Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (859)

Search Parameters:
Keywords = gut butyrate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1181 KiB  
Article
Effects of Ultrafine Bubble Water on Gut Microbiota Composition and Health Markers in Rats
by John Nicholas Jackowetz, Carly S. Hanson, Minto Michael, Kiriako Tsoukalas, Cassandra Villanueva and Peter A. Kozak
Nanomaterials 2025, 15(15), 1193; https://doi.org/10.3390/nano15151193 - 5 Aug 2025
Abstract
Ultrafine bubbles (UFBs) represent an emerging technology with unique physicochemical properties. This study investigated the effects of air-filled UFBs infused in drinking water on gut microbiota composition and the associated health markers in Sprague Dawley rats over a 12-week period. Using a two-phase [...] Read more.
Ultrafine bubbles (UFBs) represent an emerging technology with unique physicochemical properties. This study investigated the effects of air-filled UFBs infused in drinking water on gut microbiota composition and the associated health markers in Sprague Dawley rats over a 12-week period. Using a two-phase design, UFB concentration was increased from 1.7 × 106 to 6.5 × 109 UFBs/mL at week 7 to assess dose-dependent effects. Administration of UFBs in drinking water induced significant shifts in gut microbiome populations, characterized by increased Bacteroidetes (+122% weeks 8–12) and decreased Firmicutes (−43% weeks 8–12) compared to controls. These microbial shifts coincided with enhanced short-chain fatty acid production (butyrate +56.0%, p ≤ 0.001; valerate +63.1%, p ≤ 0.01) and reduced inflammatory markers (TNF-α −84.0%, p ≤ 0.05; IL-1β −41.0%, p ≤ 0.05; IL-10 −69.8%, p ≤ 0.05). UFB effects demonstrated systematic concentration-dependent threshold responses, with 85.7% of parameters exhibiting directional reversals between low (1.7 × 106 UFBs/mL) and high (6.5 × 109 UFBs/mL) concentration phases rather than linear dose–response relationships. The systematic nature of these threshold effects, with 71.4% of parameters achieving statistical significance (p ≤ 0.05), indicates concentration-dependent biological mechanisms rather than random effects on gut biology. Despite current metagenomic techniques identifying only 25% of the total gut microbiome, the observed changes in characterized species and metabolites demonstrate UFB technology’s therapeutic potential for conditions requiring microbiome modulation, providing new insights into UFB influence on complex biological systems. Full article
(This article belongs to the Special Issue Nanobubbles and Nanodroplets: Current State-of-the-Art)
Show Figures

Figure 1

15 pages, 2361 KiB  
Article
Galacto-Oligosaccharides Exert Bifidogenic Effects at Capsule-Compatible Ultra-Low Doses
by Lucien F. Harthoorn, Jasmine Heyse, Aurélien Baudot, Ingmar A. J. van Hengel and Pieter Van den Abbeele
Metabolites 2025, 15(8), 530; https://doi.org/10.3390/metabo15080530 - 5 Aug 2025
Abstract
Background: Prebiotics are selectively used by host microorganisms to promote health. Because effective prebiotic doses (1.5–30 g/day) often require inconvenient delivery formats, this study aims to explore whether capsule-compatible doses of galacto-oligosaccharides (GOS) can effectively modulate the gut microbiome. Methods: The impact of [...] Read more.
Background: Prebiotics are selectively used by host microorganisms to promote health. Because effective prebiotic doses (1.5–30 g/day) often require inconvenient delivery formats, this study aims to explore whether capsule-compatible doses of galacto-oligosaccharides (GOS) can effectively modulate the gut microbiome. Methods: The impact of Bimuno® GOS (Reading, UK) at 0.5, 0.75, 1.83, and 3.65 g on the adult gut microbiome was assessed using the ex vivo SIFR® technology (n = 8), a clinically validated, bioreactor-based technology. Results: The GOS were rapidly fermented and significantly increased beneficial Bifidobacterium species (B. adolescentis, B. bifidum, and B. longum), even at the lowest tested dose. In doing so, GOS strongly promoted SCFA production, particularly acetate (significant from 0.5 g) and butyrate (significant from 0.75 g). Gas production only mildly increased, likely as Bifidobacterium species do not produce gases. Based on the ability of the SIFR® technology to cultivate strictly anaerobic, hard-to-culture gut microbes, unlike in past in vitro studies, we elucidated that GOS also enriched specific Lachnospiraceae species. Besides Anaerobutyricum hallii, this included Bariatricus comes, Blautia species (B. massiliensis, Blautia_A, B. faecis), Oliverpabstia intestinalis, Mediterraneibacter faecis, and Fusicatenibacter species. Finally, GOS also promoted propionate (significant from 0.75 g), linked to increases in Phocaeicola vulgatus. Conclusions: GOS displayed prebiotic potential at capsule-compatible doses, offering greater flexibility in nutritional product formulation and consumer convenience. Notably, the strong response at the lowest dose suggests effective microbiome modulation at lower levels than previously expected. Full article
Show Figures

Graphical abstract

29 pages, 6122 KiB  
Article
Lacticaseibacillus paracasei L21 and Its Postbiotics Ameliorate Ulcerative Colitis Through Gut Microbiota Modulation, Intestinal Barrier Restoration, and HIF1α/AhR-IL-22 Axis Activation: Combined In Vitro and In Vivo Evidence
by Jingru Chen, Linfang Zhang, Yuehua Jiao, Xuan Lu, Ning Zhang, Xinyi Li, Suo Zheng, Bailiang Li, Fei Liu and Peng Zuo
Nutrients 2025, 17(15), 2537; https://doi.org/10.3390/nu17152537 - 1 Aug 2025
Viewed by 302
Abstract
Background: Ulcerative colitis (UC), characterized by chronic intestinal inflammation, epithelial barrier dysfunction, and immune imbalance demands novel ameliorative strategies beyond conventional approaches. Methods: In this study, the probiotic properties of Lactobacillus paracaseiL21 (L. paracaseiL21) and its ability to ameliorate [...] Read more.
Background: Ulcerative colitis (UC), characterized by chronic intestinal inflammation, epithelial barrier dysfunction, and immune imbalance demands novel ameliorative strategies beyond conventional approaches. Methods: In this study, the probiotic properties of Lactobacillus paracaseiL21 (L. paracaseiL21) and its ability to ameliorate colitis were evaluated using an in vitro lipopolysaccharide (LPS)-induced intestinal crypt epithelial cell (IEC-6) model and an in vivo dextran sulfate sodium (DSS)-induced UC mouse model. Results: In vitro, L. paracaseiL21 decreased levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-8) while increasing anti-inflammatory IL-10 levels (p < 0.05) in LPS-induced IEC-6 cells, significantly enhancing the expression of tight junction proteins (ZO-1, occludin, claudin-1), thereby restoring the intestinal barrier. In vivo, both viable L. paracaseiL21 and its heat-inactivated postbiotic (H-L21) mitigated weight loss, colon shortening, and disease activity indices, concurrently reducing serum LPS and proinflammatory mediators. Interventions inhibited NF-κB signaling while activating HIF1α/AhR pathways, increasing IL-22 and mucin MUC2 to restore goblet cell populations. Gut microbiota analysis showed that both interventions increased the abundance of beneficial gut bacteria (Lactobacillus, Dubococcus, and Akkermansia) and improved faecal propanoic acid and butyric acid levels. H-L21 uniquely exerted an anti-inflammatory effect, marked by the regulation of Dubosiella, while L. paracaseiL21 marked by the Akkermansia. Conclusions: These results highlight the potential of L. paracaseiL21 as a candidate for the development of both probiotic and postbiotic formulations. It is expected to provide a theoretical basis for the management of UC and to drive the development of the next generation of UC therapies. Full article
(This article belongs to the Special Issue Probiotics, Postbiotics, Gut Microbiota and Gastrointestinal Health)
Show Figures

Figure 1

18 pages, 3360 KiB  
Article
Hydrogen Sulfide Has a Minor Impact on Human Gut Microbiota Across Age Groups
by Linshu Liu, Johanna M. S. Lemons, Jenni Firrman, Karley K. Mahalak, Venkateswari J. Chetty, Adrienne B. Narrowe, Stephanie Higgins, Ahmed M. Moustafa, Aurélien Baudot, Stef Deyaert and Pieter Van den Abbeele
Sci 2025, 7(3), 102; https://doi.org/10.3390/sci7030102 - 1 Aug 2025
Viewed by 108
Abstract
Hydrogen sulfide (H2S) can be produced from the metabolism of foods containing sulfur in the gastrointestinal tract (GIT). At low doses, H2S regulates the gut microbial community and supports GIT health, but depending on dose, age, and individual health [...] Read more.
Hydrogen sulfide (H2S) can be produced from the metabolism of foods containing sulfur in the gastrointestinal tract (GIT). At low doses, H2S regulates the gut microbial community and supports GIT health, but depending on dose, age, and individual health conditions, it may also contribute to inflammatory responses and gut barrier dysfunction. Controlling H2S production in the GIT is important for maintaining a healthy gut microbiome. However, research on this subject is limited due to the gaseous nature of the chemical and the difficulty of accessing the GIT in situ. In the present ex vivo experiment, we used a single-dose sodium sulfide preparation (SSP) as a H2S precursor to test the effect of H2S on the human gut microbiome across different age groups, including breastfed infants, toddlers, adults, and older adults. Metagenomic sequencing and metabolite measurements revealed that the development of the gut microbial community and the production of short-chain fatty-acids (SCFAs) were age-dependent; that the infant and the older adult groups were more sensitive to SSP exposure; that exogeneous SSP suppressed SCFA production across all age groups, except for butyrate in the older adult group, suggesting that H2S selectively favors specific gut microbial processes. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

12 pages, 788 KiB  
Article
Gut Microbial Composition on Dienogest Therapy in Patients with Endometriosis
by Veronika Pronina, Pavel Denisov, Vera Muravieva, Alexey Skorobogatiy, Ksenia Zhigalova, Galina Chernukha, Gennady Sukhikh and Tatiana Priputnevich
Microbiol. Res. 2025, 16(8), 169; https://doi.org/10.3390/microbiolres16080169 - 1 Aug 2025
Viewed by 207
Abstract
Endometriosis is a chronic inflammatory condition affecting approximately 10% of women of reproductive age, characterized by pelvic pain, dysmenorrhea, and infertility. Emerging evidence suggests a potential link between gut microbiota dysbiosis and endometriosis pathogenesis, mediated through hormonal regulation, immune modulation, and systemic inflammation. [...] Read more.
Endometriosis is a chronic inflammatory condition affecting approximately 10% of women of reproductive age, characterized by pelvic pain, dysmenorrhea, and infertility. Emerging evidence suggests a potential link between gut microbiota dysbiosis and endometriosis pathogenesis, mediated through hormonal regulation, immune modulation, and systemic inflammation. Dienogest (DNG) is widely used for endometriosis management, but its effects on gut microbiota remain underexplored. This study investigates the impact of DNG on gut microbial composition in endometriosis patients, aiming to elucidate its therapeutic mechanisms beyond hormonal modulation. DNG therapy led to a significant reduction in the Bacillota/Bacteroidota ratio (p = 0.0421), driven by decreased Staphylococcus spp. (p = 0.0244) and increased commensal bacteria such as Lactobacillus spp. and Collinsella aerofaciens (p = 0.049). Species richness and alpha diversity indices showed a non-significant upward trend. Notably, C. aerofaciens, a butyrate producer linked to gut barrier integrity, was detected twice as frequently during therapy. The study also observed reductions in facultative anaerobes like Enterococcus spp. and a trend toward higher titers of beneficial Bacteroidota. This study provides the first evidence that DNG therapy modulates gut microbiota in endometriosis patients, favoring a composition associated with anti-inflammatory and barrier-protective effects. The observed shifts—reduced opportunistic pathogens and increased symbionts—suggest a novel mechanism for DNG’s efficacy, potentially involving the microbial regulation of estrogen metabolism and immune responses. Full article
Show Figures

Figure 1

25 pages, 1199 KiB  
Review
Gut-Microbiota-Derived Metabolites and Probiotic Strategies in Colorectal Cancer: Implications for Disease Modulation and Precision Therapy
by Yi-Chu Yang, Shih-Chang Chang, Chih-Sheng Hung, Ming-Hung Shen, Ching-Long Lai and Chi-Jung Huang
Nutrients 2025, 17(15), 2501; https://doi.org/10.3390/nu17152501 - 30 Jul 2025
Viewed by 514
Abstract
The human gut microbiota significantly influences host health through its metabolic products and interaction with immune, neural, and metabolic systems. Among these, short-chain fatty acids (SCFAs), especially butyrate, play key roles in maintaining gut barrier integrity, modulating inflammation, and supporting metabolic regulation. Dysbiosis [...] Read more.
The human gut microbiota significantly influences host health through its metabolic products and interaction with immune, neural, and metabolic systems. Among these, short-chain fatty acids (SCFAs), especially butyrate, play key roles in maintaining gut barrier integrity, modulating inflammation, and supporting metabolic regulation. Dysbiosis is increasingly linked to diverse conditions such as gastrointestinal, metabolic, and neuropsychiatric disorders, cardiovascular diseases, and colorectal cancer (CRC). Probiotics offer therapeutic potential by restoring microbial balance, enhancing epithelial defenses, and modulating immune responses. This review highlights the physiological functions of gut microbiota and SCFAs, with a particular focus on butyrate’s anti-inflammatory and anti-cancer effects in CRC. It also examines emerging microbial therapies like probiotics, synbiotics, postbiotics, and engineered microbes. Emphasis is placed on the need for precision microbiome medicine, tailored to individual host–microbiome interactions and metabolomic profiles. These insights underscore the promising role of gut microbiota modulation in advancing preventive and personalized healthcare. Full article
(This article belongs to the Special Issue Diet, Gut Microbiota, and Gastrointestinal Disease)
Show Figures

Graphical abstract

22 pages, 4967 KiB  
Article
Therapeutic Potential of Kelp Fucoidan in Rebiosis of Gut Microflora and Immune Homeostasis in Cyclophosphamide-Induced Immunosuppressed Mice
by Yaqing Liu, Ruining Kang, Yanfei Zhao, Heng Zhang, Qingfeng Rong, Shaoxuan Yu, Yaoguang Chang, Zhengpeng Wei and Lanlan Zhu
Foods 2025, 14(15), 2662; https://doi.org/10.3390/foods14152662 - 29 Jul 2025
Viewed by 249
Abstract
Recent studies indicate that fucoidan may play a crucial role in the metabolism and biological function of the intestinal flora. This study investigates the therapeutic potential of kelp fucoidan on the gut microbiota and immune homeostasis of cyclophosphamide-induced immunosuppressed mice. An immunosuppressive mouse [...] Read more.
Recent studies indicate that fucoidan may play a crucial role in the metabolism and biological function of the intestinal flora. This study investigates the therapeutic potential of kelp fucoidan on the gut microbiota and immune homeostasis of cyclophosphamide-induced immunosuppressed mice. An immunosuppressive mouse model was established using cyclophosphamide, followed by administration of various kelp fucoidan doses (low-dose fucoidan: 50 mg/(kg·bw)/d, medium-dose fucoidan: 100 mg/(kg·bw)/d, and high-dose fucoidan: 150 mg/(kg·bw)/d) to the experimental groups. Changes in the gut microbiota structure were analyzed using 16S rRNA high-throughput sequencing, alongside simultaneous measurement of serum immune indicators and levels of short-chain fatty acids (SCFAs). Results indicate that kelp fucoidan significantly improved the thymus and spleen indices in immunosuppressed mice (p < 0.05) and elevated serum levels of IgM, IgG and IL-4. Post-kelp fucoidan intervention, there was significant alteration in microbiota ecosystem restructuring, such as proliferation in probiotics, including Lactobacillus and Bifidobacterium, while opportunistic pathogens, such as Enterococcus and Escherichia coli, decreased. Furthermore, the levels of acetic, propionic, and butyric acids in the colonic contents of the kelp fucoidan group significantly improved (p < 0.01). This research demonstrates that kelp fucoidan enhances immune function in immunosuppressed mice by modulating gut microbiota balance and promoting short-chain fatty acid production. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

26 pages, 2591 KiB  
Systematic Review
Effect of Polyphenol-Rich Interventions on Gut Microbiota and Inflammatory or Oxidative Stress Markers in Adults Who Are Overweight or Obese: A Systematic Review and Meta-Analysis
by Álvaro González-Gómez, Martina Cantone, Ana María García-Muñoz, Desirée Victoria-Montesinos, Carmen Lucas-Abellán, Ana Serrano-Martínez, Alejandro M. Muñoz-Morillas and Juana M. Morillas-Ruiz
Nutrients 2025, 17(15), 2468; https://doi.org/10.3390/nu17152468 - 29 Jul 2025
Viewed by 412
Abstract
Background/Objectives: Being overweight and obesity are major public health concerns that demand effective nutritional strategies for weight and body composition management. Beyond excess weight, these conditions are closely linked to chronic inflammation, oxidative stress, and gut dysbiosis, all of which contribute to cardiometabolic [...] Read more.
Background/Objectives: Being overweight and obesity are major public health concerns that demand effective nutritional strategies for weight and body composition management. Beyond excess weight, these conditions are closely linked to chronic inflammation, oxidative stress, and gut dysbiosis, all of which contribute to cardiometabolic risk. Polyphenols—bioactive compounds in plant-based foods—may support improvements in body composition and metabolic health by modulating gut microbiota, reducing oxidative stress, and suppressing inflammation. This systematic review and meta-analysis aimed to evaluate the effects of polyphenol-rich interventions on gut microbiota composition, in combination with either oxidative stress or inflammatory biomarkers, and their potential impact on body composition in overweight or obese adults. Methods: A systematic search of PubMed, Scopus, Cochrane, and Web of Science was conducted through May 2025. Eligible randomized controlled trials included adults (BMI ≥ 25 kg/m2) receiving polyphenol-rich interventions, with reported outcomes on gut microbiota and at least one inflammatory or oxidative stress biomarker. Standardized mean differences (SMDs) were pooled using a random-effects model. Results: Thirteen trials (n = 670) met inclusion criteria. Polyphenol supplementation significantly reduced circulating lipopolysaccharides (LPSs; SMD = −0.56; 95% CI: −1.10 to −0.02; p < 0.04), indicating improved gut barrier function. Effects on cytokines (IL-6, TNF-α) and CRP were inconsistent. Catalase activity improved significantly (SMD = 0.79; 95% CI: 0.30 to 1.28; p < 0.001), indicating enhanced antioxidant defense. Gut microbiota analysis revealed increased butyrate (SMD = 0.57; 95% CI: 0.18 to 0.96; p < 0.001) and acetate (SMD = 0.42; 95% CI: 0.09 to 0.75; p < 0.01), supporting prebiotic effects. However, no significant changes were observed in BMI or body weight. Conclusions: Polyphenol supplementation in overweight or obese adults may reduce metabolic endotoxemia, boost antioxidant activity, and promote SCFAs production. Effects on inflammation and body weight remain unclear. Further long-term trials are needed. Full article
(This article belongs to the Special Issue Dietary Assessments for Weight Management)
Show Figures

Graphical abstract

15 pages, 2439 KiB  
Article
Environmental Microbiome Characteristics and Disinfection Strategy Optimization in Intensive Dairy Farms: Bactericidal Efficacy of Glutaraldehyde-Based Combination Disinfectants and Regulation of Gut Microbiota
by Tianchen Wang, Tao He, Mengqi Chai, Liyan Zhang, Xiangshu Han and Song Jiang
Vet. Sci. 2025, 12(8), 707; https://doi.org/10.3390/vetsci12080707 - 28 Jul 2025
Viewed by 170
Abstract
As the primary biological risk threatening safe dairy production, bovine mastitis control highly relies on environmental disinfection measures. However, the mechanisms by which chemical disinfectants influence host–environment microbial interactions remain unclear. This study systematically investigated the disinfection efficacy and regulatory effects on microbial [...] Read more.
As the primary biological risk threatening safe dairy production, bovine mastitis control highly relies on environmental disinfection measures. However, the mechanisms by which chemical disinfectants influence host–environment microbial interactions remain unclear. This study systematically investigated the disinfection efficacy and regulatory effects on microbial community composition and diversity of glutaraldehyde-benzalkonium chloride (BAC) and glutaraldehyde-didecyl dimethyl ammonium bromide (DAB) at recommended concentrations (2–5%), using 80 environmental samples from intensive dairy farms in Xinjiang, China. Combining 16S rDNA sequencing with culturomics, the results showed that BAC achieved a disinfection rate of 99.33%, higher than DAB’s 97.87%, and reduced the environment–gut microbiota similarity index by 23.7% via a cationic bacteriostatic film effect. Microbiome analysis revealed that BAC selectively suppressed Fusobacteriota abundance (15.67% reduction) and promoted Bifidobacterium proliferation (7.42% increase), enhancing intestinal mucosal barrier function through butyrate metabolism. In contrast, DAB induced Actinobacteria enrichment in the environment (44.71%), inhibiting pathogen colonization via bioantagonism. BAC’s long-acting bacteriostatic properties significantly reduced disinfection costs and mastitis incidence. This study first elucidated the mechanism by which quaternary ammonium compound (QAC) disinfectants regulate host health through “environment-gut” microbial interactions, providing a critical theoretical basis for developing precision disinfection protocols integrating “cost reduction-efficiency enhancement-risk mitigation.” Full article
Show Figures

Figure 1

30 pages, 10270 KiB  
Article
Fuelling the Fight from the Gut: Short-Chain Fatty Acids and Dexamethasone Synergise to Suppress Gastric Cancer Cells
by Radwa A. Eladwy, Mohamed Fares, Dennis Chang, Muhammad A. Alsherbiny, Chun-Guang Li and Deep Jyoti Bhuyan
Cancers 2025, 17(15), 2486; https://doi.org/10.3390/cancers17152486 - 28 Jul 2025
Viewed by 457
Abstract
Background: Short-chain fatty acids (SCFAs), microbial metabolites also known as postbiotics, are essential for maintaining gut health. However, their antiproliferative effects on gastric cancer cells and potential interactions with conventional therapies remain underexplored. This study aimed to investigate the effects of three SCFA [...] Read more.
Background: Short-chain fatty acids (SCFAs), microbial metabolites also known as postbiotics, are essential for maintaining gut health. However, their antiproliferative effects on gastric cancer cells and potential interactions with conventional therapies remain underexplored. This study aimed to investigate the effects of three SCFA salts—magnesium acetate (A), sodium propionate (P), and sodium butyrate (B)—individually and in combination (APB), as well as in combination with dexamethasone (Dex), on AGS gastric adenocarcinoma cells. Methods: AGS cells were treated with PB, AP, AB, APB, Dex, and APB+Dex. Cell viability was assessed to determine antiproliferative effects, and the IC50 of APB was calculated. Flow cytometry was used to evaluate apoptosis and necrosis. Reactive oxygen species (ROS) levels were measured to assess oxidative stress. Proteomic analysis via LC-MS was performed to identify differential protein expression and related pathways impacted by the treatments. Results: SCFA salts showed significant antiproliferative effects on AGS cells, with APB exhibiting a combined IC50 of 568.33 μg/mL. The APB+Dex combination demonstrated strong synergy (combination index = 0.76) and significantly enhanced growth inhibition. Both APB and APB+Dex induced substantial apoptosis (p < 0.0001) with minimal necrosis. APB alone significantly increased ROS levels (p < 0.0001), while Dex moderated this effect in the combination group APB+Dex (p < 0.0001). Notably, the APB+Dex treatment synergistically targeted multiple tumour-promoting mechanisms, including the impairment of redox homeostasis through SLC7A11 suppression, and inhibition of the haemostasis, platelet activation network and NF-κB signalling pathway via downregulation of NFKB1 (−1.34), exemplified by increased expression of SERPINE1 (1.99) within the “Response to elevated platelet cytosolic Ca2+” pathway. Conclusions: These findings showed a multifaceted anticancer mechanism by APB+Dex that may collectively impair cell proliferation, survival signalling, immune modulation, and tumour microenvironment support in gastric cancer. Full article
(This article belongs to the Special Issue Gut Microbiome, Diet and Cancer Risk)
Show Figures

Figure 1

20 pages, 4727 KiB  
Article
Developing a Novel Fermented Milk with Anti-Aging and Anti-Oxidative Properties Using Lactobacillus kefiranofaciens HL1 and Lactococcus lactis APL015
by Sheng-Yao Wang, Wei-Chen Yen, Yen-Po Chen, Jia-Shian Shiu and Ming-Ju Chen
Nutrients 2025, 17(15), 2447; https://doi.org/10.3390/nu17152447 - 27 Jul 2025
Viewed by 564
Abstract
Background/Objectives: Lactobacillus kefiranofaciens HL1, isolated from kefir, exhibits antioxidant and anti-aging activities, defined here as improved cognitive function and reductions in oxidative stress and inflammatory markers. However, its poor milk viability limits application. This study developed a novel fermented milk by co-culturing [...] Read more.
Background/Objectives: Lactobacillus kefiranofaciens HL1, isolated from kefir, exhibits antioxidant and anti-aging activities, defined here as improved cognitive function and reductions in oxidative stress and inflammatory markers. However, its poor milk viability limits application. This study developed a novel fermented milk by co-culturing HL1 with Lactococcus lactis subsp. cremoris APL015 (APL15) to enhance fermentation and health benefits. Methods: HL1 and APL15 were co-cultured to produce fermented milk (FM), and fermentation performance, microbial viability, texture, and syneresis were evaluated. A D-galactose-induced aging BALB/c mouse model was used to assess cognitive function, oxidative stress, inflammation, antioxidant enzyme activity, and gut microbiota after 8 weeks of oral administration. Results: FM reached pH 4.6 within 16 h, with high viable counts (~109 CFU/mL) for both strains. HL1 viability and texture were maintained, with smooth consistency and low syneresis. In vivo, FM improved cognitive behavior (Y-maze, Morris water maze), reduced oxidative damage (MDA), lowered IL-1β and TNF-α, and enhanced brain SOD levels. FM-fed mice exhibited increased short-chain fatty acid producers, higher cecal butyrate, and reduced Clostridium perfringens. Conclusions: The co-cultured fermented milk effectively delivers HL1 and provides antioxidant, anti-inflammatory, and anti-aging effects in vivo, likely via gut–brain axis modulation. It shows promise as a functional food for healthy aging. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

19 pages, 4491 KiB  
Article
Temporal Dynamics of Fecal Microbiome and Short-Chain Fatty Acids in Sows from Early Pregnancy to Weaning
by Sui Liufu, Xin Xu, Qun Lan, Bohe Chen, Kaiming Wang, Lanlin Xiao, Wenwu Chen, Wu Wen, Caihong Liu, Lei Yi, Jingwen Liu, Xianchuang Fu and Haiming Ma
Animals 2025, 15(15), 2209; https://doi.org/10.3390/ani15152209 - 27 Jul 2025
Viewed by 271
Abstract
Although age-related changes in the gut microbiome of pigs have been extensively studied, the dynamic patterns of fecal microbiota and SCFAs during the gestation-to-weaning period in sows remain poorly characterized. We aim to characterize the changes in fecal microbiota and SCFAs from pregnancy [...] Read more.
Although age-related changes in the gut microbiome of pigs have been extensively studied, the dynamic patterns of fecal microbiota and SCFAs during the gestation-to-weaning period in sows remain poorly characterized. We aim to characterize the changes in fecal microbiota and SCFAs from pregnancy to weaning, and to investigate their associations with maternal weight gain during gestation. We systematically collected 100 fecal samples at four time points (day 30 of pregnancy (T1), 1–2 days before delivery (T2), day 10 after delivery (T3), and day 21 of weaning stage (T3)), and measured the body weight of sows at T1 (132 kg ± 10.8) and T2 (205 kg ± 12.1). The primary nutrient components of the diets during the gestation and lactation periods are summarized. All fecal samples were subjected to 16S rRNA gene sequencing. We found that a high proportion of crude fiber (bran) is a key feature of the gestation diet, which may affect enterotype shifts and gut microbial composition. Sows fed a high-fiber diet showed significant enrichment of gut microbiota, including genera such as Prevotellaceae_UCG-003, Prevotellaceae_NK3B31_group, and Prevotella_9 during the gestational period (LDA score > 2). Moreover, Eubacterium_coprostanoligenes_group (average relative abundance: 5.5%) and Lachnospiraceae_NK4A136_group (average relative abundance: 2.5%) were the dominant bacteria during the lactation stage. Fecal propionate and butyrate levels were lowest in late gestation, and propionate negatively and acetate positively correlated with body weight change (p < 0.05). Additionally, certain Prevotella taxa were associated with arachidonic acid metabolism and acetate production (p < 0.05). Our study identified key microbial communities across four stages from gestation to weaning and revealed that dietary patterns can shape the sow gut microbiota. Furthermore, we observed significant correlations between SCFAs and body weight change during pregnancy. These findings provide a scientific basis and theoretical support for future strategies aimed at modulating gut microbiota and targeting SCFAs to improve maternal health and productivity throughout the gestation-to-weaning period. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

30 pages, 2595 KiB  
Review
Gut–Brain Axis in Mood Disorders: A Narrative Review of Neurobiological Insights and Probiotic Interventions
by Gilberto Uriel Rosas-Sánchez, León Jesús Germán-Ponciano, Abraham Puga-Olguín, Mario Eduardo Flores Soto, Angélica Yanet Nápoles Medina, José Luis Muñoz-Carillo, Juan Francisco Rodríguez-Landa and César Soria-Fregozo
Biomedicines 2025, 13(8), 1831; https://doi.org/10.3390/biomedicines13081831 - 26 Jul 2025
Viewed by 920
Abstract
The gut microbiota and its interaction with the nervous system through the gut–brain axis (MGB) have been the subject of growing interest in biomedical research. It has been proposed that modulation of microbiota using probiotics could offer a promising therapeutic alternative for mood [...] Read more.
The gut microbiota and its interaction with the nervous system through the gut–brain axis (MGB) have been the subject of growing interest in biomedical research. It has been proposed that modulation of microbiota using probiotics could offer a promising therapeutic alternative for mood regulation and the treatment of anxiety and depression disorders. The findings indicate that several probiotic strains, such as Lactobacillus and Bifidobacterium, have demonstrated anxiolytic and antidepressant effects in pre and clinical studies. These effects seem to be mediated by the regulation of the hypothalamic–pituitary–adrenal axis (HPA), the synthesis of neurotransmitters such as serotonin (5-HT) and Gamma-amino-butyric acid (GABA), as well as the modulation of systemic inflammation. However, the lack of standardization in dosing and strain selection, in addition to the scarcity of large-scale clinical studies, limit the applicability of these findings in clinical therapy. Additional research is required to establish standardized therapeutic protocols and better understand the role of probiotics in mental health. The aim of this narrative review is to discuss the relationship between the gut microbiota and the MGB axis in the context of anxiety and depression disorders, the underlying neurobiological mechanisms, as well as the preclinical evidence for the effect of probiotics in modulating these disorders. In this way, an exhaustive search was carried out in scientific databases including PubMed, ScienceDirect, Scopus, and Web of Science. Preclinical research evaluating the effects of different probiotic strains in animal models during chronic treatment was selected, excluding those studies that did not provide access to the full text. Full article
Show Figures

Figure 1

18 pages, 480 KiB  
Article
Effects of Creep Feeding from Birth to Suckling Period on Hanwoo Calves’ Growth Performance and Microbiota
by SoHee Lee, Young Lae Kim, Gi Hwal Son, Eui Kyung Lee, Nam Oh Kim, Chang Sik Choi, Kyung Hoon Lee, Hyeon Ji Cha, Jong-Suh Shin, Min Ji Kim and Byung Ki Park
Animals 2025, 15(15), 2169; https://doi.org/10.3390/ani15152169 - 23 Jul 2025
Viewed by 407
Abstract
This study evaluated the effects of early-life creep feeding with a high-protein, high-energy diet on growth performance, ruminal fermentation, and gut microbiota in Hanwoo calves (n = 10). Calves were assigned to control or treatment groups from birth to 6 months of age. [...] Read more.
This study evaluated the effects of early-life creep feeding with a high-protein, high-energy diet on growth performance, ruminal fermentation, and gut microbiota in Hanwoo calves (n = 10). Calves were assigned to control or treatment groups from birth to 6 months of age. No significant differences were observed in body weight, average daily gain (ADG), or feed conversion ratio (FCR), but ADG and dry matter intake (DMI) tended to be higher in the treatment group. Ruminal pH, NH3-N, and volatile fatty acid (VFA) concentrations showed no significant differences. Fecal VFA profiles exhibited numerical trends suggesting higher propionate at 3 months and lower acetate, butyrate, and total VFA at 6 months in the treatment group, potentially reflecting altered substrate availability or absorption capacity, though these mechanisms were not directly measured. Microbiota analysis indicated stable ruminal alpha diversity, with numerical increases in fecal Bacteroidetes and genera such as Fournierella and Flavonifractor in the treatment group. These results suggest that early creep feeding with high-nutrition diets can support intake and promote potential shifts in hindgut microbiota composition without compromising overall microbial stability. Further research with larger sample sizes is needed to confirm these trends and assess long-term impacts on calf health and productivity. Full article
Show Figures

Figure 1

17 pages, 1402 KiB  
Review
Rethinking Short-Chain Fatty Acids: A Closer Look at Propionate in Inflammation, Metabolism, and Mucosal Homeostasis
by Sonia Facchin, Matteo Calgaro and Edoardo V. Savarino
Cells 2025, 14(15), 1130; https://doi.org/10.3390/cells14151130 - 22 Jul 2025
Viewed by 402
Abstract
Propionate is a short-chain fatty acid (SCFA) produced by gut microbiota through the fermentation of dietary fibers. Among the SCFAs, butyrate stands out and has been extensively studied for its beneficial effects; however, propionate has received less attention despite its relevant roles in [...] Read more.
Propionate is a short-chain fatty acid (SCFA) produced by gut microbiota through the fermentation of dietary fibers. Among the SCFAs, butyrate stands out and has been extensively studied for its beneficial effects; however, propionate has received less attention despite its relevant roles in immune modulation, metabolism, and mucosal homeostasis. This narrative review focuses on propionate’s effects on metabolism, inflammation, microbiota, and gastrointestinal diseases. Propionate acts as a signalling molecule through FFAR2/FFAR3 receptors and modulates immunity, energy metabolism, and gut–brain communication. It has beneficial effects in metabolic disorders, inflammatory bowel disease (IBD), and alcohol-related liver disease (ALD). However, excessive accumulation is linked to neurotoxicity, autism spectrum disorder (ASD), and mitochondrial dysfunction. Its effects are dose-dependent and tissue-specific, with both protective and harmful potentials depending on the context. Propionate use requires a personalized approach, considering the pathological context, host microbiota composition, and appropriate dosage to avoid adverse effects. Full article
Show Figures

Graphical abstract

Back to TopTop