Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (192)

Search Parameters:
Keywords = grouting experiment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4923 KB  
Article
Evolution Law and Stability Control of Energy–Plastic Zone of Surrounding Rock After Secondary Mining in Narrow Pillar Roadway in Thick Seam
by Kun Lv, Zhigang Deng, Jicheng Feng, Mingqi Jia, Xiangye Wu, Aoran Ma and Zhihai Ji
Processes 2025, 13(10), 3152; https://doi.org/10.3390/pr13103152 - 2 Oct 2025
Viewed by 343
Abstract
To address the stability control challenges of narrow coal pillar roadways along goaf-sides affected by thick coal seam secondary mining, this study investigates the 51507 track gateway in Liuyuanzi Coal Mine through theoretical analysis, numerical simulation, and field testing. The research focuses on [...] Read more.
To address the stability control challenges of narrow coal pillar roadways along goaf-sides affected by thick coal seam secondary mining, this study investigates the 51507 track gateway in Liuyuanzi Coal Mine through theoretical analysis, numerical simulation, and field testing. The research focuses on stress evolution and energy distribution characteristics during secondary mining extraction. Key findings include the following: (1) Under the superimposed influence of goaf-side abutment pressure and secondary mining front abutment pressure, roadway surrounding rock exhibits regional asymmetric characteristics in energy dissipation. (2) Within 10 m ahead of the secondary mining face, the coal pillar experiences intense energy dissipation and plastic zone penetration, leading to bearing structure failure. (3) The energy mechanism reveals that asymmetric dissipative energy distribution drives plastic zone expansion. Accordingly, an integrated control strategy combining differentiated support (bolts/cables + tension-type opposite anchor cables + hydraulic props) with coal pillar grouting modification was developed. Field implementation demonstrated effective control of surrounding rock deformation within 200 mm. This study provides theoretical foundations and technical references for roadway stability control under similar mining conditions. Full article
Show Figures

Figure 1

14 pages, 2376 KB  
Article
Experimental Study on Water Reduction of Grouting Slurry by Ultrasonic
by Ruilin Yao, Dayang Xuan, Jialin Xu, Jian Li and Chengwei Ma
Appl. Sci. 2025, 15(19), 10425; https://doi.org/10.3390/app151910425 - 25 Sep 2025
Viewed by 331
Abstract
Overburden isolated grouting injection is an efficient and green mining technology. During the filling process, fly ash or gangue powder is mainly used as grouting material, and compaction grouting is carried out in the main stratum under the key stratum, thus realizing the [...] Read more.
Overburden isolated grouting injection is an efficient and green mining technology. During the filling process, fly ash or gangue powder is mainly used as grouting material, and compaction grouting is carried out in the main stratum under the key stratum, thus realizing the control of surface subsidence and the protection of buildings (structures). In the process of grouting filling, slurry with high water-cement ratio (1:1) is needed to ensure its injectability and certain flow radius, which leads to large water demand and limited application in water-deficient mining areas. In addition, special geological structures such as faults have potential risks of slurry flowing into the working face. On the premise of not affecting the grout injectability, how to reduce the total water consumption of grout is one of the difficult problems to be solved urgently in the overburden isolated grouting injection. The experimental study on the feasibility of ultrasonic water reduction of grouting slurry is carried out in this paper, and the influence of ultrasonic cavitation on the fluidity of slurry is studied through experiments. The results show that ultrasonic waves can effectively improve the fluidity of slurry. Under the same fluidity, the water used for slurry preparation is reduced by 20% to 26%, and when the slurry with water-cement ratio of 0.8:1 is modified, its fluidity is equivalent to that of the slurry with a water-cement ratio of 1:1 in conventional engineering applications. The action time and power of the ultrasonic waves are the key factors affecting the modification effect of the slurry, and the ultrasonic power has a more significant influence on the action effect. The proposed ultrasonic cavitation water reduction modification method can effectively reduce the water used for slurry preparation, improve the efficiency, reliability and economic benefits of grouting filling, and provide important support for the application of the grouting filling method in restricted mining areas such as water-deficient mining areas. Full article
Show Figures

Figure 1

21 pages, 6275 KB  
Article
Influence of Bedding Angle on Mechanical Behavior and Grouting Reinforcement in Argillaceous Slate: Insights from Laboratory Tests and Field Experiments
by Xinfa Zeng, Chao Deng, Quan Yin, Yi Chen, Junying Rao, Yi Zhou and Wenqin Yan
Appl. Sci. 2025, 15(19), 10415; https://doi.org/10.3390/app151910415 - 25 Sep 2025
Viewed by 316
Abstract
Argillaceous slate (AS) is a typical metamorphic rock with well-developed bedding, widely distributed globally. Its bedding structure significantly impacts slope stability assessment, and the challenges associated with slope anchoring and support arising from bedding characteristics have become a focal point in the engineering [...] Read more.
Argillaceous slate (AS) is a typical metamorphic rock with well-developed bedding, widely distributed globally. Its bedding structure significantly impacts slope stability assessment, and the challenges associated with slope anchoring and support arising from bedding characteristics have become a focal point in the engineering field. In this study, with bedding dip angle as the key variable, mechanical tests such as uniaxial compression, triaxial compression, direct shear, and Brazilian splitting tests were conducted on AS. Additionally, field anchoring grouting diffusion tests on AS slopes were carried out. The aim is to investigate the basic mechanical properties of AS and the grout diffusion law under different bedding dip angles. The research results indicate that the bedding dip angle has a remarkable influence on the failure mode, stress–strain curve, and mechanical indices such as compressive strength and elastic modulus of AS specimens. The stress–strain curves in uniaxial and triaxial tests, as well as the stress-displacement curve in the Brazilian splitting test, all undergo four stages: crack closure, elastic deformation, crack propagation, and post-peak failure. As the bedding dip angle increases, the uniaxial and triaxial compressive strengths and elastic modulus first decrease and then increase, while the splitting tensile strength continuously decreases. The consistency of the bedding in AS causes the grout to diffuse in a near-circular pattern on the bedding plane centered around the borehole. Among the factors affecting the diffusion range of the grout, the bedding dip angle and grouting angle have a relatively minor impact, while the grouting pressure has a significant impact. A correct understanding and grasp of the anisotropic characteristics of AS and the anchoring grouting diffusion law are of great significance for slope stability assessment and anchoring design in AS areas. Full article
(This article belongs to the Special Issue Advances in Slope Stability and Rock Fracture Mechanisms)
Show Figures

Figure 1

24 pages, 5745 KB  
Article
Development and Application of a Distributed and Parallel Dynamic Grouting Monitoring System Based on an Electrical Resistivity Tomography Method
by Hu Zeng, Qianli Zhang, Jie Liu, Cui Du and Yilin Li
Appl. Sci. 2025, 15(19), 10375; https://doi.org/10.3390/app151910375 - 24 Sep 2025
Viewed by 263
Abstract
To address the technical challenges in dynamic monitoring of grout diffusion patterns under complex geological conditions, in this study, a distributed parallel grouting monitoring system based on electrical resistivity tomography was developed. The system achieves three-dimensional visualization of grout propagation through hardware architecture [...] Read more.
To address the technical challenges in dynamic monitoring of grout diffusion patterns under complex geological conditions, in this study, a distributed parallel grouting monitoring system based on electrical resistivity tomography was developed. The system achieves three-dimensional visualization of grout propagation through hardware architecture innovation and the integration of inversion algorithms. At the hardware level, a cascadable distributed data acquisition terminal was designed, employing a dynamic optimization strategy for electrode combinations. This breakthrough overcomes traditional serial acquisition limitations. Algorithmically, a Bayesian estimation-based geological unit merging inversion model was proposed; it dynamically calculates merging thresholds through the noise posterior probability, achieving an improvement of more than 30% in the inversion boundary resolution compared with traditional least squares methods. Numerical simulations and physical experiments demonstrated that dipole arrays with 0.5 m electrode spacing exhibit optimal sensitivity to variations in grout resistivity, accurately capturing electrical response characteristics during diffusion. In practical roadbed grouting applications, the system yielded a grout diffusion radius showing only a 0.3 m deviation from the core sampling verification results, with three-dimensional imaging clearly depicting the diffusion morphology. This system provides reliable technical support for the precise control and quality assessment of underground engineering grouting processes. Full article
Show Figures

Figure 1

15 pages, 4076 KB  
Article
Design of a Concrete Shear Device and Investigation of the Shear Performance of New-to-Old Concrete Interfaces
by Jianglei Tian, Ruyu Li, Tonghao Wu, Min Zhang, Yangyang Xia and Jizhi Huang
Materials 2025, 18(17), 4164; https://doi.org/10.3390/ma18174164 - 5 Sep 2025
Viewed by 869
Abstract
Shear strength, which indicates the interfacial bond performance between new and old concrete, is critical in the field of structural reinforcement and rehabilitation. However, the absence of standardized testing equipment has hindered the accurate quantification of this parameter. To address this gap, a [...] Read more.
Shear strength, which indicates the interfacial bond performance between new and old concrete, is critical in the field of structural reinforcement and rehabilitation. However, the absence of standardized testing equipment has hindered the accurate quantification of this parameter. To address this gap, a dedicated shear-loading apparatus was designed in this study, and finite element modeling was conducted to simulate the shear performance of concrete with different interface roughness. The results show that failure consistently occurs at the interface and that roughness has significant influence on shear capacity. In order to reveal the relationship between shear strength and surface roughness, shear experiments were conducted on new–old concrete using the device we designed. The surface of old concrete was treated by water-jetting, electric hammering, grooving, or grout seal strip to create different profiles, the roughness was quantified by 3D scanning and Fourier transform analysis, and fresh concrete was then cast atop the processed surfaces to form composite specimens. The results show that the correlation between shear strength (τ) and Fourier transform roughness (FTR) can be described with the equation τ (MPa) = 0.546FTR2 + 1.832FTR − 0.447. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 5547 KB  
Article
Study of Performance and Engineering Application of D-RJP Jet Grouting Technology in Anchorage Foundation Reinforcement for Deep Suspension Bridge Excavations
by Xiaoliang Zhu, Wenqing Zhao, Sheng Fang, Junchen Zhao, Guoliang Dai, Zhiwei Chen and Wenbo Zhu
Appl. Sci. 2025, 15(16), 8985; https://doi.org/10.3390/app15168985 - 14 Aug 2025
Viewed by 683
Abstract
To address the critical challenge of ensuring bottom water-inrush stability during the excavation of ultra-deep foundation pits for riverside suspension-bridge anchorages under complex geological conditions involving high-pressure confined groundwater, we investigate the application of D-RJP high-pressure rotary jet grouting pile technology for ground [...] Read more.
To address the critical challenge of ensuring bottom water-inrush stability during the excavation of ultra-deep foundation pits for riverside suspension-bridge anchorages under complex geological conditions involving high-pressure confined groundwater, we investigate the application of D-RJP high-pressure rotary jet grouting pile technology for ground improvement. Its effectiveness is systematically validated through a case study of the South Anchorage Foundation Pit for the North Channel Bridge of the Zhangjinggao Yangtze River Bridge. The D-RJP method led to the successful construction of a composite foundation within the soft soil that satisfies the permeability coefficient, interface friction coefficient, bearing capacity, and shear strength requirements, significantly improving the geotechnical performance of the anchorage foundation. A series of field experiments were conducted to optimize the critical construction parameters, including the lifting speed, water–cement ratio, and stroke spacing. Core sampling and laboratory testing revealed the grout columns to have good structural integrity. The unconfined compressive strength of the high-pressure jet grout columns reached 5.45 MPa in silty clay layers and 8.21 MPa in silty sand layers. The average permeability coefficient ranged from 1.67 × 10−7 to 2.52 × 10−7 cm/s. The average density of the columns was 1.66 g/cm3 in the silty clay layer and 2.08 g/cm3 in the silty sand layer. The cement content in the return slurry varied between 18% and 27%, with no significant soil squeezing effect observed. The foundation interface friction coefficient ranged from 0.44 to 0.52. After excavation, the composite foundation formed by D-RJP columns was subjected to static load and direct shear testing. The results showed a characteristic bearing capacity value of 1200 kPa, the internal friction angle exceeded 24.23°, and the cohesion exceeded 180 kPa. This study successfully verifies the feasibility of applying D-RJP technology to construct high-performance artificial composite foundations in complex strata characterized by deep soft soils and high-pressure confined groundwater, providing valuable technical references and practical insights for similar ultra-deep foundation pit projects involving suspension bridge anchorages. Full article
Show Figures

Figure 1

23 pages, 9501 KB  
Article
Experimental Verification of Blocking a Water-Bearing Zone Using CO2 Reactive Grout for Methane Hydrate Development
by Rongchang Zhang, Takatoshi Ito, Shungo Abe and Takashi Uchiumi
Energies 2025, 18(16), 4324; https://doi.org/10.3390/en18164324 - 14 Aug 2025
Viewed by 359
Abstract
Tests during methane hydrate (MH) production in Japan have shown that excessive water production is a primary challenge in MH development. It can lead to sand production, inhibit effective reservoir depressurization, and hinder gas production. This study investigated the ability of a reactive [...] Read more.
Tests during methane hydrate (MH) production in Japan have shown that excessive water production is a primary challenge in MH development. It can lead to sand production, inhibit effective reservoir depressurization, and hinder gas production. This study investigated the ability of a reactive grout, produced by the in situ reaction of CO2 with sodium silicate (SS), to inhibit water generation from unconsolidated sand layers by forming a water-blocking gel barrier. The performance of this grout was evaluated through laboratory experiments using silica sand as a porous medium. Under controlled conditions, diluted SS and CO2 were sequentially injected. The injection and gelation processes were monitored in real time using CT scanning, and SEM was employed to analyze the microstructure of the reaction products. The results indicated that SS exhibited piston-like flow, with elevated concentrations increasing viscosity and promoting more uniform injection. CO2 injection resulted in successful in situ gel formation. A homogeneous gel distribution decreased permeability by ~98% when the SS concentration was 25 wt%. However, at 50 wt%, rapid localized gelation caused preferential flow paths and reduced sealing efficiency. These findings highlight the potential of CO2 reactive grouting for water management in MH exploitation and the importance of optimizing injection parameters. Full article
Show Figures

Figure 1

16 pages, 5347 KB  
Article
Mitigating Shrinkage in Superplasticizer-Free Natural Hydraulic Lime Grouts for Historic Masonry Conservation: Effects of Composition, Curing, and Expansion Agents
by Yang Wu and Shibing Dai
Materials 2025, 18(16), 3791; https://doi.org/10.3390/ma18163791 - 13 Aug 2025
Viewed by 564
Abstract
Cracking is the most prevalent deterioration issue in historic masonry, and grouting represents one of the most effective intervention techniques. Superplasticizer-free Natural Hydraulic Lime (NHL) grout is recommended for heritage conservation due to its simple composition and compatibility with historic masonry in terms [...] Read more.
Cracking is the most prevalent deterioration issue in historic masonry, and grouting represents one of the most effective intervention techniques. Superplasticizer-free Natural Hydraulic Lime (NHL) grout is recommended for heritage conservation due to its simple composition and compatibility with historic masonry in terms of strength, porosity, and other properties. However, grout shrinkage is frequently observed in practice, often leading to suboptimal reinforcement outcomes. This study focuses on the shrinkage characteristics of NHL grouts. Three sets of experiments were designed to investigate the influence: grout composition, expansive agents, and substrate properties. Using Taguchi’s method, an optimized combination of water, binder, and aggregate was identified. Shrinkage measurements after curing for 28 days demonstrated that calcium oxide (CaO)-based expansive agents was the best choice to compensate for NHL grout shrinkage. In addition, grouting simulation experiments evaluated suitable formulations for common masonry substrates and clarified the significant impact of substrate water absorption on the degree of shrinkage grout. For substrates with a capillary water absorption coefficient greater than 25 kg/m2 h1/2, the use of expansive agents should be strictly controlled. The findings can provide valuable insights for optimizing the grouting reinforcement of historic masonry structures and offer direct material design strategies for practical engineering applications. Full article
(This article belongs to the Special Issue Mortar Materials in Building Conservation)
Show Figures

Figure 1

22 pages, 15264 KB  
Article
Experimental Study on Grouting Seepage Characteristics in Rough Single Microfissure Under Triaxial Stress States
by Minghao Yang, Shuai Zhang, Mingbin Wang, Junling Qin, Wenhan Fan and Yue Wu
Materials 2025, 18(16), 3746; https://doi.org/10.3390/ma18163746 - 11 Aug 2025
Viewed by 450
Abstract
The increasing depth of coal mine construction has led to complex geological conditions involving high ground stress and elevated groundwater levels, presenting new challenges for water-sealing technologies in rock microfissure grouting. This study investigates ultrafine cement grouting in microfissures through systematic analysis of [...] Read more.
The increasing depth of coal mine construction has led to complex geological conditions involving high ground stress and elevated groundwater levels, presenting new challenges for water-sealing technologies in rock microfissure grouting. This study investigates ultrafine cement grouting in microfissures through systematic analysis of slurry properties and grouting simulations. Through systematic analysis of ultrafine cement grout performance across water–cement (W/C) ratios, this study establishes optimal injectable mix proportions. Through dedicated molds, sandstone-like microfissures with 0.2 mm apertures and controlled roughness (JRC = 0–2, 4–6, 10–12) were fabricated, and instrumented with fiber Bragg grating (FBG) sensors for real-time strain monitoring. Triaxial stress-permeation experiments under 6 and 7 MPa confining pressures quantify the coupled effects of fissure roughness, grouting pressure, and confining stress on volumetric flow rate and fissure deformation. Key findings include: (1) Slurry viscosity decreased monotonically with higher W/C ratios, while bleeding rate exhibited a proportional increase. At a W/C ratio = 1.6, the 2 h bleeding rate reached 7.8%, categorizing the slurry as unstable. (2) Experimental results demonstrate that increased surface roughness significantly enhances particle deposition–aggregation phenomena at grouting inlets, thereby reducing the success rate of grouting simulations. (3) The volumetric flow rate of ultrafine cement grout decreases with elevated roughness but increases proportionally with applied grouting pressure. (4) Under identical grouting pressure conditions, the relative variation in strain values among measurement points becomes more pronounced with increasing roughness of the specimen’s microfissures. This research resolves critical challenges in material selection, injectability, and seepage–deformation mechanisms for microfissure grouting, establishing that the W/C ratio governs grout performance while surface roughness dictates grouting efficacy. These findings provide theoretical guidance for water-blocking grouting engineering in microfissures. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

29 pages, 7048 KB  
Article
Research on Synergistic Control Technology for Composite Roofs in Mining Roadways
by Lei Wang, Gang Liu, Dali Lin, Yue Song and Yongtao Zhu
Processes 2025, 13(8), 2342; https://doi.org/10.3390/pr13082342 - 23 Jul 2025
Viewed by 339
Abstract
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of [...] Read more.
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of the composite roof and developed a synergistic control system, validated through industrial application. Key findings indicate significant differences in mechanical behavior and failure mechanisms between individual rock specimens and composite rock masses. A theoretical “elastic-plastic-fractured” zoning model for the composite roof was established based on the theory of surrounding rock deterioration, elucidating the mechanical mechanism where the cohesive strength of hard rock governs the load-bearing capacity of the outer shell, while the cohesive strength of soft rock controls plastic flow. The influence of in situ stress and support resistance on the evolution of the surrounding rock zone radii was quantitatively determined. The FLAC3D strain-softening model accurately simulated the post-peak behavior of the surrounding rock. Analysis demonstrated specific inherent patterns in the magnitude, ratio, and orientation of principal stresses within the composite roof under mining influence. A high differential stress zone (σ1/σ3 = 6–7) formed within 20 m of the working face, accompanied by a deflection of the maximum principal stress direction by 53, triggering the expansion of a butterfly-shaped plastic zone. Based on these insights, we proposed and implemented a synergistic control system integrating high-pressure grouting, pre-stressed cables, and energy-absorbing bolts. Field tests demonstrated significant improvements: roof-to-floor convergence reduced by 48.4%, rib-to-rib convergence decreased by 39.3%, microseismic events declined by 61%, and the self-stabilization period of the surrounding rock shortened by 11%. Consequently, this research establishes a holistic “theoretical modeling-evolution diagnosis-synergistic control” solution chain, providing a validated theoretical foundation and engineering paradigm for composite roof support design. Full article
Show Figures

Figure 1

21 pages, 5153 KB  
Article
Macro- and Micro-Analysis of Factors Influencing the Performance of Sustained-Release Foamed Cement Materials
by Yijun Chen, Shengyu Wang, Yu Zhao, Pan Guo, Lei Zhang, Yingchun Cai, Jiandong Wei and Heng Liu
Materials 2025, 18(14), 3330; https://doi.org/10.3390/ma18143330 - 15 Jul 2025
Viewed by 482
Abstract
This paper addresses the issues of insufficient expansion force, low early strength (1-day compressive strength < 1.5 MPa), and poor toughness (flexural strength < 0.8 MPa) in traditional chemical foamed cement used for road grouting repair. By combining single-factor gradient experiments with microscopic [...] Read more.
This paper addresses the issues of insufficient expansion force, low early strength (1-day compressive strength < 1.5 MPa), and poor toughness (flexural strength < 0.8 MPa) in traditional chemical foamed cement used for road grouting repair. By combining single-factor gradient experiments with microscopic mechanism analysis, the study systematically investigates the performance modulation mechanisms of controlled-release foamed cement using additives such as heavy calcium powder (0–20%), calcium chloride (0.2–1.2%), latex powder (0.2–1.2%), and polypropylene fiber (0.2–0.8%). The study innovatively employs a titanium silicate coupling agent coating technique (with the coating agent amounting to 25% of the catalyst’s mass) to delay foaming by 40 s. Scanning electron microscopy (SEM) and pore structure analysis reveal the microscopic essence of material performance optimization. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

32 pages, 5792 KB  
Article
Special Cement-Based Grouting Material for Subway Structure Repair During Operation Performance Sensitivity Analysis
by Wei Song, Xiaokai Niu, Zhitian Xie, He Wang, Jie Su and Chentao Xu
Buildings 2025, 15(14), 2396; https://doi.org/10.3390/buildings15142396 - 8 Jul 2025
Viewed by 352
Abstract
This study uses ordinary Portland–sulfate–silicate composite cement as the matrix and investigates the effects of water–cement ratio, HPMC dosage, and PCS dosage on the performance of specialized grouting materials for subway structure repair during operation through single-factor experiments and orthogonal experiments. Multifactorial variance [...] Read more.
This study uses ordinary Portland–sulfate–silicate composite cement as the matrix and investigates the effects of water–cement ratio, HPMC dosage, and PCS dosage on the performance of specialized grouting materials for subway structure repair during operation through single-factor experiments and orthogonal experiments. Multifactorial variance analysis was employed to quantitatively evaluate the sensitivity of each factor and their interactions to slurry flowability, setting time, anti-dispersibility, and compressive strength. The results show that the water–cement ratio is the most critical factor affecting the performance of the grouting material, with extremely significant impacts on all performance indicators; HPMC dosage significantly affects flowability, setting time, and anti-dispersibility; PCS dosage primarily influences 2 h compressive strength; the interaction between water–cement ratio and HPMC dosage has a significant impact on anti-dispersibility. Principal component analysis revealed the trade-off relationship between flowability, setting time, and strength. The study established a sensitivity ranking for the performance of specialized grouting materials: water–cement ratio > HPMC dosage > PCS dosage > interaction, providing a theoretical basis and methodological reference for the formulation optimization of specialized grouting materials for subway structure repair during operation. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

22 pages, 11611 KB  
Article
Analysis of Structural Internal Forces and Stratum Deformation in Shaft Construction Using Vertical Shaft Sinking Machine
by Hexige Baoyin, Zhibing Xu, Long Yu, Xu Zhang, Xiaoxiao Wang and Yang Liu
Buildings 2025, 15(12), 2043; https://doi.org/10.3390/buildings15122043 - 13 Jun 2025
Viewed by 677
Abstract
The use of the vertical shaft sinking machine (VSM) for shaft construction can effectively improve construction safety and efficiency. This study focused on analyzing the internal forces and deformation characteristics of a 50.3 m deep shaft constructed by the VSM method. Findings reveal [...] Read more.
The use of the vertical shaft sinking machine (VSM) for shaft construction can effectively improve construction safety and efficiency. This study focused on analyzing the internal forces and deformation characteristics of a 50.3 m deep shaft constructed by the VSM method. Findings reveal that the external pressure of the shaft is positively correlated with the excavation depth, increasing as the depth grows. Pumping water inside the shaft disrupts the balance of the soil behind it, leading to a reduction in the external pressure of the shaft wall. During the excavation and sinking stage, the bottom connecting beam mainly endures compression. After water pumping, the coupling and restrictive effect between the bottom connecting beam and the shaft wall strengthens, significantly boosting the internal compressive stress. The stress states of the segments above and below the shaft vary: the upper segments are under pure compression, while the lower ones may experience uneven deformation due to multiple factors. Moreover, the cast-in-place piles and surrounding stratum show a “bulging” deformation pattern during sinking, greatly influenced by the shaft’s attitude deviation, whereas grouting at the shaft bottom and internal water pumping have minimal impact on the surrounding stratum. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 2112 KB  
Article
Applicability of Evapotranspiration Models and Water Consumption Characteristics Across Different Croplands
by Jing Zhang, Li Wang, Gong Cheng and Liangliang Jia
Agronomy 2025, 15(6), 1441; https://doi.org/10.3390/agronomy15061441 - 13 Jun 2025
Viewed by 797
Abstract
Estimating the actual evapotranspiration (ETc act) of cropland in arid areas, exploring the time trend, and analyzing periodic variation are the key to long-term assessment of water resource availability and regional drought. The Penman formula has a strong ability to characterize [...] Read more.
Estimating the actual evapotranspiration (ETc act) of cropland in arid areas, exploring the time trend, and analyzing periodic variation are the key to long-term assessment of water resource availability and regional drought. The Penman formula has a strong ability to characterize reference crop evapotranspiration (ETo). However, the application of this formula may be limited in the absence of a complete set of climate data. While previous studies have investigated Kc act in China, few have employed localized Kc values to systematically analyze long-term periodic fluctuations in ETc act under climate variability conditions. Therefore, this study aimed to evaluate the applicability of nine ETo estimation models in the Loess Plateau of China, calculate actual crop coefficients (Kc act) for spring maize and winter wheat, and examine the temporal trend and periodicity of ETc act for long-term (1961–2018) continuous cropping of spring maize and winter wheat in the study area. The Mann–Kendall test and continuous wavelet transform (CWT) were used to obtain the temporal trend and periodicity of ETc act. The results were as follows: (1) Priestley–Taylor (Prs–Tylr), based on radiation, and the 1985 Hargreaves–Samani (Harg), based on temperature, can be used when meteorological data are limited. It should be noted that among the models evaluated in this study, except for FAO56-PM, only the Harg equation is compatible with Kc-ETo due to established conversion factors. (2) The Kc act of spring maize at the seeding–jointing stage and the earning–filling stage was 12% and 10% lower than the value recommended by FAO, respectively. For Kc act of winter wheat, it was 65% higher, 31% lower, and 85% higher than the FAO experience values in the rejuvenation–jointing stage, heading–grouting stage, and grouting–harvest stage. (3) Winter wheat, through its ETc act cycle synchronized with precipitation and excellent water balance, can effectively alleviate regional drought. It is recommended to be included in the promotion of drought resistance policies. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

20 pages, 3967 KB  
Article
Upper Shallow Foundation Pit Engineering: Utilization and Evaluation of Portal Frame Anti-Heave Structures
by Jun He, Jinping Ou, Xiangsheng Chen, Shuya Liu, Kewen Huang and Xu Zhang
Buildings 2025, 15(11), 1943; https://doi.org/10.3390/buildings15111943 - 4 Jun 2025
Viewed by 520
Abstract
The excavation of upper shallow foundation pits may cause the uneven deformation of existing tunnels buried below a shallow depth. Improper control measures may lead to a series of diseases, such as local cracking or breakage of the tunnel lining, which threaten the [...] Read more.
The excavation of upper shallow foundation pits may cause the uneven deformation of existing tunnels buried below a shallow depth. Improper control measures may lead to a series of diseases, such as local cracking or breakage of the tunnel lining, which threaten the safety of tunnel operations. Regarding the safety of the existing tunnel affected by the construction of the foundation pit, cases of the application of portal frame anti-heave structures in upper foundation pit projects of existing tunnels in Shenzhen have been documented, and the main influencing factors have been analyzed and summarized. Taking the Qianhai Ring Water Corridor Project as an example, numerical orthogonal experiments were conducted to analyze the deformation response patterns in the depth of existing tunnels and the effectiveness of control measures in the upper shallow of foundation pit engineering. The roles of portal frame anti-heave structures are analyzed in detail using measured data. Studies indicate that the deformation of the existing tunnels mainly occurs during the top and immediately adjacent block excavation stages, and stabilizes after the uplift-resisting piles and anti-floating slabs form an effective frame structure. The portal frame anti-heave structures, combined with measures such as block excavation, jet grouting interlocking reinforcement, backfilling, and surcharge loading, have extremely strong deformation control capabilities. However, the construction costs are relatively high, leaving room for optimization. Full article
(This article belongs to the Special Issue Design, Construction and Maintenance of Underground Structures)
Show Figures

Figure 1

Back to TopTop