Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (32,042)

Search Parameters:
Keywords = growth and productivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1529 KB  
Article
Salinity Modulates Carbon Flux to Promote Squalene and PUFA Biosynthesis in the Marine Protist Thraustochytrium
by Yuetong Zhao, Xingyu Zhu, Nimra Riaz, Xiuping Liu, Jiaqian Li and Guangyi Wang
Mar. Drugs 2025, 23(9), 354; https://doi.org/10.3390/md23090354 (registering DOI) - 30 Aug 2025
Abstract
Salinity is a key environmental factor regulating lipid metabolism in marine oleaginous protists. This study examined the impact of NaCl concentration on growth, glucose utilization, and lipid biosynthesis in Thraustochytrium sp. ATCC 26185. Moderate salinity (20 g/L) enhanced biomass and glucose uptake, while [...] Read more.
Salinity is a key environmental factor regulating lipid metabolism in marine oleaginous protists. This study examined the impact of NaCl concentration on growth, glucose utilization, and lipid biosynthesis in Thraustochytrium sp. ATCC 26185. Moderate salinity (20 g/L) enhanced biomass and glucose uptake, while high salinity (45 g/L) induced osmotic stress yet significantly promoted squalene accumulation (17.27 mg/g), a 3.26-fold increase compared with 0 g/L NaCl (5.29 mg/g). Integrated transcriptomic and metabolomic analyses revealed that salinity-dependent activation of glycolysis, the TCA cycle, and the pentose phosphate pathway increased cellular ATP, NADH, and NADPH levels. Under salt stress, the mevalonate (MVA) pathway was transcriptionally upregulated, with key enzymes, including ACAT, HMGR, and IDI, showing marked induction, which supports enhanced carbon flux toward squalene biosynthesis. Despite SQS downregulation, squalene accumulation increased, likely due to elevated precursor availability and reduced flux to downstream sterol pathways. Concurrently, high salinity repressed expression of ACC, FAS-α, and FAS-β, reducing saturated fatty acid levels, while upregulation of PKSB-favored polyunsaturated fatty acid (PUFA) synthesis. These findings suggest that high-salt stress triggers transcriptional reprogramming, redirecting acetyl-CoA from fatty acid synthesis toward squalene and PUFA production. This study offers new insights into the metabolic plasticity of thraustochytrids and highlights salinity modulation as a promising strategy for enhancing high-value lipid yields in marine biotechnology. Full article
(This article belongs to the Special Issue Advances in Natural Products of Marine Thraustochytrids)
20 pages, 1766 KB  
Article
Genome-Wide Identification of the Dendrocalamus latiflorus IDD Gene Family and Its Functional Role in Bamboo Shoot Development
by Yu-Han Lin, Peng-Kai Zhu, Mei-Yin Zeng, Xin-Ru Gao, Tian-You He, Jun-Dong Rong, Yu-Shan Zheng and Ling-Yan Chen
Genes 2025, 16(9), 1036; https://doi.org/10.3390/genes16091036 (registering DOI) - 30 Aug 2025
Abstract
Background: Transcription factors (TFs) critically regulate gene expression, orchestrating plant growth, development, and stress responses. The conserved IDD (INDETERMINATE DOMAIN) TF family modulates key developmental processes, including root, stem, and seed morphogenesis. Dendrocalamus latiflorus Munro, an economically vital sympodial bamboo [...] Read more.
Background: Transcription factors (TFs) critically regulate gene expression, orchestrating plant growth, development, and stress responses. The conserved IDD (INDETERMINATE DOMAIN) TF family modulates key developmental processes, including root, stem, and seed morphogenesis. Dendrocalamus latiflorus Munro, an economically vital sympodial bamboo in southern China, suffers significant yield losses due to prevalent bamboo shoot abortion, impacting both edible shoot production and timber output. Despite the documented roles of IDD TFs in shoot apical meristem expression and lateral organ regulation, their genome-wide characterization in D. latiflorus remains unstudied. Methods: Using IDD members from Arabidopsis thaliana, Oryza sativa, and Phyllostachys edulis as references, we identified 45 DlIDD genes in D. latiflorus. Comprehensive bioinformatics analyses included gene characterization, protein physicochemical assessment, phylogenetic reconstruction, and examination of gene structures/conserved domains. Differential expression of DlIDD genes was profiled between dormant and sprouting bamboo shoots to infer putative functions. Results: The 45 DlIDD genes were phylogenetically classified into three subfamilies and unevenly distributed across 34 chromosomes. Whole-genome duplication (WGD) events drove the expansion of this gene family. Promoter analyses revealed enriched cis-regulatory elements associated with hormone response and developmental regulation. Functional analyses suggested potential roles for DlIDD genes in bamboo shoot development. Conclusions: This study provides a foundation for future research to elucidate the functions of IDD TFs and their regulatory mechanisms in bamboo shoot morphogenesis and lateral bud development within woody monocots. Full article
16 pages, 2218 KB  
Article
Transgenerational and Molecular Responses to Lanthanum Exposure in a Spodoptera littoralis-Brassica rapa System
by Cong van Doan, Sara Bonzano and Massimo E. Maffei
Int. J. Mol. Sci. 2025, 26(17), 8462; https://doi.org/10.3390/ijms26178462 (registering DOI) - 30 Aug 2025
Abstract
The widespread use of rare earth elements (REEs) in agriculture, particularly Lanthanum (La), raises concerns about their ecological impact on non-target organisms. We investigated the direct and indirect effects of La on the insect pest Spodoptera littoralis and its host plant, Brassica rapa [...] Read more.
The widespread use of rare earth elements (REEs) in agriculture, particularly Lanthanum (La), raises concerns about their ecological impact on non-target organisms. We investigated the direct and indirect effects of La on the insect pest Spodoptera littoralis and its host plant, Brassica rapa. Direct exposure to La-supplemented diets reduced larval growth, survival, and egg production. Interestingly, a transgenerational effect was observed, where larvae from La-exposed parents exhibited increased resilience, showing no performance reduction on the same diets. Indirectly, La accumulation in plants mediated a hormetic response in herbivores, increasing larval weight at low concentrations but reducing it at high concentrations, while modulating their oxidative stress and detoxification gene expression. From the plant perspective, La exposure amplified herbivory-induced calcium signalling and altered the expression of key genes related to calcium and reactive oxygen species pathways. These findings reveal the complex ecological risks of La accumulation in agroecosystems, affecting both plants and insects directly and through novel transgenerational effects. Full article
(This article belongs to the Special Issue New Insights into Plant and Insect Interactions (Second Edition))
27 pages, 30830 KB  
Article
Spatial and Functional Heterogeneity in Regional Resilience: A GIS-Based Analysis of the Chengdu–Chongqing Economic Mega Region
by Xindong He, Boqing Wu, Guoqiang Shen and Tian Fan
Land 2025, 14(9), 1769; https://doi.org/10.3390/land14091769 (registering DOI) - 30 Aug 2025
Abstract
The Chengdu–Chongqing Economic Mega Region (CCEMR), as a strategic economic hub
inWestern China, is increasingly facing challenges in balancing urban growth, agricultural
stability, and ecological conservation within its territorial spatial planning framework. This
study addresses the critical need to integrate multidimensional resilience assessment [...] Read more.
The Chengdu–Chongqing Economic Mega Region (CCEMR), as a strategic economic hub
inWestern China, is increasingly facing challenges in balancing urban growth, agricultural
stability, and ecological conservation within its territorial spatial planning framework. This
study addresses the critical need to integrate multidimensional resilience assessment into
China’s territorial spatial planning system. A framework for functional resilience assessment
was developed through integrated GIS spatial analysis, with three resilience dimensions
explicitly aligned to China’s “Three Zones and Three Lines” (referring to urban, agricultural,
and ecological space and spatial control lines) territorial planning system: urban resilience
was evaluated using KL-TOPSIS ranking, where weights were derived from combined Delphi
expert consultation and AHP; agricultural resilience was quantified through the entropy
method for weight determination and GIS raster calculation; and ecological resilience was
assessed via a Risk–Recovery–Potential (RRP) model integrating Ecosystem Risk, Recovery
Capacity (ERC), and Service Value (ESV) metrics, implemented through GIS spatial analysis
and raster operations. Significant spatial disparities emerge, with only 1.29% of CCEMR
exhibiting high resilience (concentrated in integrated urban–ecological zones like Chengdu).
Rural and mountainous areas demonstrate moderate-to-low resilience due to resource constraints,
creating misalignments between resilience patterns and current territorial spatial
zoning schemes. These findings provide scientific evidence for optimizing the delineation
of the Three Major Spatial Patterns: urbanized areas, major agricultural production zones,
and ecological functional zones. In this research, a transformative methodology is established
for translating resilience diagnostics directly into territorial spatial planning protocols. By
bridging functional resilience assessment with statutory zoning systems, this methodology
enables the following: (1) data-driven resilience construction for the Three Major Spatial
Patterns (urbanized areas, major agricultural production zones, and ecological functional
zones); (2) strategic infrastructure prioritization; and (3) enhanced cross-jurisdictional coordination
mechanisms. The framework positions spatial planning as a proactive tool for adaptive
territorial governance without requiring plan revision. Full article
17 pages, 8241 KB  
Article
Maize Peroxidase ZmPrx25 Modulates Apoplastic ROS Homeostasis and Promotes Seed Germination and Growth Under Osmotic and Drought Stresses
by Feixue Zhang, Liangjie Niu, Yingxue Li, Xiaoli Zhou, Hui Zhang, Xiaolin Wu, Hui Liu and Wei Wang
Antioxidants 2025, 14(9), 1067; https://doi.org/10.3390/antiox14091067 (registering DOI) - 30 Aug 2025
Abstract
Drought is one of the major abiotic stresses threatening maize production globally. Under drought stress, maize plants produce excessive reactive oxygen species (ROS), leading to oxidative damage. The apoplast, as the site of substance and signal exchange between plant cells and the external [...] Read more.
Drought is one of the major abiotic stresses threatening maize production globally. Under drought stress, maize plants produce excessive reactive oxygen species (ROS), leading to oxidative damage. The apoplast, as the site of substance and signal exchange between plant cells and the external environment, is an important location for the production of ROS under drought stress. Elucidating the ROS scavenging mechanisms in the apoplast is crucial for understanding plant stress responses. However, there is still a lack of research on the ROS scavenging enzymes in maize apoplast and their mediated signaling pathways. We verified that maize peroxidase Prx25 (ZmPrx25) is localized in the apoplast, it scan scavenge hydrogen peroxide (H2O2), and we systematically investigated the responses of the apoplastic ZmPrx25-ROS system to osmotic stress. ROS accumulate in the apoplast of maize mesocotyl in response to osmotic stress and transmit the external osmotic stress signals from the apoplast to the inner cellular compartments. The expression of ZmPrx25 is highly upregulated in the meristematic regions of maize seedlings under osmotic and oxidative stress. Overexpression of ZmPrx25 in Arabidopsis promoted seed germination and plant growth, significantly enhancing tolerance to osmotic and oxidative stress. This study provides a new perspective on the role of Prx25 in scavenging ROS under drought stress. Full article
(This article belongs to the Special Issue Oxidative Stress and Antioxidant Defense in Crop Plants, 2nd Edition)
Show Figures

Figure 1

36 pages, 14784 KB  
Article
Analyzing Spatiotemporal Variations and Influencing Factors in Low-Carbon Green Agriculture Development: Empirical Evidence from 30 Chinese Districts
by Zhiyuan Ma, Jun Wen, Yanqi Huang and Peifen Zhuang
Agriculture 2025, 15(17), 1853; https://doi.org/10.3390/agriculture15171853 (registering DOI) - 30 Aug 2025
Abstract
Agriculture is fundamental to food security and environmental sustainability. Advancing its holistic ecological transformation can stimulate socioeconomic progress while fostering human–nature harmony. Utilizing provincial data from mainland China (2013–2022), this research establishes a multidimensional evaluation framework across four pillars: agricultural ecology, low-carbon practices, [...] Read more.
Agriculture is fundamental to food security and environmental sustainability. Advancing its holistic ecological transformation can stimulate socioeconomic progress while fostering human–nature harmony. Utilizing provincial data from mainland China (2013–2022), this research establishes a multidimensional evaluation framework across four pillars: agricultural ecology, low-carbon practices, modernization, and productivity enhancement. Through comprehensive assessment, we quantify China’s low-carbon green agriculture (LGA) development trajectory and conduct comparative regional analysis across eastern, central, and western zones. As for methods, this study employs multiple econometric approaches: LGA was quantified using the TOPSIS entropy weight method at the first step. Moreover, multidimensional spatial–temporal patterns were characterized through ArcGIS spatial analysis, Dagum Gini coefficient decomposition, Kernel density estimation, and Markov chain techniques, revealing regional disparities, evolutionary trajectories, and state transition dynamics. Last but not least, Tobit regression modeling identified driving mechanisms, informing improvement strategies derived from empirical evidence. The key findings reveal the following: 1. From 2013 to 2022, LGA in China fluctuated significantly. However, the current growth rate is basically maintained between 0% and 10%. Meanwhile, LGA in the vast majority of provinces exceeds 0.3705, indicating that LGA in China is currently in a stable growth period. 2. After 2016, the growth momentum in the central and western regions continued. The growth rate peaked in 2020, with some provinces having a growth rate exceeding 20%. Then the growth rate slowed down, and the intra-regional differences in all regions remained stable at around 0.11. 3. Inter-regional differences are the main factor causing the differences in national LGA, with contribution rates ranging from 67.14% to 74.86%. 4. LGA has the characteristic of polarization. Some regions have developed rapidly, while others have lagged behind. At the end of our ten-year study period, LGA in Yunnan, Guizhou and Shanxi was still below 0.2430, remaining in the low-level range. 5. In the long term, the possibility of improvement in LGA in various regions of China is relatively high, but there is a possibility of maintaining the status quo or “deteriorating”. Even provinces with a high level of LGA may be downgraded, with possibilities ranging from 1.69% to 4.55%. 6. The analysis of driving factors indicates that the level of economic development has a significant positive impact on the level of urban development, while the influences of urbanization, agricultural scale operation, technological input, and industrialization level on the level of urban development show significant regional heterogeneity. In summary, during the period from 2013 to 2022, although China’s LGA showed polarization and experienced ups and downs, it generally entered a period of stable growth. Among them, the inter-regional differences were the main cause of the unbalanced development across the country, but there was also a risk of stagnation and decline. Economic development was the general driving force, while other driving factors showed significant regional heterogeneity. Finally, suggestions such as differentiated development strategies, regional cooperation and resource sharing, and coordinated policy allocation were put forward for the development of LGA. This research is conducive to providing references for future LGA, offering policy inspirations for LGA in other countries and regions, and also providing new empirical results for the academic community. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

25 pages, 811 KB  
Article
Logistics Companies’ Efficiency Analysis and Ranking by the DEA-Fuzzy AHP Approach
by Nikola Petrović, Vesna Jovanović, Dragan Marinković, Boban Nikolić and Saša Marković
Appl. Sci. 2025, 15(17), 9549; https://doi.org/10.3390/app15179549 (registering DOI) - 30 Aug 2025
Abstract
The logistics industry saw substantial growth in the second half of the 20th century, and logistics companies play a vital role in today’s modern market. Constant shifts in the market present challenges for logistics firms, which must find the optimal balance between achieved [...] Read more.
The logistics industry saw substantial growth in the second half of the 20th century, and logistics companies play a vital role in today’s modern market. Constant shifts in the market present challenges for logistics firms, which must find the optimal balance between achieved goals and utilized resources. The primary indicator that reflects this relationship is efficiency. Measuring and monitoring efficiency in logistics companies is extremely demanding because the final product is not a tangible item; instead, it often consists of transportation, storage, transloading, and forwarding services that require extensive resources. This paper focuses on measuring and improving efficiency. Numerous approaches and methods for evaluating the efficiency of logistics companies are examined. To measure and enhance efficiency, as well as rank companies based on operational efficiency, a three-phase DEA-fuzzy AHP model has been developed. This model was tested using a real-world example by analyzing the efficiency of ten logistics companies in the Republic of Serbia. The results of the analysis indicate the applicability of this model for measuring and improving the efficiency of logistics companies, as well as for their ranking. Full article
(This article belongs to the Special Issue Applications of Fuzzy Systems and Fuzzy Decision Making)
Show Figures

Figure 1

17 pages, 4337 KB  
Article
Comparison of Ray Tracing Software Performance Based on Light Intensity for Spinach Growth
by Chengyao Jiang, Kexin Zhang, Yue Ma, Yu Song, Mengyao Li, Yangxia Zheng, Tonghua Pan and Wei Lu
Agriculture 2025, 15(17), 1852; https://doi.org/10.3390/agriculture15171852 (registering DOI) - 30 Aug 2025
Abstract
With the development of modern agricultural technology, plant factories have become an important way to achieve efficient and sustainable crop production. Accurate understanding of the light received by plants is the key to improving the light energy utilization efficiency of lamps and ensuring [...] Read more.
With the development of modern agricultural technology, plant factories have become an important way to achieve efficient and sustainable crop production. Accurate understanding of the light received by plants is the key to improving the light energy utilization efficiency of lamps and ensuring the benefits of plant factories. Ray tracing technology, as one of the key technologies in plant factories, is of great significance to analyze the growing light environment of vegetables. Spinach has high nutritional value and is loved by the public and is one of the main crops grown in plant factories. In this paper, LightTools, TracePro, and Ansys Lumerical FDTD Solution, which are currently mature light environment tracking software in the field of lighting, are selected as the research objects to investigate their performance in simulating the light environment of spinach leaf surfaces under different planting arrangements and different lamp source distances. The results show as follows: Under the rectangular planting arrangement, the leaves received more light, and the plants grew faster. Different planting arrangements of plants had little effect on the simulation effect of the same kind of software, but the simulation effect of the three kinds of software under the same planting arrangement was significantly different, and the difference between the simulated value and the measured value of TracePro was the least. Further, TracePro was used to trace and simulate the leaf surface light conditions of spinach under a rectangular planting arrangement at different lighting distances, and the simulation results showed that there was no significant difference between the software simulation value and the measured value, and the simulation accuracy was the highest when the distance from the light source was 30 cm. Therefore, TracePro software can accurately simulate the light intensity of spinach leaves during the growth process and is most suitable for monitoring the change of light environment of spinach growth in plant factories. Full article
(This article belongs to the Special Issue Advanced Cultivation Technologies for Horticultural Crops Production)
Show Figures

Figure 1

15 pages, 3921 KB  
Article
Reducing the Sodium Adsorption Ratio Promotes Cotton Growth and Development by Enhancing Antioxidant Enzyme Activities and the Plant’s Potassium–Sodium Ratio Under Brackish-Water Irrigation
by Yinping Song, Yucai Xie, Chenfan Zhang, Huifeng Ning, Xianbo Zhang, Guang Yang and Hao Liu
Agronomy 2025, 15(9), 2092; https://doi.org/10.3390/agronomy15092092 (registering DOI) - 30 Aug 2025
Abstract
Reasonable development and utilization of brackish-water resources can alleviate the pressure of freshwater scarcity in dryland areas and safeguard crop growth, but there are significant differences in brackish-water ions in different regions. Thus, exploring the mechanism of brackish-water irrigation considering brackish-water ionic differences [...] Read more.
Reasonable development and utilization of brackish-water resources can alleviate the pressure of freshwater scarcity in dryland areas and safeguard crop growth, but there are significant differences in brackish-water ions in different regions. Thus, exploring the mechanism of brackish-water irrigation considering brackish-water ionic differences on the growth and development of saline and alkaline dryland crops has an important production guidance value. In this study, the ionic differences in irrigated brackish water were characterized by sodium adsorption ratio using under-membrane drip-irrigated cotton as the research object, and three levels of mineralized irrigation water were designed, which were 3 g·L−1 (T3), 5 g·L−1 (T5), and 7 g·L−1 (T7), respectively. Three different levels of sodium adsorption ratio (SAR) were set under each level of mineralization, which were 10 (mmol·L−1)1/2 (S10), 15 (mmol·L−1)1/2 (S15), and 20 (mmol·L−1)1/2 (S20). The local freshwater irrigation was used as a control treatment. The results showed that brackish-water irrigation increased soil salt accumulation and soil water content, induced oxidative damage and disruption of ionic homeostasis in the cells, and decreased leaf photosynthetic rate. Brackish-water irrigation also significantly reduced dry matter mass by 11.04–50.12%. Reduced irrigation water SAR (S10 and S15) enhanced antioxidant enzyme activities such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and reduced malondialdehyde (MDA) content by 14.29% and 9.09%, respectively, compared with high irrigation water SAR (S20). Leaf K+ uptake was increased by 5.29% and 1.57% in S10 and S15, respectively, compared with S20, while Na+ uptake was significantly suppressed. The K+/Na+ ratio increased by 45.07%, which resulted in improved leaf photosynthetic efficiency by 25.25% and 11.91%, and significantly enhanced dry matter accumulation by 24.81% and 11.20%, respectively. In addition, compared with T3S20, the T5S10 treatment reduced the irrigation water SAR. It contributed to a significant increase in SOD, POD, and CAT activities by 30.42%, 60.70%, and 99.20%, respectively, and in plant K+ content and K+/Na+ by 2.48% and 38.85%, respectively, although the irrigation water mineralization increased by 66.67%. Reducing SAR could enhance photosynthesis and dry matter accumulation through the dual regulation of “antioxidant damage + ion homeostasis” in salt-stressed cotton, laying a foundation for the realization of stable and high yields of cotton under brackish-water irrigation, and providing a new perspective for the management of brackish-water resources and the sustainable development of agriculture in Xinjiang and other arid regions. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

15 pages, 1745 KB  
Review
Zeaxanthin and Other Carotenoids: Roles in Abiotic Stress Defense with Implications for Biotic Defense
by Barbara Demmig-Adams, Amy K. Hodges, Stephanie K. Polutchko and William W. Adams
Plants 2025, 14(17), 2703; https://doi.org/10.3390/plants14172703 (registering DOI) - 30 Aug 2025
Abstract
Xanthophylls are carotenoids with diverse roles in stress protection across all taxa of life. This review highlights chloroplast-localized xanthophylls (with a focus on zeaxanthin) of plants by presenting an overview of the protective effects of xanthophylls as well as the role of carotenoids [...] Read more.
Xanthophylls are carotenoids with diverse roles in stress protection across all taxa of life. This review highlights chloroplast-localized xanthophylls (with a focus on zeaxanthin) of plants by presenting an overview of the protective effects of xanthophylls as well as the role of carotenoids as precursors of multiple plant stress hormones. It also examines the roles of xanthophylls and stress hormones in signaling cascades between the chloroplast and nuclear genes that control plant growth, development, and stress defenses. This overview addresses the biosynthetic pathways of xanthophylls and carotenoid-derived plant stress hormones, functions of xanthophylls in photoprotection of photosynthesis, carotenoids as essential human micronutrients, and roles of xanthophylls in membrane integrity. Attention is given to the involvement of zeaxanthin in both abiotic and biotic defense as well as its impact on components of the biotic defense system with contrasting targets. Examples for the multiple principal loops of signaling cascades between the chloroplast and nucleus, which are based on chloroplast redox state and modulated by xanthophylls, are summarized. This review integrates the role of chloroplast carotenoids in controlling light-use efficiency and providing photoprotection with their system-wide regulatory effects as precursors of carotenoid-derived plant stress hormones and modulators of chloroplast redox state. A better understanding of these connections is needed to guide development of plant lines with improved resilience and productivity in complex, changing, and challenging environments. Full article
Show Figures

Figure 1

20 pages, 2086 KB  
Article
Integrated Assessment of Near-Surface Ozone Impacts on Rice Yield and Sustainable Cropping Strategies in Pearl River Delta (2015–2023)
by Xiaodong Hu, Danyang Cao, Junjie Li, Wei Sun, Ziyong Guo, Ming Xu and Jia’en Zhang
Agriculture 2025, 15(17), 1851; https://doi.org/10.3390/agriculture15171851 (registering DOI) - 30 Aug 2025
Abstract
Near-surface ozone (O3) pollution has emerged as a growing threat to rice production in the Pearl River Delta (PRD), impairing photosynthesis, suppressing crop growth, and reducing yields. This study integrated long-term observational data with spatial crop distribution data and modeling approaches [...] Read more.
Near-surface ozone (O3) pollution has emerged as a growing threat to rice production in the Pearl River Delta (PRD), impairing photosynthesis, suppressing crop growth, and reducing yields. This study integrated long-term observational data with spatial crop distribution data and modeling approaches to assess O3-induced impacts on rice yields and associated economic losses across the PRD from 2015 to 2023. The results showed that annual average O3 concentrations during rice-growing periods increased from 41.3 to 66.0 μg/m3, with accumulated AOT40 values reaching 20.1 ppm·h. O3 exposure led to annual average rice yield losses of 10.8% ± 0.8%, including 9.3% for double-early rice and 12.3% for double-late rice. Absolute yield losses totaled approximately 333,000 tons per year, equivalent to the caloric needs of 2.69 million people, with economic losses exceeding CNY 844 million. Vulnerability hotspots were identified in Zhaoqing and Jiangmen, each suffering over 100,000 tons of annual losses. Scenario simulations indicated that a 20% reduction in ambient O3 could recover up to 54,700 tons annually. Future projections under RCP 2.6–8.5 suggested continued yield losses of 14,900 to 23,200 tons per year by 2050. Temporal adjustments to planting calendars may further mitigate these effects. This study highlights the urgent need for integrated mitigation strategies to enhance agricultural resilience in the face of ozone stress in industrialized delta regions. Full article
(This article belongs to the Special Issue Innovative Conservation Cropping Systems and Practices—2nd Edition)
Show Figures

Figure 1

22 pages, 1920 KB  
Review
Vaccinations and Functional Feed Supplements as Alternatives to Coccidiostats for the Control of Coccidiosis in Raising Broiler Chickens
by Maciej Rosłoń, Edward Majewski, Monika Gębska, Anna Grontkowska, Michał Motrenko, Artur Żbikowski, Monika Michalczuk and Jakub Urban
Animals 2025, 15(17), 2548; https://doi.org/10.3390/ani15172548 (registering DOI) - 30 Aug 2025
Abstract
It is estimated that global meat production will show an upward trend, with the most dynamic growth projected in the poultry sector (it is estimated that poultry meat consumption will be 2.3 times higher by 2050 than in 2010). The expected increase in [...] Read more.
It is estimated that global meat production will show an upward trend, with the most dynamic growth projected in the poultry sector (it is estimated that poultry meat consumption will be 2.3 times higher by 2050 than in 2010). The expected increase in consumption of poultry meat, mainly from intensively reared broiler chickens, is associated with an increasing prevalence of diseases, particularly those affecting the digestive system. One important parasitic disease is coccidiosis, a gastrointestinal disease caused by widespread protozoa of the genus Eimeria. The occurrence of coccidiosis in broiler chicken flocks results in a significant deterioration of production rates. Coccidiostats are most commonly used in the prevention of this disease, which are introduced in rotation into the feed ration. However, long-term use of coccidiostats is associated with the risk of parasite resistance development and the possibility of residues in animal products. Therefore, there is a need to search for safe and effective alternatives to pharmacological coccidiostatic agents. This review aims to analyze the available literature data on the efficacy of vaccines and functional feed supplements, such as plant substances, probiotics, prebiotics, and organic acids, in the prevention of coccidiosis. Full article
(This article belongs to the Section Animal Products)
Show Figures

Scheme 1

13 pages, 2228 KB  
Article
Study on Effect and Mechanism of β-Aminobutyric Acid on Mango Anthracnose Caused by Colletotrichum gloeosporioides
by Cuiping Pan, Jing Wang, Yiyue Wang, Huaiyu Yuan, Ying Liu, Ke Li, Lian Tao, Yongqing Zhu and Huajia Li
Foods 2025, 14(17), 3061; https://doi.org/10.3390/foods14173061 (registering DOI) - 30 Aug 2025
Abstract
Anthracnose is one of the most serious postharvest diseases that can manifest in mango. The mechanism and inhibitory effects of β-aminobutyric acid (BABA) on anthracnose in harvested mango fruit were investigated. The “Guifei” fruits were pretreated with different concentrations of 25, 50, [...] Read more.
Anthracnose is one of the most serious postharvest diseases that can manifest in mango. The mechanism and inhibitory effects of β-aminobutyric acid (BABA) on anthracnose in harvested mango fruit were investigated. The “Guifei” fruits were pretreated with different concentrations of 25, 50, 75, and 100 mmol/L BABA, with 0 mmol/L BABA as the control, and inoculated with Colletotrichum gloeosporioides. The results showed that 50 mmol/L BABA treatment significantly reduced the incidence of anthracnose and inhibited the growth of lesions in mango. It significantly increased the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), while reducing the O2 production rate and H2O2 content. In addition, the DPPH radical scavenging capacity was enhanced, the content of disease-resistance-related compounds, including total phenols and total flavonoids, increased, and the expression levels of defense-related genes such as PAL, GLU, CHI, and PR1 were upregulated, elevating the activity of phenylalanine ammonia-lyase (PAL) and pathogenesis-related proteins such as chitinase (CHI) and β-1,3-glucanase (GLU). In conclusion, BABA treatment significantly enhances mango fruit resistance to anthracnose via synergistically activating the antioxidant defense system, promoting the accumulation of disease-resistant compounds, and regulating defense-related gene expression. These findings provide a theoretical foundation for developing eco-friendly strategies to control postharvest diseases in mango. Full article
(This article belongs to the Special Issue Postharvest and Green Processing Technology of Vegetables and Fruits)
Show Figures

Figure 1

20 pages, 1214 KB  
Article
Characterization of Listeria monocytogenes Isolates from Pork Production in Southern Sonora, Mexico: Serotyping, Antimicrobial Resistance, Chitosan Susceptibility, and Pathogenicity in a Chicken Embryo Model
by Alejandro Miguel Figueroa-López, Michel Teresa Gutiérrez-Osuna, Norma Gabriela Rodríguez-Mora, Carlos Eduardo Aragón-López, Roberto Rodríguez-Ramírez, Alma Guadalupe Villa-Lerma and Ernesto Uriel Cantú-Soto
Foods 2025, 14(17), 3057; https://doi.org/10.3390/foods14173057 - 29 Aug 2025
Abstract
Listeria monocytogenes is often found in pork intestines and can contaminate pork production, posing a risk to consumers. This study aimed to characterize 16 L. monocytogenes isolates from fresh and packaged pork loin, identify their serotypes, and assess antibiotic resistance. To evaluate chitosan [...] Read more.
Listeria monocytogenes is often found in pork intestines and can contaminate pork production, posing a risk to consumers. This study aimed to characterize 16 L. monocytogenes isolates from fresh and packaged pork loin, identify their serotypes, and assess antibiotic resistance. To evaluate chitosan susceptibility as a potential strategy to control L. monocytogenes in the pork industry and to determine its effectiveness in a eukaryotic model to demonstrate pathogenicity. Among the 16 isolates examined, 2 were identified as 1/2a, 12 as 1/2b, 2 as 4b, and 2 could not be assigned a serotype. Variations were observed in their pathogenicity factors. Some isolates were lacking in some virulence factors. In the antibiotic assays, all isolates demonstrated resistance to at least three antibiotics, and one of them exhibited resistance to as many as ten antimicrobial agents. To propose an alternative in the food industry as a decontamination agent, a low-molecular-weight chitosan was evaluated. It was shown that chitosan inhibits the growth of L. monocytogenes in a concentration of 0.25% in 45 min, resulting in a viable alternative against this pathogen, but in this work, one isolate exhibited resistance to chitosan (isolate Lm 1.2). Regarding infection in eukaryotic models, all isolates had the capacity to infect chicken embryos, except for isolate 1.2, which exhibited attenuated pathogenicity. These findings highlight the potential public health risk L. monocytogenes poses in pork and the need for continued research to develop effective control strategies. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

20 pages, 9925 KB  
Article
Genome-Wide Identification and Characterization of Q-Type C2H2 Zinc Finger Proteins in Rapeseed (Brassica napus L.) and Their Expression Patterns Across Tissues and Under Abiotic Stress
by Yuanyuan Pu, Lijun Liu, Li Ma, Gang Yang, Wangtian Wang, Tingting Fan, Junyan Wu and Wancang Sun
Agronomy 2025, 15(9), 2085; https://doi.org/10.3390/agronomy15092085 - 29 Aug 2025
Abstract
Q-type C2H2 zinc finger protein (ZFP) transcription factors, a plant-specific subfamily of C2H2 ZFP, have been implicated in regulating abiotic stress responses, growth, and developmental processes in plants. Rapeseed (Brassica napus L.) is a crucial oil crop widely used for the production [...] Read more.
Q-type C2H2 zinc finger protein (ZFP) transcription factors, a plant-specific subfamily of C2H2 ZFP, have been implicated in regulating abiotic stress responses, growth, and developmental processes in plants. Rapeseed (Brassica napus L.) is a crucial oil crop widely used for the production of high-quality vegetable oil, animal feed, and biodiesel. Compared with studies on Q-type C2H2-ZFP genes in other plant species, systematic research has not been performed in B. napus. In this study, a comprehensive genome-wide analysis of Q-type C2H2-ZFPs in B. napus was conducted. A total of 216 Q-type C2H2-ZFP genes were identified, exhibiting extensive and uneven distribution across the 19 chromosomes. Phylogenetic analysis, based on homologs from Arabidopsis, classified these genes into eight distinct subfamilies, with each containing one to three conserved “QALGGH” motifs. Each subfamily exhibited similar motif compositions and gene structures. Evolutionary studies revealed that segmental duplication events played a crucial role in the expansion of the BnaQ-type C2H2-ZFP gene family. Expression pattern analysis in different tissues and under abiotic stress identified BnaA03g09250D, BnaC09g35160D, BnaC03g11570D, and BnaA10g25850D as candidate genes involved in the response to freezing stress. Overexpression of BnaC09g35160D provided preliminary evidence that it enhances freezing tolerance in plants. This comprehensive study of Q-type C2H2-ZFPs in B. napus will enhance our understanding of the BnaQ-type C2H2-ZFP gene family and provide valuable insights for further functional investigations of BnaC09g35160D. Full article
(This article belongs to the Special Issue Resistance-Related Gene Mining and Genetic Improvement in Crops)
Back to TopTop