Springs of the Arabian Desert: Hydrogeology and Hydrochemistry of Abu Jir Springs, Central Iraq
Abstract
:1. Introduction
2. Materials and Methods
3. Abu Jir Springs
3.1. Geological and Geomorphological Setting
3.2. Hydrogeological Setting
3.3. Hydrogeology of Abu Jir Springs
3.4. Recharge to the Abu Jir Springs
3.5. Hydrochemistry of the Abu Jir Springs
Location | T°C | pH | EC µS/cm | Ca | Mg | Na | K | Cl | SO4 | HCO3 | NO3 | SIcalcite |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Haqlaniyah [8,49] | 29 29–29 3 | 7.2 7.1–7.3 3 | 5068 5038–5523 3 | 312 288–320 3 | 144 134–146 3 | 251 230–709 7 | 22 21–94 3 | 1620 643–1925 7 | 674 403–1260 7 | 265 223–270 3 | 3 2–3 3 | 0.46 0.29–0.5 3 |
Hit-Kubaysa [8,10,12,29,49] | 27 16–34 49 | 7.2 6.0–7.8 48 | 7100 1800–35418 23 | 400 225–1783 21 | 210 94–607 21 | 619 200–6876 27 | 85 5–540 21 | 1488 320–16100 45 | 480 91–3120 45 | 197 85–1380 21 | 7 2–10 8 | 0.31 −1.54–2.1 21 |
Najaf [9,11,49] | 25 23–27 20 | 7.2 6.9–7.8 20 | 2360 1820–3200 20 | 188 112–326 10 | 185 46–342 10 | 271 203–457 13 | 54 41–74 9 | 588 350–2591 13 | 785 538–1765 13 | 116 45–140 9 | −0.19 −1.11–0.69 9 | |
Shinafiyah [51] | 7.7 7.0–8.0 12 | 4815 4010–6080 12 | 391 346–496 12 | 242 160–294 12 | 817 690–1094 12 | 2610 1330–2861 12 | 178 121–211 12 | 0.77 −0.18–1.15 12 | ||||
Riyadh rainfall [47] | 32 | 2 | 6 | 2 | 10 | 17 |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Altaweel, M.; Marsh, A.; Jotheri, J.; Hritz, C.; Fleitmann, D.; Rost, S.; Lintner, S.F.; Gibson, M.; Bosomworth, M.; Jacobson, M.; et al. New Insights on the Role of Environmental Dynamics Shaping Southern Mesopotamia: From the Pre-Ubaid To the Early Islamic Period. Iraq 2019, 81, 23–46. [Google Scholar] [CrossRef]
- Sissakian, V.K.; Mohammad, B.S. Geology of Iraqi Western Desert: Stratigraphy. Iraqi Bull. Geol. Min. Spec. Issue 2007, 51–124. [Google Scholar]
- Thabit, J.M.; Al-yasi, A.I.; Al-shemmari, A.N. Estimation of Hydraulic Parameters and Porosity from Geoelectrical Properties for Fractured Rock Quifer in Middle Dammam Formation at Bahr. Iraqi Bull. Geol. Min. 2014, 10, 41–57. [Google Scholar]
- Saleh, S.A.; Al-Ansari, N.; Abdullah, T. Groundwater Hydrology in Iraq. J. Earth Sci. Geotech. Eng. 2020, 10, 155–197. [Google Scholar]
- Mukhlif, H.N.; Rabeea, R.; Hussien, B.M. Characterization of the Groundwater within Regional Aquifers and Suitability Assessment for Various Uses and Purposes-Western Iraq. Baghdad Sci. J. 2021, 18, 0670. [Google Scholar] [CrossRef]
- Al-Dulaimi, A.M.S.; Al-Kubaisi, Q.Y. Hydrochemistry and Water Quality Index of Groundwater in Abu-Jir Village in Al-Anbar, Western Iraq. Iraqi Geol. J. 2022, 55, 73–84. [Google Scholar] [CrossRef]
- Al Maliki, A.; Kumar, U.S.; Falih, A.H.; Sultan, M.A.; Al-Naemi, A.; Alshamsi, D.; Arman, H.; Ahmed, A.; Sabarathinam, C. Geochemical Processes, Salinity Sources and Utility Characterization of Groundwater in a Semi-Arid Region of Iraq through Geostatistical and Isotopic Techniques. Environ. Monit. Assess. 2024, 196, 365. [Google Scholar] [CrossRef] [PubMed]
- Awadh, S.M.; Al-Ghani, S.A. Assessment of Sulfurous Springs in the West of Iraq for Balneotherapy, Drinking, Irrigation and Aquaculture Purposes. Environ. Geochem. Health 2014, 36, 359–373. [Google Scholar] [CrossRef]
- Al-Dahaan, S.A.J.M.; Hussain, H.M.; Al-Ansari, N.; Knutson, S. Hydrochemistry of Springs, Najaf Area, Iraq. J. Environ. Hydrol. 2015, 23, 1–12. [Google Scholar]
- Al-Dahaan, S.A.J.M. Origin and source of springs, west Iraq. J. Kufa-Phys. 2014, 6, 1–12. [Google Scholar]
- Al-Dahaan, S.A.M.; Alabidi, A.J.; Al-Ansari, N.; Knutsson, S. Relationship between Selected Hydrochemical Parameters in Springs of Najaf Province, Iraq. Engineering 2015, 7, 337–346. [Google Scholar] [CrossRef]
- Hussien, B.M.; Gharbie, M.A. Hydrogeochemical Evaluation of the Groundwater Within Abu Jir Fault Zone, Hit–Kubaisa Region, Central Iraq. Iraqi Bull. Geol. Min. 2010, 6, 121–138. [Google Scholar]
- Casana, J.; Jackson, C. The CORONA Atlas Project: Orthorectification of CORONA Satellite Imagery and Regional-Scale Archaeological Exploration. In Mapping Archaeological Landscapes from Space, 5; Comer, D.C., Harrower, M.J., Eds.; Springer Science Business and Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Philip, G.; Donoghue, D.; Beck, A.; Galiatsatos, N. CORONA Satellite Photography: An Archaeological Application from the Middle East. Antiquity 2002, 76, 109–118. [Google Scholar] [CrossRef]
- Musil, A. Arabia Deserta; The American Geographical Society: New York, NY, USA, 1927. [Google Scholar]
- Schoeller, H. Qualitative Evaluation of Groundwater Resources. In Methods and Techniques of Groundwater Investigations and Development; UNESCO: Paris, France, 1965. [Google Scholar]
- Dean, J.F.; Webb, J.A.; Jacobsen, G.E.; Chisari, R.; Dresel, P.E. Biomass Uptake and Fire as Controls on Groundwater Solute Evolution on a Southeast Australian Granite: Aboriginal Land Management Hypothesis. Biogeosciences 2014, 11, 4099–4114. [Google Scholar] [CrossRef]
- Drever, J.I. The Geochemistry of Natural Waters, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 1997. [Google Scholar]
- Allison, G.; Hughes, M. The Use of Environmental Chloride and Tritium to Estimate Total Recharge to an Unconfined Aquifer. Soil Res. 1978, 16, 181–195. [Google Scholar] [CrossRef]
- Dean, J.F.; Webb, J.A.; Jacobsen, G.; Chisari, R.; Dresel, P.E. A groundwater recharge perspective on locating tree plantations within low-rainfall catchments to limit water resource losses. Hydrol. Earth Syst. Sci. 2015, 19, 1107–1123. [Google Scholar] [CrossRef]
- MacDonald, A.M.; Lark, R.M.; Taylor, R.G.; Abiye, T.; Fallas, H.C.; Favreau, G.; Goni, I.B.; Kebede, S.; Scanlon, B.; Sorensen, J.P.R.; et al. Mapping Groundwater Recharge in Africa from Ground Observations and Implications for Water Security. Environ. Res. Lett. 2021, 16, 034012. [Google Scholar] [CrossRef]
- Yacoub, S.Y. Stratigraphy of the Mesopotamia Plain. Iraqi Bull. Geol. Min. 2011, 4, 47–82. [Google Scholar]
- Abdulnaby, W. Structural Geology and Neotectonics of Iraq, Northwest Zagros. In Tectonic and Structural Framework of the Zagros Fold-Thrust Belt; Saein, A.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 53–73. ISBN 978-0-12-815048-1. [Google Scholar]
- Sissakian, V.K. Geological Evolution of the Iraqi Mesopotamia Foredeep, Inner Platform and near Surroundings of the Arabian Plate. J. Asian Earth Sci. 2013, 72, 152–163. [Google Scholar] [CrossRef]
- Aladwani, N.S.; Alenezi, A.; Diab, A. Investigation of the Cretaceous Total Petroleum System Using Wireline Logs, Core, and Geochemical Data in Bahrah Field, Northern Basin, Kuwait. J. Pet. Explor. Prod. Technol. 2023, 13, 381–406. [Google Scholar] [CrossRef]
- Sissakian, V.K.; Fouad, S.F.A. Geological Map of Iraq, Scale 1: 1,000,000. Iraqi Bull. Geol. Min. 2015, 11, 1–7. [Google Scholar]
- U.S. Geological Survey and Arabian American Oil Company. Geologic Map of the Arabian Peninsula. Washington, D.C., U.S.A. 1963. [Google Scholar] [CrossRef]
- Alhadithi, A.A.; Salih, E.M. Behavior of Abu-Jir Fault Zone in Al-Thirthar Valley and near Habbaniya Lake Areas–Comparative Study Using Seismic Reflection Sections. J. Univ. Anbar Pure Sci. 2017, 11, 47–55. [Google Scholar] [CrossRef]
- Al Dulaymie, A.S.; Hussien, B.M.; Gharbi, M.A.; Mekhlif, H.N. Balneological Study Based on the Hydrogeochemical Aspects of the Sulfate Springs Water (Hit-Kubaiysa Region), Iraq. Arab. J. Geosci. 2013, 6, 801–816. [Google Scholar] [CrossRef]
- Fouad, S. Contribution to the Structure of the Abu-Jir Fault Zone, West Iraq. Iraqi Geol. J. 1999, 32, 63–73. [Google Scholar]
- Benischke, R.; Fuchs, G.; Weissensteiner, V. Speleological Investigations in Saudi Arabia. In Proceedings of the 12th International Congress of Speleology, La Chaux-de-Fonds, Geneva, Switzerland, 10–17 August 1997; International Union of Speleology: Geneva, Switzerland, 1997; Volume 1, pp. 425–428. [Google Scholar]
- Waltham, T. Asia, Southwest. In Encyclopedia of Caves and Karst Science; Gunn, J., Ed.; Fitzroy Dearborn: New York, NY, USA, 2004; pp. 114–116. [Google Scholar]
- Barwary, A.M.; Slewa, N.A. Geological Map of Karbala Quadrangle, Sheet NI-38-14; State Establishment of Geological Survey and Mining: Baghdad, Iraq, 1995. [Google Scholar]
- Barwary, A.M.; Slewa, N.A. Geological Map of Al-Najaf Quadrangle, Sheet NH-38-2; State Establishment of Geological Survey and Mining: Baghdad, Iraq, 1996. [Google Scholar]
- Deikran, D.B.; Mahammad, S.M. Geological Map of Baghdad Quadrangle, Sheet NI-38-10; State Establishment of Geological Survey and Mining: Baghdad, Iraq, 1994. [Google Scholar]
- Sissakian, V.K.; Youkhanna, R.Y. Geological Map of Al-Birreet Quadrangle, Sheet NH-38-1; State Establishment of Geological Survey and Mining: Baghdad, Iraq, 1995. [Google Scholar]
- Sissakian, V.K.; Zwaid, Q.A.; Mohammad, S.M. Geological Map of Al-Ramadi Quadrangle, Sheet NI-38-9; State Establishment of Geological Survey and Mining: Baghdad, Iraq, 1995. [Google Scholar]
- Mahdi, A.H.; Youkhanna, R.Y. Geological Map of Shithatha Quadrangle, Sheet NI-38-13; State Establishment of Geological Survey and Mining: Baghdad, Iraq, 1996. [Google Scholar]
- Al-Zubedi, A.S.; Thabit, J.M. Use of 2D Azimuthal Resistivity Imaging in Delineation of the Fracture Characteristics in Dammam Aquifer within and out of Abu-Jir Fault Zone, Central Iraq. Arab. J. Geosci. 2016, 9, 1–9. [Google Scholar] [CrossRef]
- Abdullah, F.H. Porosity and Permeability of Karst Carbonate Rocks along an Unconformity Outcrop: A Case Study from the Upper Dammam Formation Exposure in Kuwait, Arabian Gulf. Heliyon 2021, 7, e07444. [Google Scholar] [CrossRef]
- Al-Abadi, A.M.; Shahid, S. Spatial Mapping of Artesian Zone at Iraqi Southern Desert Using a GIS-Based Random Forest Machine Learning Model. Model. Earth Syst. Environ. 2016, 2, 96. [Google Scholar] [CrossRef]
- UN-ESCWA and BGR. Inventory of Shared Water Resources in Western Asia; United Nations Economic and Social Commission for Western Asia; Bundesanstalt für Geowissenschaften und Rohstoffe: Beirut, Lebanon, 2013. [Google Scholar]
- Faulkner, R.D. Fossil Water or Renewable Resource: The case for one Arabian aquifer. Proc. Inst. Civ. Eng. Water Marit. Energy 1994, 106, 325–331. [Google Scholar] [CrossRef]
- Rausch, R.; Dirks, H.A. Hydrogeological Overview of the Upper Mega Aquifer System on the Arabian Platform. Hydrogeol. J. 2024, 32, 621–634. [Google Scholar] [CrossRef]
- Awadh, S.A. The Atmospheric Pollution of Baghdad City, Iraq. In Proceedings of the 3rd Scientific Conference College of Science, University of Baghdad, Baghdad, Iraq, 24–26 March 2009; pp. 1727–1740. [Google Scholar]
- Handy, A.H.; Tucker, R.A. Rainfall Quality at Selected Sites in Saudi Arabia. Water Research and Study Division; Publication No. 2; Ministry of Agriculture and Water, Water Resources Development Department: Riyadh, Saudi Arabia, 1984; Volume 8. [Google Scholar]
- Michelsen, N.; Reshida, M.; Siebert, C.; Knoller, K.; Wiese, S.M.; Rausch, R.; Al-Saud, M.; Schuth, C. Isotopic and Chemical Composition of Precipitation in Riyadh, Saudi Arabia. Chem. Geol. 2015, 413, 51–62. [Google Scholar] [CrossRef]
- Ali, K.K.; Ajeena, A.R. Assessment of Interconnection between Surface Water and Groundwater in Sawa Lake Area, Southern Iraq, Using Stable Isotope Technique. Arab. J. Geosci. 2016, 9, 648. [Google Scholar] [CrossRef]
- Awadh, S.M.; Ali, K.K.; Alazzawi, A.T. Geochemical Exploration Using Surveys of Spring Water, Hydrocarbon and Gas Seepage, and Geobotany for Determining the Surface Extension of Abu-Jir Fault Zone in Iraq: A New Way for Determining Geometrical Shapes of Computational Simulation Models. J. Geochem. Explor. 2013, 124, 218–229. [Google Scholar] [CrossRef]
- Engelhardt, I.; Rausch, R.; Keim, B.; Al-Saud, M.; Schüth, C. Surface and Subsurface Conceptual Model of an Arid Environment with Respect to Mid- and Late Holocene Climate Changes. Environ. Earth Sci. 2013, 69, 537–555. [Google Scholar] [CrossRef]
- Matrood, M.J.; Hussein, H.M. A Preliminary Ecological Analysis of Spring Water in Al-Shanafiyah District, Al-Qadisiyah Province, Southern Iraq. IOP Conf. Ser. Earth Environ. Sci. 2021, 790, 012004. [Google Scholar] [CrossRef]
- Bennetts, D.A.; Webb, J.A.; Stone, D.J.M.; Hill, D.M. Understanding the Salinisation Process for Groundwater in an Area of South-Eastern Australia, Using Hydrochemical and Isotopic Evidence. J. Hydrol. 2006, 323, 178–192. [Google Scholar] [CrossRef]
- Imo, T.; Amosa, P.; Latu, F.; Vaurasi, V.; Ieremia, R. Chemical Composition of Rainwater at Selected Sites on Upolu Island, Samoa. Atmos. Clim. Sci. 2021, 11, 458–468. [Google Scholar] [CrossRef]
- Webb, J.A.; White, S. Karst in Deserts. In Treatise on Geomorphology; Shroder, J.F., Ed.; Academic Press: San Diego, CA, USA, 2013; Volume 6, p. 397406. [Google Scholar]
- Sutcliffe, J.F. Mineral Salts Absorption in Plants; Pergamon: London, UK, 1962. [Google Scholar]
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Hudson, R.O.; Golding, D.L. Controls on Groundwater Chemistry in Subalpine Catchments in the Southern Interior of British Columbia. J. Hydrol. 1997, 201, 1–20. [Google Scholar] [CrossRef]
- Moulton, K.L.; West, J.; Berner, R.A. Solute Flux and Mineral Mass Balance Approaches to the Quantification of Plant Effects on Silicate Weathering. Am. J. Sci. 2000, 300, 539–570. [Google Scholar] [CrossRef]
- Edwards, M.; Webb, J. The Importance of Unsaturated Zone Biogeochemical Processes in Determining Groundwater Composition, Southeastern Australia. Hydrogeol. J. 2009, 17, 1359–1374. [Google Scholar] [CrossRef]
- Prado, G.H.C.; Rao, Y.; De Klerk, A. Nitrogen Removal from Oil: A Review. Energy Fuels 2017, 31, 14–36. [Google Scholar] [CrossRef]
- Hussien, B.M.; Rabeea, M.A.; Farhan, M.M. Characterization and Behavior of Hydrogen Sulfide Plumes Released from Active Sulfide-Tar Springs, Hit, Iraq. Atmos. Pollut. Res. 2020, 11, 894–902. [Google Scholar] [CrossRef]
- Pitman, J.K.; Steinshouer, D.; Lewan, M.D. Petroleum Generation and Migration in the Mesopotamian Basin and Zagros Fold Belt of Iraq: Results from a Basin-Modeling Study. GeoArabia 2004, 9, 41–72. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Webb, J.A.; Jotheri, J.; Fensham, R.J. Springs of the Arabian Desert: Hydrogeology and Hydrochemistry of Abu Jir Springs, Central Iraq. Water 2024, 16, 2491. https://doi.org/10.3390/w16172491
Webb JA, Jotheri J, Fensham RJ. Springs of the Arabian Desert: Hydrogeology and Hydrochemistry of Abu Jir Springs, Central Iraq. Water. 2024; 16(17):2491. https://doi.org/10.3390/w16172491
Chicago/Turabian StyleWebb, John A., Jaafar Jotheri, and Rod J. Fensham. 2024. "Springs of the Arabian Desert: Hydrogeology and Hydrochemistry of Abu Jir Springs, Central Iraq" Water 16, no. 17: 2491. https://doi.org/10.3390/w16172491
APA StyleWebb, J. A., Jotheri, J., & Fensham, R. J. (2024). Springs of the Arabian Desert: Hydrogeology and Hydrochemistry of Abu Jir Springs, Central Iraq. Water, 16(17), 2491. https://doi.org/10.3390/w16172491