demand of ecosystem services. Chin. J. Ecol. 2020, 39, 2086–2096. [Google Scholar] [CrossRef]
- Tu, W.Z.; Zhao, W.W.; Liu, Y.; Zhang, Z.J. Ecological restoration zoning on the Loess Plateau based on the supply and demand of ecosystem services. Acta Ecol. Sin. 2024, 44, 9695–9707. [Google Scholar]
- Liu, B.; Han, Q.G.; Zhang, J.L.; Peng, S.Z. Spatial-temporal Patterns and Factors of Soil Moisture in the Middle Reaches of the Yellow River under Changing Environments. J. Soil Water Conserv. 2025, 39, 73–83. [Google Scholar] [CrossRef]
- Zhang, J.G.; Li, J.J.; Yu, H.B. Dynamic changes and distribution characteristics of soil and water loss in Loess Plateau area of Yellow River Basin. J. Soil Water Conserv. 2025, 32, 110–116. [Google Scholar] [CrossRef]
- Yang, T.Z.; Yue, D.P.; Zhao, J.B.; Wang, X.N.; Liu, Y.T.; Liu, R. Characteristics of geochemical weathering of L3 and S3 loess-paleosol section in the Hengshan area, Shanxi province. Prog. Geogr. 2023, 42, 364–379. [Google Scholar] [CrossRef]
- Bian, Z.F.; Yu, H.H.; Lei, S.G.; Yin, D.Y.; Zhu, G.Q.; Mu, S.G.; Yang, D.G. Strategic consideration of exploitation on coal resources and its ecological restoration in the Yellow River Basin, China. J. China Coal Soc. 2021, 46, 1378–1391. [Google Scholar] [CrossRef]
- Wang, D.M.; Yin, X.J.; Wang, J.J. Spatiotemporal evolution and driving forces of ecosystem health in the Manas River Basin. Geogr. Res. 2025, 44, 515–537. [Google Scholar] [CrossRef]
- Wen, X.; Wang, J.J.; Han, X.J. Scale effects of ecosystem service trade-offs/synergies in the Loess Plateau of northern Shaanxi based on geographical regions. Res. Soil Water Conserv. 2025, 32, 305–315. [Google Scholar] [CrossRef]
- Wang, C.; Tang, C.J.; Fu, B.J.; Lv, Y.H.; Xiao, S.S.; Wang, J. Determining critical thresholds of ecological restoration based on ecosystem service index: A case study in the Pingjiang catchment in southern China. J. Environ. Manag. 2022, 303, 114220. [Google Scholar] [CrossRef] [PubMed]
- Wischmeier, W. Predicting Rainfall-Erosion Losses from Cropland East of the Rocky Mountains, Guide for Selection of Practices for Soil and Water Conservation; United States Government Printing Office: Washington, DC, USA, 1965.
- Renard, K.G. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); US Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1997. [Google Scholar]
- Zhang, W.B.; Xie, Y.; Liu, B.Y. Rainfall Erosivity Estimation Using Daily Rainfall Amounts. Geogr. Sci. 2002, 22, 705–711. [Google Scholar]
- Zhu, W.Q.; Pan, Y.Z.; Zhang, J.S. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. Chin. J. Plant Ecol. 2007, 31, 413–424. [Google Scholar] [CrossRef]
- Mehmet, B. Trends and variability in global ocean heat content time series data for the period 2005–2035. J. Atmos. Sol. -Terr. Phys. 2025, 274, 106586. [Google Scholar] [CrossRef]
- Fan, K.X.; Liu, Y.; Zhang, X.Y.; Chen, X.Y.; Li, Y.; Zhou, Y.Z.; Shen, W.J.; Tao, H.L.; Gong, C.G.; Lei, S.G. Assessing the relative contribution of climate change and human activity factors to spatiotemporal distributions of sand fixation service in the Loess Plateau. GIScience Remote Sens. 2024, 62, 2444630. [Google Scholar] [CrossRef]
- Wei, X.H.; Wu, X.D.; Wang, D.; Wu, T.H. Spatiotemporal variations and driving factors for potential wind erosion on the Mongolian Plateau. Sci. Total Environ. 2023, 862, 160829. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Azorin-Molina, C.; Shi, P.; Lin, D.; Guijarro, J.A.; Kong, F.; Chen, D. Impact of near-surface wind speed variability on wind erosion in the eastern agro-pastoral transitional zone of Northern China, 1982–2016. Agric. For. Meteorol. 2019, 271, 102–115. [Google Scholar] [CrossRef]
- Beverley, C.; Aung, K.T.; Harpinder, S. Sabine DittmannIntegrating Cultural Ecosystem Services valuation into coastal wetlands restoration: A case study from South Australia. Environ. Sci. Policy 2021, 116, 220–229. [Google Scholar] [CrossRef]
- Zhang, L.J.; Chen, G.P.; Lin, Y.L.; Zhao, J.S.; Liu, F.G.; Peng, S.F. Simulating multiple scenarios of carbon stocks for driving mechanisms using MOP-PLUS-InVest model. Trans. Chin. Soc. Agric. Eng. 2024, 40, 223–233. [Google Scholar] [CrossRef]
- Fu, B.J.; Wang, S.; Liu, Y.; Liu, J.B.; Liang, W.; Miao, C.Y. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of Chin. Annu. Rev. Earth Planet. Sci. 2017, 45, 223–243. [Google Scholar] [CrossRef]
- The State Council, National Plan for Major Functional Zones. 2010. Available online: https://www.gov.cn/zwgk/ (accessed on 15 August 2025).
- Ministry of Environmental Protection. National Ecological Function Zoning (Ministry of Environmental Protection. National Ecological Function Zoning. Available online: https://www.mee.gov.cn/gkml/hbb/bgg/201511/t20151126317777.htm (accessed on 28 August 2025).
- National Development and Reform Commission. Comprehensive Management Plan Outline for the Loess Plateau Region (2010–2030). Available online: https://www.ndrc.gov.cn (accessed on 18 August 2025).
- Mao, S.L.; Shangguan, Z.P. Characteristics and Causes of Land Use/Vegetation Coverage of the Loess Plateau in the Past 20 Years. Res. Soil Water Conserv. 2022, 29, 213–219. [Google Scholar] [CrossRef]
- Niu, L.A.; Shao, Q.Q.; Ning, J.; Yang, X.Q.; Liu, S.C.; Liu, H.B.; Zhang, X.Y.; Huang, H.B. Evaluation on the degree and potential of ecological restoration in Loess Plateau. J. Nat. Resour. 2023, 38, 779–794. [Google Scholar] [CrossRef]
- Yang, Z.F.; Yan, Q.; Yang, W. Assessing and classifying plant-related ecological risk under water management scenarios in China’s Yellow River Delta Wetlands. J. Environ. Manag. 2013, 130, 276–287. [Google Scholar] [CrossRef]
- GB/T50326-2006; Construction Project Management Specification. Ministry of Construction of the People’s Republic of China: Beijing, China, 2017.
- Pan, X.; Shi, P.J.; Wu, N. Ecological risk assessment and identification of priority areas for management and control based on the perspective of ecosystem services equilibrium: A case study of Lanzhou. Acta Sci. Circumstantiae 2020, 40, 724–733. [Google Scholar] [CrossRef]
- Yang, D.; Wang, X.F. Contribution of climatic change and human activities to changes in net primary productivity in the Loess Plateau. Arid Zone Res. 2022, 39, 584–593. [Google Scholar] [CrossRef]
- Qiu, H.H.; Bai, Y.C.; Han, H.R.; Zhang, J.Y.; Cheng, X.Q. Ecosystem service supply and demand relationship and spatial identification of driving threshold in Loess Plateau of China. Ecol. Eng. 2025, 212, 107534. [Google Scholar] [CrossRef]
- Liu, Y.X.; Lv, Y.H.; Fu, B.J.; Harris, P.; Wu, L.H. Quantifying the spatio-temporal drivers of planned vegetation restoration on ecosystem services at a regional scale. Sci. Total Environ. 2019, 650, 1029–1040. [Google Scholar] [CrossRef]
- Zhang, K.; Lv, Y.H.; Fu, B.J.; Yin, L.C.; Yu, D.D. The effects of vegetation coverage changes on ecosystem service and their threshold in the Loess Plateau. Acat Geogr. Sin. 2020, 75, 949–960. [Google Scholar] [CrossRef]
- Zhai, J.J.; Wang, L.; Liu, Y.; Wang, C.Y.; Mao, X.G. Assessing the effects of China’s Three-North Shelter Forest Program over 40 years. Sci. Total Environ. 2023, 857, 159354. [Google Scholar] [CrossRef]
- Chen, W.; Chi, B. Ecosystem services trade-offs and synergies in China, 2000–2015. Int. J. Environ. Sci. Technol. 2022, 20, 3221–3236. [Google Scholar] [CrossRef]
- Xu, Y.K.; Zhao, Z.Y.; Wang, H.Y.; Liu, Z.; Yan, Y.; Liu, J.T.; Ning, Q.S.; Zhao, Y.; Lv, Y.H.; Ding, X.W.; et al. Research progress on ecological conservation and restoration technologies and models with comprehensive benefit evaluation in the Loess Plateau. Acta Ecol. Sin. 2025, 45, 1–14. [Google Scholar] [CrossRef]
- Li, K.X.; Hu, H.; Zhao, H.M. Evolution analysis of regional social-ecological systems based on adaptive cycle theory and Pressure-State-Response framework. Acta Ecol. Sin. 2022, 42, 10164–10179. [Google Scholar] [CrossRef]
- Wan, G.Y.; Yang, L.P.; Wang, M.; Li, K.Y.; Yang, J.J.; Yao, J.Q. Spatio-temporal Monitoring and Driving Factor Analysis of Eco-environment Quality in the Loess Plateau of Northern Shaanxi. Environ. Sci. 2025, 46, 4522–4533. [Google Scholar] [CrossRef]
- Wu, X.; Liu, S.L.; Zhao, S.; Hou, X.Y.; Xu, J.W.; Dong, S.K.; Liu, G.H. Quantification and driving force analysis of ecosystem services supply, demand and balance in China. Sci. Total Environ. 2019, 652, 1375–1386. [Google Scholar] [CrossRef]
- Cui, F.Q.; Tang, H.P.; Zhang, Q.; Wang, B.J.; Dai, L.W. Integrating ecosystem services supply and demand into optimized management at different scales: A case study in Hulunbuir, China. Ecosyst. Serv. 2019, 39, 100984. [Google Scholar] [CrossRef]
- Xia, G.Z.; Lv, G.H.; Yang, J.J. Ecological Risk Assessment of the Aksu River Basin Based on Ecological Service Value. Land 2025, 14, 2092. [Google Scholar] [CrossRef]
- Lin, T.W.; Gao, J.E.; Long, S.B.; Dou, S.H.; Zhang, H.C.; Li, X.H. Regulation of Different Standard Extreme Rainfall Erosion in Loess Hilly and Gully Region. Res. Soil Water Conserv. 2019, 26, 114–119,132. [Google Scholar] [CrossRef]






















| Scenario | Year | Land Use Type | |||||
|---|---|---|---|---|---|---|---|
| Cultivated Land | Woodland | Grass Land | Waters | Construction Land | Unutilized Land | ||
| Natural development scenarios | 2025 | 200,142 | 101,502 | 272,017 | 9552 | 27,819 | 38,265 | 
| 2030 | 197,208 | 100,719 | 272,151 | 9424 | 32,668 | 37,127 | |
| Ecological protection scenario | 2025 | 200,142 | 99,910 | 272,017 | 10,215 | 28,748 | 38,265 | 
| 2030 | 198,295 | 102,459 | 272,151 | 9873 | 29,392 | 37,127 | |
| Farmland protection scenario | 2025 | 206,108 | 96,005 | 272,017 | 9307 | 27,595 | 38,265 | 
| 2030 | 207,008 | 95,480 | 272,151 | 9361 | 28,170 | 37,127 | |
| Scenario | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | Proportion of Risk Areas Above Level 3 | 
|---|---|---|---|---|---|---|
| natural development | 42.00% | 28.08% | 19.21% | 9.12% | 1.59% | 29.92% | 
| ecological protection | 42.11% | 28.01% | 19.20% | 9.10% | 1.57% | 29.88% | 
| cultivated land protection | 42.23% | 27.89% | 19.17% | 9.12% | 1.59% | 29.89% | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wu, H.; Fan, K.; Li, Y.; Chen, X. Assessment and Prediction of Ecosystem Services and Identification of Key Areas for Ecological Restoration: A Case Study of the Loess Plateau in China. Land 2025, 14, 2158. https://doi.org/10.3390/land14112158
Liu Y, Wu H, Fan K, Li Y, Chen X. Assessment and Prediction of Ecosystem Services and Identification of Key Areas for Ecological Restoration: A Case Study of the Loess Plateau in China. Land. 2025; 14(11):2158. https://doi.org/10.3390/land14112158
Chicago/Turabian StyleLiu, Ying, Haitao Wu, Kaixuan Fan, Yong Li, and Xiaoyang Chen. 2025. "Assessment and Prediction of Ecosystem Services and Identification of Key Areas for Ecological Restoration: A Case Study of the Loess Plateau in China" Land 14, no. 11: 2158. https://doi.org/10.3390/land14112158
APA StyleLiu, Y., Wu, H., Fan, K., Li, Y., & Chen, X. (2025). Assessment and Prediction of Ecosystem Services and Identification of Key Areas for Ecological Restoration: A Case Study of the Loess Plateau in China. Land, 14(11), 2158. https://doi.org/10.3390/land14112158
 
        


 
       