Comparison of Ray Tracing Software Performance Based on Light Intensity for Spinach Growth
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.1.1. Plant Materials
2.1.2. Light Condition Instruments
2.1.3. Light Tracing Software
2.2. Test Methods
2.2.1. Arrangement of Spinach Cultivation and Determination of Leaf Illuminance
2.2.2. Simulation Process of Leaf Surface Light Environment
Establishment of Spinach Model
Establishment of the LED Lamp Model
2.3. Data Statistics and Analysis
3. Results
3.1. Data on Changes in Spinach Plant Height and Measurements of Leaf Surface Illuminance
3.2. Modeling of Leaf Surface Light Environment Under Different Spinach Cultivation Arrangements
3.3. Modeling of the Light Environment on Spinach Leaf Surfaces Under Different Light Source Distances
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zou, T.; Huang, C.; Wu, P.; Ge, L.; Xu, Y. Optimization of artificial light for spinach growth in plant factory based on orthogonal test. Plants 2020, 9, 490. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Ge, C.; Wang, X.; Xu, C.; Wang, Q. Advances and perspectives in research of spinach breeding technology in China. Jiangsu J. Agric. Sci. 2019, 35, 996–1005. (In Chinese) [Google Scholar]
- Akbari, F.; Mollaei, M.; Argani, P.; Daneshfard, B.; Derakhshan, A.R. Spinacia Oleracea: Exploring the therapeutic potential in persian medicine and modern pharmacology. Curr. Drug Discov. Technol. 2024, 21, e150224227025. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Xu, X.; Lang, Q.; Liao, S.; Li, Y. Three different fertilizers enhance spinach growth and reduce spinach Cd concentration in Cd contaminated Alkaline Soil. Horticulturae 2023, 9, 445. [Google Scholar] [CrossRef]
- Vatistas, C.; Avgoustaki, D.D.; Monedas, G.; Bartzanas, T. The effect of different light wavelengths on the germination of lettuce, cabbage, spinach and arugula seeds in a controlled environment chamber. Sci. Hortic. 2024, 331, 113118. [Google Scholar] [CrossRef]
- Semenova, N.A.; Proshkin, Y.A.; Smirnov, A.A.; Dorokhov, A.S.; Ivanitskikh, A.S.; Burynin, D.A.; Dorokhov, A.A.; Uyutova, N.I.; Chilingaryan, N.O. The influence of the spectral composition and light intensity on the morphological and biochemical parameters of spinach (Spinacia oleracea L.) in vertical farming. Horticulturae 2023, 9, 1130. [Google Scholar] [CrossRef]
- Ming, Z.; Lyu, Q.; Ming, Y.; Zeng, W.; Lyu, H.; Zhang, J. Optimization of LED light source array based on improved particle swarm algorithm. J. Appl. Opt. 2022, 43, 524. [Google Scholar] [CrossRef]
- Fang, Y.C.; Tzeng, Y.F.; Li, S.X. Multi-objective design and extended optimization for developing a miniature light emitting diode pocket-sized projection display. Opt. Rev. 2008, 15, 241–250. [Google Scholar] [CrossRef]
- Kozai, T. Plant factory in Japan-current situation and perspectives. Chron. Horticult. 2013, 53, 8–11. [Google Scholar]
- Bourget, C.M. An introduction to light-emitting diodes. Hortscience 2008, 3, 1944–1946. [Google Scholar] [CrossRef]
- Morrow, R.C. LED lighting in horticulture. Hortscience 2008, 43, 1947–1950. [Google Scholar] [CrossRef]
- Kim, K.C.; Lee, J.; Kim, H.J.; Koo, D.H. Multiobjective optimal design for interior permanent magnet synchronous motor. IEEE Trans. Magn. 2009, 45, 1780–1783. [Google Scholar] [CrossRef]
- Hwang, C.C.; Lyu, Y.; Liu, C.T.; Li, P.L. Optimal design of a spm motor using genetic algorithms and Taguchi method. IEEE Trans. Magn. 2008, 44, 4325–4328. [Google Scholar] [CrossRef]
- Silva, M.M.A.; Oliveira, A.L.B.D.; Oliveira-Filho, R.A.; Gouveia-Neto, A.S.; Camara, T.J.R.; Willadino, L.G. Effect of blue/red LED light combination on growth and morphogenesis of saccharum officinarum plantlets in vitro. SPIE 2014, 8947, 342–348. [Google Scholar]
- Zhang, S.; Ma, J.; Zou, H.; Zhang, L.; Li, S.; Wang, Y. The combination of blue and red LED light improves growth and phenolic acid contents in Salvia miltiorrhiza Bunge. Ind. Crops Prod. 2020, 158, 112959. [Google Scholar] [CrossRef]
- Mitsanis, C.; Hurst, W.; Tekinerdogan, B. A 3D functional plant modelling framework for agricultural digital twins. Comput. Electron. Agric. 2024, 218, 108733. [Google Scholar] [CrossRef]
- Onwude, D.; North, J.; Cronje, P.; Schouten, R.; Defraeye, T. Digital twins to quantify the impact of growing variability on the harvest quality of orange. Sci. Hortic. 2024, 331, 113129. [Google Scholar] [CrossRef]
- Ganapathysubramanian, B.; Sarkar, S.; Singh, A.; Singh, A.K. Digital twins for the plant sciences. Trend Plant Sci. 2025, 30, 576–577. [Google Scholar] [CrossRef]
- Teek, S.L.; Chen, S.X.; Gao, X.K. Robusttorque optimization for BLDC spindle motors. IEEE Trans. Ind. Electron. 2001, 48, 656–663. [Google Scholar]
- Moreno, I. Illumination uniformity assessment based on human vision. Opt. Lett. 2010, 35, 4030–4032. [Google Scholar] [CrossRef]
- Sun, C.C.; Moreno, I.; Lo, Y.C.; Chiu, B.C.; Chien, W.T. Collimating lamp with well color mixing of red/green/blue LEDs. Opt. Express 2012, 20, 75–84. [Google Scholar] [CrossRef]
- Liu, P.; Wang, H.; Wu, R.; Yang, Y.; Zhang, Y.; Zheng, Z.; Li, H.; Liu, X. Uniform illumination design by configuration of LEDs and optimization of LED lens for large-scale color-mixing applications. Appl. Opt. 2013, 52, 3998–4005. [Google Scholar] [CrossRef]
- Wang, H.C.; Chiang, Y.T.; Lin, C.Y.; Lu, M.Y.; Lee, M.K.; Feng, S.W.; Kuo, C.T. All-reflective RGB LED flashlight design for effective color mixing. Opt. Express 2016, 24, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Ma, Z.; Li, R.; Wei, H.; Chu, X.; Liu, H. Design method for improving illumination distribution uniformity of LED plant growth light source. In Proceedings of the 2021 18th China International Forum on Solid State Lighting & 2021 7th International Forum on Wide Bandgap Semiconductors (SSLChina: IFWS), Shenzhen, China, 6–8 December 2021; pp. 202–210. [Google Scholar]
- Wang, D.; Zou, J.; Luo, S.; Liu, W.; Li, Y.; Shi, M.; Li, Y.; Wang, Z.; Wang, Y.; Chen, Q.; et al. Study on uniformity and thermal stability of strip LED lamps in pea growing applications. Measurement 2025, 245, 116604. [Google Scholar] [CrossRef]
- Zhang, S.; Wen, S.; Ma, B.; Pang, P.; Chen, H.; Cai, M.; Fu, M.; Hou, Y.; Zou, X. High uniformity LED panel-light for plant lighting. Chin. J. Lumin. 2018, 39, 403–413. [Google Scholar] [CrossRef]
- Wen, Z.; Luo, S.; Zhu, L.; Wei, H.; Cai, S.; Li, M.; Ma, Z. Optimization and verification of the arrangement of lamp beads for LED light source for plant growth based on TracePro. J. Zhongkai Univ. Agric. Eng. 2020, 33, 44–49, (In Chinese with English Abstract). [Google Scholar]
- Pan, G.; Wu, K.; Zhou, J. Application study of TracePro in LED lighting design. J. Chizhou Univ. 2023, 37, 16–18. (In Chinese) [Google Scholar]
- Zhang, H.; Jiang, M.; Jia, D.; Shi, Y.; Zhang, L. Simulation design for teaching multimode fiber imaging features based on TracePro modeling. Intel. Comp. Appl. 2025, 7, 1–11, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Y.; Zhu, C.; Zhang, R. Simulation experiment of electromagnetic properties in metallic rectangle waveguide based on FDTD Solutions. Exp. Tech. Manag. 2020, 37, 161–165. [Google Scholar]
- Deng, Y.; Xu, X.; Su, Y.; Song, T.; Wang, L.; Fang, Z. Study on design and uniformity of LED plant tissue culture array. Jiangsu Agri. Sci. 2017, 45, 225–228. (In Chinese) [Google Scholar]
- Tang, H.; Wen, S.; Fu, M.; He, G.; Zhang, H.; Liao, S.; Kang, L. Design of LED plant lighting source based on particle swarm optimization algorithm under photons system. Chin. J. Lumi. 2019, 40, 340–348. (In Chinese) [Google Scholar]
- Psaltis, D.; Moser, C. Imaging with multimode fibers. Opt. Photonics News 2016, 27, 24–31. [Google Scholar] [CrossRef]
- Rehan, M.; Chowdhury, R.; Biswas, P.; Kang, M.S.; Varshney, S.K. Low-threshold cascaded Raman scattering and intermodal four-wave mixing in cascaded multimode fiber system. J. Light. Technol. 2024, 42, 4636–4642. [Google Scholar] [CrossRef]
- Rahmani, B.; Oguz, I.; Tegin, U.; Hsieh, J.; Psaltis, D.; Mose, C. Learning to image and compute with multimode optical fibers. Nanophotonics 2022, 11, 1071–1082. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, L.; Meng, Y.; He, T.; He, S.; Yang, Y.; Wang, L.; Tian, J.; Li, D.; Yan, P.; et al. All-fiber high-speed image detection enabled by deep learning. Nat. Commun. 2022, 13, 1433. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.N.; Yu, X.J.; Mujumdar, A.S.; Yagoub, A.A.; Chen, L.; Zhou, C.S. Visualizing the knowledge domain of pulsed light technology in the food field: A scientometrics review. Innov. Food Sci. Emerg. Technol. 2021, 74, 102823. [Google Scholar] [CrossRef]
- Tang, L.D.; Syed, A.U.; Otho, A.R.; Junejo, A.R.; Tunio, M.H.; Hao, L.; Ali, M.N.H.A.; Brohi, S.A.; Otho, S.A.; Channa, J.A. Intelligent papid asexual propagation technology-a novel aeroponics propagation approach. Agronomy 2024, 14, 2289. [Google Scholar] [CrossRef]
- Wu, S.; Liu, J.Z.; Lei, X.J.; Zhao, S.Y.; Lu, J.J.; Jiang, Y.X.; Xie, B.B.; Wang, M. Research progress on efficient pollination technology of crops. Agronomy 2022, 12, 2872. [Google Scholar] [CrossRef]
- Wan, L.; Li, H.; Li, C.S.; Wang, A.C.; Yang, Y.H.; Wang, P. Hyperspectral sensing of plant diseases: Principle and methods. Agronomy 2022, 12, 1451. [Google Scholar] [CrossRef]
- Niu, Y.X.; Han, W.T.; Zhang, H.H.; Zhang, L.Y.; Chen, H.P. Estimating maize plant height using a crop surface model constructed from UAV RGB images. Biosyst. Eng. 2024, 241, 56–67. [Google Scholar] [CrossRef]
- Sun, J.; Lu, X.Z.; Mao, H.P.; Wu, X.H.; Gao, H.Y. Quantitative determination of rice moisture based on hyperspectral imaging technology and BCC-LS-SVR algorithm. J. Food Process Eng. 2017, 40, e12446. [Google Scholar] [CrossRef]
- Lu, X.Z.; Sun, J.; Mao, H.P.; Wu, X.H.; Gao, H.Y. Quantitative determination of rice starch based on hyperspectral imaging technology. Int. J. Food Prop. 2017, 20, S1037–S1044. [Google Scholar] [CrossRef]
- Chen, X.X.; Tang, Y.L.; Duan, Q.F.; Hu, J.P. Phenotypic quantification of root spatial distribution along circumferential direction for field paddy-wheat. PLoS ONE 2023, 18, e0279353. [Google Scholar] [CrossRef] [PubMed]
- Li, M.Q.; Li, J.Y.; Mao, H.P.; Wu, Y.Y. Diagnosis and detection of phosphorus nutrition level for Solanum lycopersicum based on electrical impedance spectroscopy. Biosyst. Eng. 2016, 143, 108–118. [Google Scholar] [CrossRef]
- Yan, T.; Zhu, H.; Sun, L.; Wang, X.; Ling, P. Investigation of an experimental laser sensor-guided spray control system for greenhouse variable-rate applications. Trans. ASABE 2019, 62, 899–911. [Google Scholar] [CrossRef]
- Wang, J.Z.; Zhang, Y.; Gu, R.R. Research status and prospects on plant canopy structure measurement using visual sensors based on three-dimensional reconstruction. Agriculture 2020, 10, 462. [Google Scholar] [CrossRef]
Wavelength (μm) | Temperature (K) | Absorption Value (mm) | Extinction Coefficient (L·μmol·μm−1) |
---|---|---|---|
0.4 | 300 | 0.008 | 2.546 |
0.5 | 300 | 0.008 | 3.183 |
0.6 | 300 | 0.008 | 3.819 |
0.7 | 300 | 0.008 | 4.456 |
Wavelength (μm) | Refractive Index | Absorption Coefficient | Transmittance |
---|---|---|---|
0.5461 | 1.59 | 0.008 | 0.92 |
Treatment | 10 cm | 15 cm | 20 cm | 25 cm |
---|---|---|---|---|
T1 1 | 3.42 ± 0.18 b 2 | 4.42 ± 0.31 c | 6.45 ± 0.25 b | 7.31 ± 0.21 c |
T2 | 3.53 ± 0.29 a | 4.81 ± 0.33 a | 6.54 ± 0.29 a | 7.91 ± 0.21 a |
T3 | 3.48 ± 0.22 ab | 4.80 ± 0.39 a | 6.52 ± 0.27 a | 7.72 ± 0.24 b |
T4 | 3.45 ± 0.29 b | 4.76 ± 0.22 b | 6.43 ± 0.30 b | 7.65 ± 0.31 b |
Treatment | Measured Value | TracePro | Light Tools | Ansys Lumerical FDTD Solution |
---|---|---|---|---|
T1 | 1.71 ± 0.12 ab 1 | 1.75 ± 0.18 a | 1.65 ± 0.03 b | 1.66 ± 0.41 b |
T2 | 1.77 ± 0.23 a | 1.77 ± 0.31 a | 1.57 ± 0.30 c | 1.74 ± 0.19 b |
T3 | 1.41 ± 0.11 b | 1.43 ± 0.05 b | 1.50 ± 0.24 a | 1.43 ± 0.22 b |
T4 | 1.00 ± 0.53 bc | 0.99 ± 0.06 c | 1.29 ± 0.32 a | 1.03 ± 0.84 b |
10 cm | 20 cm | 30 cm | |
---|---|---|---|
Measured values | 3.11 ± 0.12 | 2.42 ± 0.11 | 1.81 ± 0.35 |
Simulated values | 3.07 ± 0.23 | 2.37 ± 0.27 | 1.78 ± 0.04 |
10 cm | 20 cm | 30 cm | |
---|---|---|---|
Confidence interval | −0.225, 0.145 | −0.144, 0.257 | −0.342, 0.441 |
Significance | 0.884 | 0.928 | 0.977 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Zhang, K.; Ma, Y.; Song, Y.; Li, M.; Zheng, Y.; Pan, T.; Lu, W. Comparison of Ray Tracing Software Performance Based on Light Intensity for Spinach Growth. Agriculture 2025, 15, 1852. https://doi.org/10.3390/agriculture15171852
Jiang C, Zhang K, Ma Y, Song Y, Li M, Zheng Y, Pan T, Lu W. Comparison of Ray Tracing Software Performance Based on Light Intensity for Spinach Growth. Agriculture. 2025; 15(17):1852. https://doi.org/10.3390/agriculture15171852
Chicago/Turabian StyleJiang, Chengyao, Kexin Zhang, Yue Ma, Yu Song, Mengyao Li, Yangxia Zheng, Tonghua Pan, and Wei Lu. 2025. "Comparison of Ray Tracing Software Performance Based on Light Intensity for Spinach Growth" Agriculture 15, no. 17: 1852. https://doi.org/10.3390/agriculture15171852
APA StyleJiang, C., Zhang, K., Ma, Y., Song, Y., Li, M., Zheng, Y., Pan, T., & Lu, W. (2025). Comparison of Ray Tracing Software Performance Based on Light Intensity for Spinach Growth. Agriculture, 15(17), 1852. https://doi.org/10.3390/agriculture15171852