Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = gypsum karst

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 13854 KB  
Article
Middle Paleolithic Neanderthal Open-Air Camp and Hyena Den Westeregeln (D)—Competition for Prey in a Mammoth Steppe Environment of Northern Germany (Central Europe)
by Cajus G. Diedrich
Quaternary 2025, 8(4), 52; https://doi.org/10.3390/quat8040052 - 24 Sep 2025
Viewed by 1317
Abstract
A gypsum karst sinkhole at Westeregeln (north-central Germany) was filled during the Late Pleistocene, first by fluvial flooding, then by solifluctation, and finally with wind-transported loess. Pleistocene mollusks and bones of snakes, birds, micro- and macromammals, and hyena coprolites were accumulated, often mixed [...] Read more.
A gypsum karst sinkhole at Westeregeln (north-central Germany) was filled during the Late Pleistocene, first by fluvial flooding, then by solifluctation, and finally with wind-transported loess. Pleistocene mollusks and bones of snakes, birds, micro- and macromammals, and hyena coprolites were accumulated, often mixed in gravel or sand layers with Middle Paleolithic artifacts, whereas ice wedges reach deep into the sinkhole. The high amount of small flint debris prove on-site tool production by using 99% local Saalian transported brownish-to-dark Upper Cretaceous flint, which could have been collected from the Bode River gravels near-site. Only a single quartzite and one jasper flake prove other local gravel sources or importation. A large bifacial flaked knife of layer 4 dates to the early/middle Weichselian/Wuermian (MIS 5-4), similar to two triangular handaxes in the MTA tradition and an absolutely dated woolly rhinoceros bone (50,310 + 1580/−1320 BP). A cold period of Late Pleistocene glacial mammoth steppe megafauna is represented, but the material is mostly strongly fragmented and smashed by humans. Neanderthal camp use on the gypsum hill is indicated also by small charcoal pieces, burned bone fragments, and fire-dehydrated flint fragments. Crocuta crocuta spelaea (Goldfuss) hyenas are well known from Westeregeln, with an open-air commuting den site, which was marked with feces. Full article
Show Figures

Figure 1

21 pages, 4796 KB  
Article
Hydrogeochemical Characteristics, Formation Mechanisms, and Groundwater Evaluation in the Central Dawen River Basin, Northern China
by Caiping Hu, Kangning Peng, Henghua Zhu, Sen Li, Peng Qin, Yanzhen Hu and Nan Wang
Water 2025, 17(15), 2238; https://doi.org/10.3390/w17152238 - 27 Jul 2025
Cited by 1 | Viewed by 966
Abstract
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely [...] Read more.
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely centered on the upstream Muwen River catchment and downstream Dongping Lake, with some focusing solely on karst groundwater. Basin-wide evaluations suggest good overall groundwater quality, but moderate to severe contamination is confined to the lower Dongping Lake area. The hydrogeologically complex mid-reach, where the Muwen and Chaiwen rivers merge, warrants specific focus. This region, adjacent to populous areas and industrial/agricultural zones, features diverse aquifer systems, necessitating a thorough analysis of its hydrochemistry and origins. This study presents an integrated hydrochemical, isotopic investigation and EWQI evaluation of groundwater quality and formation mechanisms within the multiple groundwater types of the central DRB. Central DRB groundwater has a pH of 7.5–8.2 (avg. 7.8) and TDSs at 450–2420 mg/L (avg. 1075.4 mg/L) and is mainly brackish, with Ca2+ as the primary cation (68.3% of total cations) and SO42− (33.6%) and NO3 (28.4%) as key anions. The Piper diagram reveals complex hydrochemical types, primarily HCO3·SO4-Ca and SO4·Cl-Ca. Isotopic analysis (δ2H, δ18O) confirms atmospheric precipitation as the principal recharge source, with pore water showing evaporative enrichment due to shallow depths. The Gibbs diagram and ion ratios demonstrate that hydrochemistry is primarily controlled by silicate and carbonate weathering (especially calcite dissolution), active cation exchange, and anthropogenic influences. EWQI assessment (avg. 156.2) indicates generally “good” overall quality but significant spatial variability. Pore water exhibits the highest exceedance rates (50% > Class III), driven by nitrate pollution from intensive vegetable cultivation in eastern areas (Xiyangzhuang–Liangzhuang) and sulfate contamination from gypsum mining (Guojialou–Nanxiyao). Karst water (26.7% > Class III) shows localized pollution belts (Huafeng–Dongzhuang) linked to coal mining and industrial discharges. Compared to basin-wide studies suggesting good quality in mid-upper reaches, this intensive mid-reach sampling identifies critical localized pollution zones within an overall low-EWQI background. The findings highlight the necessity for aquifer-specific and land-use-targeted groundwater protection strategies in this hydrogeologically complex region. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

18 pages, 4318 KB  
Article
The Genesis and Hydrochemical Formation Mechanism of Karst Springs in the Central Region of Shandong Province, China
by Yuanqing Liu, Le Zhou, Xuejun Ma, Dongguang Wen, Wei Li and Zheming Shi
Water 2025, 17(12), 1805; https://doi.org/10.3390/w17121805 - 17 Jun 2025
Cited by 1 | Viewed by 897
Abstract
With the intensification of human activities, the water resource environment in the karst mountainous area of central Shandong has undergone significant changes, directly manifested in the cessation of karst spring flows and the occurrence of karst collapses within the spring basin in the [...] Read more.
With the intensification of human activities, the water resource environment in the karst mountainous area of central Shandong has undergone significant changes, directly manifested in the cessation of karst spring flows and the occurrence of karst collapses within the spring basin in the Laiwu Basin. To support the scientific development and management of karst water, this study utilizes comprehensive analysis and deuterium-oxygen isotope test data from surveys and sampling of 20 typical karst springs conducted between 2016 and 2018. By integrating mathematical statistics, correlation analysis, and ion component ratio methods, the study analyzes the genesis, hydrochemical ion component sources, and controlling factors of typical karst springs in the Laiwu Basin. The results indicate that the genesis of karst springs in the Laiwu Basin is controlled by three factors: faults, rock masses, and lithology, and can be classified into four types: water resistance controlled by lithology, by faults, by basement, and by rock mass. The karst springs are generally weakly alkaline freshwater, with the main ion components being HCO3 and Ca2+, accounting for approximately 55.02% and 71.52% of the anion and cation components, respectively; about 50% of the sampling points have a hydrochemical type of HCO3·SO4-Ca·Mg. Stable isotope (δ18O and δD) results show that atmospheric precipitation is the primary recharge source for karst springs in the Laiwu Basin. There are varying degrees of evaporative fractionation and water–rock interaction during the groundwater flow process, resulting in significantly higher deuterium excess (d-excess) in the sampling points on the southern side of the basin compared to the northern side, indicating clear differentiation. The hydrochemical composition of the karst groundwater system is predominantly governed by water–rock interactions during flow processes and anthropogenic influences. Carbonate dissolution (primarily calcite) serves as the principal source of HCO3, SO42−, Ca2+, and Mg2+, while evaporite dissolution and reverse cation exchange contribute to the slight enrichment of Ca2+ and Mg2+ alongside depletion of Na+ and K+ in spring waters. Saturation indices (SI) reveal that spring waters are saturated with respect to gypsum, aragonite, calcite, and dolomite, but undersaturated for halite. The mixing of urban domestic sewage, agricultural planting activities, and the use of manure also contributes to the formation of Cl and NO3 ions in karst springs. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

20 pages, 9089 KB  
Article
Investigation and Monitoring of Sinkhole Subsidence and Collapse: Additional Data on the Case Study in Alcalá de Ebro (Zaragoza, Spain)
by Alberto Gracia, Francisco Javier Torrijo, Alberto García and Alberto Boix
Land 2025, 14(5), 1006; https://doi.org/10.3390/land14051006 - 6 May 2025
Viewed by 1245
Abstract
Alcalá de Ebro is located 35 km northwest of the city of Zaragoza, on the right bank of the Ebro River at the outlet of a ravine (Juan Gastón) towards the river, with a catchment area of more than 230 km2. [...] Read more.
Alcalá de Ebro is located 35 km northwest of the city of Zaragoza, on the right bank of the Ebro River at the outlet of a ravine (Juan Gastón) towards the river, with a catchment area of more than 230 km2. Over time, urbanisation and agricultural development have eliminated the last stretch of the drainage channel, and these water inputs have been channelled underground, filtering through the ground. This section of the Ebro Valley rests on a marly tertiary substratum, which promotes dissolution-subbing processes that can lead to sinkholes. The ground tends to sink gradually or suddenly collapse. Many studies have been carried out to understand not only the origin of the phenomenon but also its geometry and the area affected by it in the town of Alcalá de Ebro. In this sense, it has been possible to model an area around the main access road, where numerous collapsing sinkholes have been found, blocking the road and affecting houses. It also affects the embankment that protects the town from the floods of the river Ebro. These studies have provided specific knowledge, enabling us to evaluate and implement underground consolidation measures, which have shown apparent success. Several injection campaigns have been carried out, initially with expansion resins and finally with columnar development, using special low-mobility mortars to fill and consolidate the undermined areas and prevent new subsidence. These technical solutions propose a method of ground treatment that we believe is novel for this type of geological process. The results have been satisfactory, but it is considered necessary to continue monitoring the situation and to extend attention to a wider area to prevent, as far as possible, new problems of subsidence and collapse. In this sense, the objective is to continue the control and monitoring of possible phenomena related to subsidence problems in the affected area and its immediate surroundings, to detect and, if necessary, anticipate subsidence or collapse phenomena that could affect the body of the embankment. Full article
Show Figures

Figure 1

29 pages, 6044 KB  
Article
Collembola from the Gypsum Karst of Sorbas (Almería, Spain), with Descriptions of Three New Species
by Enrique Baquero, Pablo Barranco and Rafael Jordana
Insects 2025, 16(3), 309; https://doi.org/10.3390/insects16030309 - 16 Mar 2025
Viewed by 1602
Abstract
The gypsum karst of Sorbas (Almería, Spain) is home to a diverse community of Collembola. Over seven years of sampling, 7875 specimens were collected from 83 cave visits, representing four orders: Symphypleona (5251 specimens), Entomobryomorpha (2552), Poduromorpha (32), and Neelipleona (29). A total [...] Read more.
The gypsum karst of Sorbas (Almería, Spain) is home to a diverse community of Collembola. Over seven years of sampling, 7875 specimens were collected from 83 cave visits, representing four orders: Symphypleona (5251 specimens), Entomobryomorpha (2552), Poduromorpha (32), and Neelipleona (29). A total of 25 species were identified. The most abundant are listed in descending order of abundance: Pygmarrhopalites ruizporteroae sp. nov., Pseudosinella najtae, Pygmarrhopalites subbifidus, Troglopedetes machadoi, Pseudosinella sexocellata sp. nov., Pygmarrhopalites torresi sp. nov., and Heteromurus major. Additionally, partial redescriptions of Pseudosinella najtae and Troglopedetes machadoi are provided. This research enhances the taxonomic framework of subterranean Collembola and provides new insights into species differentiation and adaptation. The methodologies applied allow for high-resolution morphological characterization, essential for species delimitation. The results highlight the potential for further discoveries in gypsum caves and emphasize the need for advanced imaging techniques in Collembola taxonomy. Full article
(This article belongs to the Section Other Arthropods and General Topics)
Show Figures

Figure 1

17 pages, 3600 KB  
Article
Analyzing the Source of Sulfate in Karst Groundwater Based on a Bayesian Stable Isotope Mixing Model: A Case Study of Xujiagou Spring Area, Northern China
by Yun Lin, Yiyang Wang, Yazun Wu and Boyang Xu
Water 2025, 17(6), 794; https://doi.org/10.3390/w17060794 - 10 Mar 2025
Cited by 2 | Viewed by 1068
Abstract
The source of sulfate in the groundwater of karst springs in the northern Taihang Mountains remains unclear due to the influence of multiple factors. To investigate this, 33 sampling points were selected in August 2022 across the exposed, covered, and buried areas of [...] Read more.
The source of sulfate in the groundwater of karst springs in the northern Taihang Mountains remains unclear due to the influence of multiple factors. To investigate this, 33 sampling points were selected in August 2022 across the exposed, covered, and buried areas of the spring basin, and water samples were collected. Hydrochemistry and sulfur–oxygen dual isotope methods were employed to examine the distribution characteristics of sulfate, δ18OSO4, and δ34SSO4. Based on the distinct characteristics of sulfur isotopes from different sources, the sources of sulfate in various environments were qualitatively analyzed. Additionally, the contribution rates of each source were quantitatively determined using a Bayesian stable isotope mixing model. The results showed that the sulfate content in karst groundwater ranged from 16.68 to 156.84 mg/L, with an average of 62.22 mg/L, and indicated an increasing trend from exposed to covered to buried areas. The δ34SSO4 values in karst groundwater ranged from 3.1‰ to 13.5‰, with an average of 6.49‰, while the δ18OSO4 values ranged from 2.9‰ to 10.3‰, with an average of 5.49‰. The δ34SSO4 values showed a general increasing trend across the exposed, covered, and buried areas, whereas the δ18OSO4 values remained relatively stable across these areas. The analysis revealed that the primary sulfate sources in the exposed area were atmospheric precipitation, soil sulfate, chemical fertilizer, and sewage, contributing 19.6%, 63.5%, 9.4%, and 7.5%, respectively. In the covered area, the main sources were atmospheric precipitation, sulfide oxidation, soil sulfate, and gypsum dissolution, with contributions of 16.5%, 58.7%, 15.9%, and 8.9%, respectively. In the buried area, the sulfate primary originated from atmospheric precipitation, sulfide oxidation, and gypsum dissolution, contributing 11.6%, 78.5%, and 9.9%, respectively. This study provides critical insights into the sulfate sources in different environments, enhancing the understanding of groundwater sulfate pollution in the study area. These findings provide a scientific foundation for managing groundwater pollutants and resources in the karst regions of northern China. Full article
Show Figures

Figure 1

19 pages, 8323 KB  
Article
Pore Types and Dolomite Reservoir Genesis of the Fifth Member of the Ordovician Majiagou Formation in the Central and Eastern Ordos Basin
by Shilei Chen, Rong Dai and Shunshe Luo
Appl. Sci. 2024, 14(23), 10976; https://doi.org/10.3390/app142310976 - 26 Nov 2024
Viewed by 1403
Abstract
The Ordovician dolomite in the Ordos Basin is an important natural gas reservoir. Exploring dolomite genesis and the factors influencing reservoir characteristics is essential for deep carbonate rock exploration. This study offers a comprehensive analysis of dolomite evolution using methods such as thin-section [...] Read more.
The Ordovician dolomite in the Ordos Basin is an important natural gas reservoir. Exploring dolomite genesis and the factors influencing reservoir characteristics is essential for deep carbonate rock exploration. This study offers a comprehensive analysis of dolomite evolution using methods such as thin-section petrography, isotope analysis, and trace and rare earth elements. The analysis shows that: Based on petrographic observations of the Majiagou Formation in the study area, the dolomite in the study area can be divided into residual oolitic dolomite of synsedimentary or metasomatic origin, micritic dolomite of secondary metasomatism or recrystallization origin, powder crystal dolomite, and fine crystal dolomite. Reservoir pores mainly develop intergranular pores, mold pores, dissolved pores, and fractures. Combined with the characteristics of major elements, trace elements, carbon and oxygen isotopes, rare earth elements, and inclusions in the study area, it can be concluded that the fifth member dolomite of the Majiagou Formation is of shallow–medium burial origin. The diagenetic evolution sequence from the penecontemporaneous period to the middle–deep burial period in the study area is penecontemporaneous dolomite, anhydrite dissolution → seepage silt filling, freshwater dolomite, calcite, and gypsum filling, pressure solution compaction, calcite partial dissolution → gypsum filling, karst cave, buried hydrothermal dolomite, dolomite partial dissolution → calcite complete dissolution, pore dissolution expansion, and quartz pyrite filling. In the early stage of compaction and pressure solution, the primary pores are rapidly reduced, and in the later stage, sutures are generated to provide channels for reservoir fluid migration. The recrystallization reduces the porosity during the middle–deep burial period. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

18 pages, 8713 KB  
Article
Hydrogeochemical Characteristics and Sulfate Source of Groundwater in Sangu Spring Basin, China
by Zhanxue Bai, Xinwei Hou, Xiangquan Li, Zhenxing Wang, Chunchao Zhang, Chunlei Gui and Xuefeng Zuo
Water 2024, 16(20), 2884; https://doi.org/10.3390/w16202884 - 11 Oct 2024
Cited by 2 | Viewed by 1833
Abstract
The Sangu Spring Basin is located in an important economic area, and groundwater is the main source of water for local life and industry. Understanding the sources of chemical components in groundwater is important for the development and utilization of groundwater. In this [...] Read more.
The Sangu Spring Basin is located in an important economic area, and groundwater is the main source of water for local life and industry. Understanding the sources of chemical components in groundwater is important for the development and utilization of groundwater. In this paper, we analyzed the origin of the chemical components of groundwater and their evolution in the Sangu Spring Basin using statistical analysis, Piper diagrams, Gibbs diagrams, ion ratios, and combined hydrochemistry–isotope analyses. The results show that the groundwater in the Sangu Spring Basin is mainly derived from atmospheric precipitation, that the groundwater in stagnant and confined environment zones was formed under colder climatic conditions, and that the surface water (SW) has a close hydraulic relation with the groundwater. Water–rock interaction is the main factor controlling the composition of groundwater. The compositions of groundwater are mainly derived from carbonate weathering, silicate weathering, and dissolution of gypsum. Na+ and K+ in groundwater mainly come from the dissolution of albite and potassium feldspar, rather than rock salt. Ion exchange occurs in karst groundwater (KGW) and fissure groundwater (FGW), and ion exchange is dominated by the exchange of Mg2+ and Ca2+ in the groundwater with Na+ and K+ in the rock or soil. Sulfate in groundwater is derived from dissolution of gypsum, infiltration of atmospheric precipitation, and leakage of SW. Groundwaters with the highest sulfate content are located in the vicinity of SW, as a result of receiving recharge from SW seepage. Groundwaters with higher sulfate contents are located in the stagnant and deeply buried zones, where sulfate is mainly derived from the dissolution of gypsum. SW seepage recharges groundwater, resulting in increased levels of Cl, NO3 and SO42− in groundwater. These insights can provide assistance in the protection and effective management of groundwater. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

18 pages, 7517 KB  
Article
Springs of the Arabian Desert: Hydrogeology and Hydrochemistry of Abu Jir Springs, Central Iraq
by John A. Webb, Jaafar Jotheri and Rod J. Fensham
Water 2024, 16(17), 2491; https://doi.org/10.3390/w16172491 - 2 Sep 2024
Cited by 4 | Viewed by 3998
Abstract
The Arabian Desert is characterised by very low rainfall and high evaporation, yet over 210 springs are on its northeastern edge in central Iraq along the Abu Jir lineament, which represents the western depositional margin of a foreland basin infilled by the floodplain [...] Read more.
The Arabian Desert is characterised by very low rainfall and high evaporation, yet over 210 springs are on its northeastern edge in central Iraq along the Abu Jir lineament, which represents the western depositional margin of a foreland basin infilled by the floodplain sediments of the Tigris and Euphrates Rivers; there is little evidence of faulting. The springs discharge from gently east-dipping Paleocene–Eocene limestones, either where groundwater flowpaths intersect the ground surface or where groundwater flow is forced to the surface by confining aquitards. Calculated annual recharge to the aquifer system across the Arabian Desert plateau (130–500 million m3) is significant, largely due to rapid infiltration through karst dolines, such that karst porosity is the primary enabler of groundwater recharge. The recharge is enough to maintain flow at the Abu Jir springs, but active management of groundwater extraction for agriculture is required for their long-term sustainability. The hydrochemistry of the springs is determined by evaporation, rainfall composition (high SO4 concentrations are due to the dissolution of wind-blown gypsum in rainfall), and plant uptake of Ca and K (despite the sparse vegetation). Limestone dissolution has relatively little impact; many of the springs are undersaturated with respect to calcite and lack tufa/travertine deposits. The springs at Hit-Kubaysa contain tar and high levels of H2S that probably seeped upwards along subvertical faults from underlying oil reservoirs; this is the only location along the Abu Jir lineament where deep-seated faults penetrate to the surface. The presence of hydrocarbons reduces the Hit-Kubaysa spring water and converts the dissolved SO4 to H2S. Full article
Show Figures

Figure 1

15 pages, 6091 KB  
Article
Exploring the Hydrogeochemical Formation and Evolution of the Karst Aquifer System in the Yufu River Based on Hydrochemistry and Isotopes
by Xuequn Chen, Cuihong Han, Shuxin Li, Zezheng Wang, Dan Liu, Qinghua Guan and Wenjing Zhang
Sustainability 2024, 16(15), 6580; https://doi.org/10.3390/su16156580 - 1 Aug 2024
Cited by 5 | Viewed by 2098
Abstract
Jinan, renowned as the “Spring City” in China, relies significantly on karst groundwater as an indispensable resource for socio-economic development, playing a crucial role in ecological regulation, tourism, and historical and cultural aspects. The Yufu River basin, situated within Jinan’s karst region, represents [...] Read more.
Jinan, renowned as the “Spring City” in China, relies significantly on karst groundwater as an indispensable resource for socio-economic development, playing a crucial role in ecological regulation, tourism, and historical and cultural aspects. The Yufu River basin, situated within Jinan’s karst region, represents a vital riverine leakage zone. Therefore, investigating the evolutionary characteristics and causative mechanisms of surface water and groundwater at different aquifer levels in the Yufu River basin can provide a scientific foundation for the protection of Jinan’s springs. This study, based on hydrogeochemical and isotopic data from the river water, shallow groundwater, deep groundwater, and springs in the Yufu River basin, explored the hydrogeochemical evolution in this region. The findings revealed significant spatial variations in the hydrochemical parameters of the Yufu River basin. Groundwater received contributions from surface water, while springs represented a mixture from both surface water and various recharge aquifers. Dominant ions include Ca2+ and HCO3, with prevailing hydrochemical types being HCO3·SO4-Ca and HCO3-Ca. Atmospheric precipitation served as the primary source of recharge for surface water and groundwater in the Yufu River basin, albeit influenced by pronounced evaporation processes. The hydrochemical composition in the Yufu River basin was primarily attributed to water–rock interactions, mainly driven by the combined effects of carbonate rock, silicate rock, and gypsum weathering and dissolution. Among these, the weathering and dissolution of carbonate rocks played a dominant role, with human activities exerting a relatively minor influence on the hydrochemistry of the Yufu River basin. Full article
Show Figures

Figure 1

22 pages, 9295 KB  
Article
Geological and Hydrochemical Processes Driving Karst Development in Southeastern Riyadh, Central Saudi Arabia
by Mansour H. Al-Hashim, Alawi Al-Aidaros and Faisal K. Zaidi
Water 2024, 16(14), 1937; https://doi.org/10.3390/w16141937 - 9 Jul 2024
Cited by 6 | Viewed by 3773
Abstract
This study investigates the processes leading to karst development in the southeastern part of Riyadh city extending up to Al Kharj. Numerous solution features such as sinkholes, collapsed dolines, and solution caverns are common in the area. The role of water in the [...] Read more.
This study investigates the processes leading to karst development in the southeastern part of Riyadh city extending up to Al Kharj. Numerous solution features such as sinkholes, collapsed dolines, and solution caverns are common in the area. The role of water in the development of the karst features was investigated using an integrated geological and hydrochemical approach. Geological investigations included the petrographic analysis of rock samples collected from zones of intense karstification with special emphasis on mineral dissolution. The study showed that the Sulaiy Formation is commonly fractured, brecciated, foliated, and contains numerous cavities, vugs, and openings. These features have formed by mineral dissolution by circulating groundwater, which has removed anhydrite beds from the underlying Arab–Hith sequence. Karstification likely started from the tectonically weak zones when there was more groundwater recharge. Studies show that during the early to mid-Holocene period, the climate in the Arabian Peninsula was humid, promoting groundwater recharge and subsequent mineral dissolution, though the process of karstification must have started much earlier. Hydrochemical findings reveal that mineral dissolution (halite and calcium sulfate) is the main process affecting groundwater chemistry. The Piper plot revealed two main hydrochemical facies: the (Ca2+ + Mg2+)–(Cl+ SO42−) Type (Type A) and the (Na+ + K+)–(SO42− + Cl) Type (Type B). Most of the samples belong to Type B, typical of groundwater facies affected by dissolution of halite and anhydrite mineral. The absence of the (Ca2+ + Mg2+)–(CO32− + HCO3) type of groundwater facies indicates a lack of recent groundwater recharge and the removal of carbonate minerals from the system through precipitation, as evidenced by the saturation indices. Plots of the major ionic pairs (cations vs. anions) in groundwater indicate strong halite and gypsum/anhydrite dissolution. Of the three carbonate minerals, calcite has the highest average saturation index followed by aragonite and dolomite. This suggests significant past rock–water interaction leading to carbonate dissolution. Presently, any additional calcium or carbonate ions introduced into the water lead to calcite precipitation. The study indicates that the process of karst development may not be active today. Currently, groundwater chemistry is mainly influenced by rock–water interaction leading to gypsum/anhydrite dissolution, which has resulted in a high concentration of Na+, Ca2+, Cl and SO42− ions in groundwater. The dissolution of gypsum and halite from the Hith Formation weakens the structural integrity of the overlying Sulaiy Formation, creating large underground cavities. These cavities increase the risk of roof collapse, leading to cover-collapse sinkholes as the roof becomes too thin to support the weight above. Full article
Show Figures

Figure 1

16 pages, 10605 KB  
Article
Identification and Mitigation of Subsidence in Karstic Areas with Sustainable Geotechnical Structures: A Case Study in Gallur (Spain)
by Alberto Gracia, Francisco Javier Torrijo, Julio Garzón-Roca and Miguel Pérez-Picallo
Sustainability 2024, 16(9), 3643; https://doi.org/10.3390/su16093643 - 26 Apr 2024
Viewed by 2178
Abstract
In various areas of the Ebro valley in Spain, including the region discussed here, the risk of sinkholes is becoming particularly severe, particularly impacting urban areas and roadways where land subsidence from karstic processes is common. However, knowledge of the area, its geological–geotechnical [...] Read more.
In various areas of the Ebro valley in Spain, including the region discussed here, the risk of sinkholes is becoming particularly severe, particularly impacting urban areas and roadways where land subsidence from karstic processes is common. However, knowledge of the area, its geological–geotechnical configuration, and the carrying out of specific research studies are allowing solutions to be tested in an attempt to resolve these situations. A case in point is the examination of settlement issues along a stretch of the access road leading to the city of Gallur from the east (known as Camino Real) in the Zaragoza province, Spain. Numerous surface manifestations of recent subsidence and/or collapse activities have been observed, manifesting as craters and ground undercuts, some several meters in diameter. The prevalence of highly karstifiable materials in the area, evident from the existence of subsidence pockets and collapse dolines, poses significant safety concerns, particularly for traffic and town access, prompting the closure of Camino Real for several years. Local and provincial authorities have embarked on studies to try to recognise this type of situation. Reports aimed at defining karstification processes, conducting geomechanical analyses of subsidence and cavity collapses, and proposing technical measures to mitigate risks have been prepared. Finally, a consolidation solution was proposed based on injections at column-depth of mortar with special characteristics, combined with the replacement and reinforcement of the most superficial soil by means of high-tensile-strength geotextile meshes. Full article
(This article belongs to the Special Issue Advances in Sustainable Geotechnical Structure and Geomaterials)
Show Figures

Figure 1

14 pages, 1269 KB  
Article
Study on the Hydrochemical Characteristics and Evolution Law of Taiyuan Formation Limestone Water under the Influence of Grouting with Fly Ash Cement: A Case Study in Gubei Coal Mine of Huainan, China
by Guanhong Xiao and Haifeng Lu
Water 2024, 16(7), 971; https://doi.org/10.3390/w16070971 - 27 Mar 2024
Cited by 2 | Viewed by 2025
Abstract
The hydrogeological conditions of Huainan Coalfield are complex. The Taiyuan formation limestone water (Taihui water) in this area is a direct threat to the water source of the 1# coal mining floor. In order to prevent and control water disasters, Gubei Coal Mine [...] Read more.
The hydrogeological conditions of Huainan Coalfield are complex. The Taiyuan formation limestone water (Taihui water) in this area is a direct threat to the water source of the 1# coal mining floor. In order to prevent and control water disasters, Gubei Coal Mine adopted ground high-pressure grouting with fly ash cement to block the hydraulic connection between the Taiyuan formation limestone aquifer and the Ordovician limestone aquifer. However, the injected slurry will destroy the original hydrochemical balance of Taihui water and change its hydrochemical characteristics. Taking the influence area of the 2# karst collapse column in the Beiyi 1# coal mining area of Gubei Coal Mine as an example, a total of 25 Taihui water samples were collected. The hydrochemical characteristics and evolution law of Taihui water before and after grouting are studied via the multivariate statistical method. The research methods include constant index statistics, Piper diagram, correlation analysis, ion combination ratio, and saturation index analysis. The results show that after grouting, the concentrations of Na+ + K+, Ca2+, Mg2+, and Cl in Taihui water decrease, while the concentrations of SO42− and HCO3 increase. The average values of PH and TDS become larger. The hydrochemical types of Taihui water are more concentrated, mainly HCO3-Na and Cl-Na. The correlations between conventional indicators decrease. According to the analysis of ion combination ratio, dissolution, cation exchange, and pyrite oxidation mainly occur in Taihui water, and these effects are enhanced after grouting. The saturation index results show that after grouting, the saturation index of dolomite, calcite, and gypsum is significantly reduced, and the saturation index of rock salt is slightly increased. The conclusion of this study is that the hydrochemical characteristics of Taihui water are greatly affected by fly ash cement. Moreover, because fly ash cement contains a lower calcium oxide content than ordinary Portland cement, the effect of fly ash cement on the ion concentration of Taihui water and the resulting hydrogeochemical effect are significantly different. Therefore, in the treatment of mine water disasters, the hydrogeochemical evolution law affected by fly ash cement grouting should be identified. Full article
Show Figures

Figure 1

35 pages, 7706 KB  
Article
River–Spring Connectivity and Hydrogeochemical Processes in a Karst Water System of Northern China: A Case Study of Jinan Spring Catchment
by Yunlong Ke, Xianfang Song, Lihu Yang and Shengtian Yang
Water 2024, 16(6), 829; https://doi.org/10.3390/w16060829 - 12 Mar 2024
Cited by 6 | Viewed by 2936
Abstract
Frequent surface water–groundwater interactions and prevalent anthropogenic inputs make karst water systems vulnerable to human disturbance. As a typical karst region in North China, the Jinan Spring Catchment has become increasingly threatened due to rapid population growth and urban expansion. In this study, [...] Read more.
Frequent surface water–groundwater interactions and prevalent anthropogenic inputs make karst water systems vulnerable to human disturbance. As a typical karst region in North China, the Jinan Spring Catchment has become increasingly threatened due to rapid population growth and urban expansion. In this study, the local river–spring interaction and its interference with the hydrogeochemical evolution of groundwater are evaluated based on water stable isotopes and hydrochemistry. Twenty-two karst groundwater, eleven Quaternary pore water, sixteen spring water, and thirty-two surface water samples were collected during low- and high-flow conditions over the course of a year. The isotopic signatures of four different water types display significant differences, reflecting the recharge–discharge relationship of the karst water system. Mountainous springs feature lighter isotopes, whereas urban springs have significantly heavier isotopes. The result of end-member mixing analysis shows that the surface–groundwater interaction varies spatially and temporally within the spring catchment. Urban springs receive considerable replenishment from the surface water, especially after rainy episodes (up to 50%), while mountainous springs show little hydraulic dependence on surface water leakage (4~6%). Local mineral dissolution (including calcite, dolomite, gypsum, and halite), CO2 dissolution/exsolution, and cation exchange are the main hydrogeochemical processes constraining water chemistry in the spring catchment. The deterioration of water quality can be attributed to anthropogenic influences involving the discharge of domestic effluents, agricultural activities, and irrigation return flow. The findings of this work can improve our understanding of the complex karst water system and serve as a reference for sustainable groundwater management in other karst areas of northern China. Full article
(This article belongs to the Special Issue Interactions between Surface and Subsurface Water)
Show Figures

Figure 1

22 pages, 13735 KB  
Article
Geochemical Characteristics and Controlling Factors of Groundwater Chemical Composition in the Zihe River Source Area, Shandong, China
by Jing You, Yueming Qi, Guangyu Shao and Chao Ma
Water 2024, 16(2), 298; https://doi.org/10.3390/w16020298 - 15 Jan 2024
Cited by 10 | Viewed by 2707
Abstract
The geochemical characterization and evolution of shallow groundwater in the Zihe River source area is a key issue that needs to be addressed. In this study, a combination of traditional geochemical techniques and geochemical modeling was used to explain the geochemical processes and [...] Read more.
The geochemical characterization and evolution of shallow groundwater in the Zihe River source area is a key issue that needs to be addressed. In this study, a combination of traditional geochemical techniques and geochemical modeling was used to explain the geochemical processes and major ion sources in the chemical evolution of shallow groundwater in the Zihe River source area, Northeast China. Fifty-seven water samples were collected in June 2020 for chemical analysis, and the results showed that the main groundwater chemistry types in the three major aquifers are HCO3·SO4-Ca·Mg-type pore water from loose quaternary rocks, HCO3·SO4-Ca·Mg-type karstic fissure water from carbonate rocks, and HCO3·SO4-Ca-type weathered fissure water from massive rocks. Water–rock interactions in alkaline environments were the main causes of changes in groundwater chemistry. Rock weathering dominated the geochemical evolution of each aquifer. The analysis of ion concentration ratios and modeling revealed that the aquifer’s chemical components are mainly derived from the dissolution of dolomite and calcite and partly from the infiltration of pollutants containing Cl and NO3, as well as from the dissolution of quartz. Mg2+ is derived from the dissolution of dolomite. HCO3 is primarily derived from the co-dissolution of calcite and dolomite, and to a lesser extent, its content is also influenced by the recharge of rainfall. SO42 has two sources: it mainly originates from the dissolution of gypsum and the anhydrite layer, followed by atmospheric precipitation. The synthesis showed that the groundwater quality in the source area of Zihe River is good, all the indices reached the standard of class III groundwater quality, and the overall degree of human pollution is low. The results of this research will provide a scientific basis for the local authorities to delineate karst groundwater protection zones in the Zihe River source area and to formulate resource management strategies for the development, utilization, and protection of karst groundwater. Full article
Show Figures

Figure 1

Back to TopTop