Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = ground-mounted photovoltaic plant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5278 KiB  
Article
In 50 Shades of Orange: Germany’s Photovoltaic Power Generation Landscape
by Reinhold Lehneis and Daniela Thrän
Energies 2024, 17(16), 3871; https://doi.org/10.3390/en17163871 - 6 Aug 2024
Cited by 6 | Viewed by 1674
Abstract
Spatiotemporally resolved data on photovoltaic (PV) power generation are very helpful to analyze the multiple impacts of this variable renewable energy on regional and local scales. In the absence of such disaggregated data for Germany, numerical simulations are needed to obtain the electricity [...] Read more.
Spatiotemporally resolved data on photovoltaic (PV) power generation are very helpful to analyze the multiple impacts of this variable renewable energy on regional and local scales. In the absence of such disaggregated data for Germany, numerical simulations are needed to obtain the electricity production from PV systems for a time period and region under study. This manuscript presents how a physical simulation model, which uses open access weather and plant data as input vectors, can be created. The developed PV model is then applied to an ensemble of approximately 1.95 million PV systems, consisting of ground-mounted and rooftop installations, in order to compute their electricity production in Germany for the year 2020. The resulting spatially aggregated time series closely matches the measured PV feed-in pattern of Germany throughout the simulated year. Such disaggregated data can be applied to investigate the German PV power generation landscape at various spatiotemporal levels, as each PV system is taken into account with its technical data and the weather conditions at its geo-location. Furthermore, the German PV power generation landscape is presented as detailed maps based on these simulation results, which can also be useful for many other scientific fields such as energy system modeling. Full article
(This article belongs to the Special Issue Advances in Solar Systems and Energy Efficiency: 2nd Edition)
Show Figures

Figure 1

14 pages, 4076 KiB  
Article
Observed Impacts of Ground-Mounted Photovoltaic Systems on the Microclimate and Soil in an Arid Area of Gansu, China
by Jia Zhang, Zaixin Li, Junyu Tao, Yadong Ge, Yuzhen Zhong, Yibo Wang and Beibei Yan
Atmosphere 2024, 15(8), 936; https://doi.org/10.3390/atmos15080936 - 5 Aug 2024
Cited by 6 | Viewed by 1716
Abstract
Ground-mounted photovoltaic (GMPV) systems are a crucial component of photovoltaic (PV) applications, and their environmental impacts during large-scale development require thorough attention. This study conducted continuous observations at a GMPV plant in an arid region, employing a three-site comparative monitoring system to assess [...] Read more.
Ground-mounted photovoltaic (GMPV) systems are a crucial component of photovoltaic (PV) applications, and their environmental impacts during large-scale development require thorough attention. This study conducted continuous observations at a GMPV plant in an arid region, employing a three-site comparative monitoring system to assess the environmental impact of both shaded and non-shaded areas within GMPV systems. The parameters measured included atmospheric temperature (AT), relative humidity (RH), soil temperature (ST), soil water content (SWC), and wind speed. The results revealed significant diurnal and seasonal variations in AT, with daytime warming and nighttime cooling ranging from 0.1 to 0.7 °C, with particularly large variations observed during high-temperature seasons. Shaded areas under the PV panels exhibited increased RH at night and decreased RH during the day, along with a cooling effect on ST, with a maximum reduction of 7 °C. SWC was higher in shaded areas during dry seasons but exhibited complex redistribution patterns during rainy seasons. Wind speed and direction were notably altered, demonstrating a corridor effect. These findings contrast with previous studies that only focused on the environmental assessment of non-shaded areas within PV systems and external areas using two-site monitoring. This study highlights the critical role of shaded areas in understanding the local environmental impacts of PV systems. This comprehensive approach offers deeper insights into how PV systems influence local meteorological and environmental conditions, suggesting that optimized design and placement of PV systems can enhance their ecological benefits and mitigate adverse environmental impacts in arid regions. Full article
(This article belongs to the Special Issue Science and Technology of Indoor and Outdoor Environment)
Show Figures

Figure 1

16 pages, 5483 KiB  
Article
A Linear Optimization for Slope Leveling of Ground-Mounted Centralized Photovoltaic Sites
by Yanli Tao, Nan Zheng, Yuanzhe Cheng, Jianfeng Zhu, Weibin Zhong, Yasong Sun, Jianyong Zhao, Baoshun Dong, Yongming Wang and Jinming Ren
Buildings 2024, 14(6), 1858; https://doi.org/10.3390/buildings14061858 - 19 Jun 2024
Cited by 1 | Viewed by 1220
Abstract
Slope leveling is essential for the successful implementation of ground-mounted centralized photovoltaic (PV) plants, but currently, there is a lack of optimization methods available. To address this issue, a linear programming approach has been proposed to optimize PV slope leveling. This method involves [...] Read more.
Slope leveling is essential for the successful implementation of ground-mounted centralized photovoltaic (PV) plants, but currently, there is a lack of optimization methods available. To address this issue, a linear programming approach has been proposed to optimize PV slope leveling. This method involves dividing the field into blocks and grids and using hyperbolic paraboloids to simulate the design surface. By programming in MATLAB, the globally optimal solution for PV slope leveling can be calculated. Engineering case studies have demonstrated that this optimization method can achieve significant cut-and-fill volume savings ranging from 58% to 78%, when compared to the traditional segmented plane method. Additionally, the effectiveness of the optimization method improves with larger site areas and more complex terrains. A parameter analysis considering slope ratio, grid size, and block size reveals that grid size has a minimal impact on cut-and-fill volume, while slope ratio and block size have a significant influence. For typical PV projects, the recommended ranges of slope ratio, grid size, and block size are 3–7%, 5–20 m, and 30–50 m, respectively, for slope leveling design. In summary, the proposed linear optimization method provides an optimal slope leveling scheme for ground-mounted centralized PV plants, with convenient operation and fast computation. Full article
(This article belongs to the Special Issue New Reinforcement Technologies Applied in Slope and Foundation)
Show Figures

Figure 1

18 pages, 2995 KiB  
Perspective
Accelerating the Low-Carbon Energy Transition in Sub-Saharan Africa through Floating Photovoltaic Solar Farms
by Tarelayefa Igedibor Ingo, Louis Gyoh, Yong Sheng, Mustafa Kemal Kaymak, Ahmet Duran Şahin and Hamid M. Pouran
Atmosphere 2024, 15(6), 653; https://doi.org/10.3390/atmos15060653 - 30 May 2024
Cited by 4 | Viewed by 1819
Abstract
Climate change has become a global issue and is predicted to impact less-developed regions, such as sub-Saharan Africa, severely. Innovative, sustainable renewable energy systems are essential to mitigate climate change’s effects and unlock the region’s potential, especially with the increasing energy demands and [...] Read more.
Climate change has become a global issue and is predicted to impact less-developed regions, such as sub-Saharan Africa, severely. Innovative, sustainable renewable energy systems are essential to mitigate climate change’s effects and unlock the region’s potential, especially with the increasing energy demands and population growth. The region relies heavily on fossil fuels, which calls for urgent action towards energy security and expansion. Hybrid floating solar photovoltaic-hydropower (FPV-HEP) technology has emerged as a cost-effective and transformative solution to accelerate the low-carbon energy transition in sub-Saharan Africa. The technology combines solar panels with existing hydropower infrastructure, ensuring energy security while reducing carbon emissions. This technology offers several benefits over conventional ground-mounted solar systems, including efficient land utilization, energy generation, and water conservation. However, its adoption remains challenging due to technical complexities and evolving regulatory frameworks. Despite these challenges, Nigerian energy professionals have preferred renewable alternatives, mainly distributed solar PV and FPV-HEP plants. This collective embrace of FPV and renewables reflects a growing understanding of their critical role in mitigating climate change through sustainable energy practices. This research aims to contribute to the existing body of knowledge and assist policymakers in making informed decisions on adopting this technology. It also stimulates further research on this topic, offering a new potential solution to the ever-increasing demand for green energy in the region to meet their sustainable development needs. Full article
(This article belongs to the Special Issue Climate Change and the Potential Impacts on Wind/Solar Power Systems)
Show Figures

Figure 1

27 pages, 44288 KiB  
Review
State of the Art of Renewable Sources Potentialities in the Middle East: A Case Study in the Kingdom of Saudi Arabia
by Gianfranco Di Lorenzo, Erika Stracqualursi, Giovanni Vescio and Rodolfo Araneo
Energies 2024, 17(8), 1816; https://doi.org/10.3390/en17081816 - 10 Apr 2024
Cited by 4 | Viewed by 2644
Abstract
The Kingdom of Saudi Arabia is experiencing a surge in electricity demand, with power generation increasing 4 times in 25 years from 1990 to 2014. Despite the abundant primary renewable energy sources, the country has overlooked them in the past in national energy [...] Read more.
The Kingdom of Saudi Arabia is experiencing a surge in electricity demand, with power generation increasing 4 times in 25 years from 1990 to 2014. Despite the abundant primary renewable energy sources, the country has overlooked them in the past in national energy policies. However, in recent years, renewable energy has become a part of the Kingdom of Saudi Arabia’s energy conservation policy due to climate changes, technological progress, economies of scale, and increased competitiveness in supply chains. The Saudi government has created the King Abdullah City for Atomic and Renewable Energy (KACARE) to develop national strategies for effectively utilizing renewable and nuclear energy. This paper reviews the current state of the art of the renewable energy technologies available on the market and evaluates the installation of renewable energy plants near Saudi Arabia’s East Coast for a new town, focusing on technical rather than economic aspects. The paper provides a wide review of the possible technical solutions to exploit the producibility of different renewable sources, considering the challenging climate conditions typical of desert areas. The analysis of a real case study shows a high availability of wind and solar irradiance that allow a net energy production of 354 and 129 GWh, respectively. In addition, the comparison between a typical ground-mounted photovoltaic (PV) system and an emerging floating PV reveals that for the same installed power, occupied area, and environmental conditions, the latter has a 4% greater performance ratio due to the cooling effect of water. Full article
(This article belongs to the Topic Sustainable Energy Technology, 2nd Edition)
Show Figures

Figure 1

11 pages, 954 KiB  
Article
Can Grasslands in Photovoltaic Parks Play a Role in Conserving Soil Arthropod Biodiversity?
by Cristina Menta, Sara Remelli, Matteo Andreoni, Fabio Gatti and Valeria Sergi
Life 2023, 13(7), 1536; https://doi.org/10.3390/life13071536 - 10 Jul 2023
Cited by 5 | Viewed by 2538
Abstract
Under the increasing global energy demand, the new European Union Biodiversity Strategy for 2030 encourages combinations of energy production systems compatible with biodiversity conservation; however, in photovoltaic parks, panels shadowing the effects on soil health and biodiversity are still unknown. This study (location: [...] Read more.
Under the increasing global energy demand, the new European Union Biodiversity Strategy for 2030 encourages combinations of energy production systems compatible with biodiversity conservation; however, in photovoltaic parks, panels shadowing the effects on soil health and biodiversity are still unknown. This study (location: Northern Italy) aimed to evaluate the effect of ground-mounted photovoltaic (GMPV) systems on soil arthropod biodiversity, considering two parks with different vegetation management: site 1—grassland mowed with tractor; site 2—grassland managed with sheep and donkeys. Three conditions were identified in each park: under photovoltaic panel (row), between the panel rows (inter-row), and around the photovoltaic plant (control). The soil pH and organic matter (SOM), soil arthropod community, biodiversity, and soil quality index (e.g., QBS-ar index) were characterised. Differences between the two GMPVs were mainly driven by the SOM content (higher values where grazing animals were present). No differences were observed in site 1, even if a high heterogeneity of results was observed for the soil biodiversity parameters under the panels. In site 2, SOM and pH, as well as arthropods biodiversity and QBS-ar, showed low values in the row. Soil fauna assemblages were also affected by ground-mounted panels, where Acarina, Collembola, Hymenoptera, and Hemiptera showed the lowest density in the row. This study suggests that ground-mounted solar panels had significant effects on below-ground soil fauna, and was more marked depending on the system management. Furthermore, the results obtained for the inter-row were similar to the control, suggesting that the area between the panel rows could be considered a good hotspot for soil biodiversity. Full article
(This article belongs to the Special Issue Ecology of Soil-Dwelling Arthropods in a Modern World)
Show Figures

Figure 1

17 pages, 5641 KiB  
Article
Deep Learning Method for Evaluating Photovoltaic Potential of Rural Land Use Types
by Zhixin Li, Chen Zhang, Zejun Yu, Hong Zhang and Haihua Jiang
Sustainability 2023, 15(14), 10798; https://doi.org/10.3390/su151410798 - 10 Jul 2023
Cited by 3 | Viewed by 2184
Abstract
Rooftop photovoltaic (PV) power generation uses building roofs to generate electricity by laying PV panels. Rural rooftops are less shaded and have a regular shape, which is favorable for laying PV panels. However, because of the relative lack of information on buildings in [...] Read more.
Rooftop photovoltaic (PV) power generation uses building roofs to generate electricity by laying PV panels. Rural rooftops are less shaded and have a regular shape, which is favorable for laying PV panels. However, because of the relative lack of information on buildings in rural areas, there are fewer methods to assess the utilization potential of PV on rural buildings, and most studies focus on urban buildings. In addition, in rural areas, concentrated ground-mounted PV plants can be built on wastelands, hillsides, and farmlands. To facilitate the overall planning and synergistic layout of rural PV utilization, we propose a new workflow to identify different types of surfaces (including building roofs, wastelands, water surfaces, etc.) by applying a deep learning approach to count the PV potential of different surfaces in rural areas. This method can be used to estimate the spatial distribution of rural PV development potential from publicly available satellite images. In this paper, 10 km2 of land in Wuhan is used as an example. The results show that the total PV potential in the study area could reach 198.02 GWh/year, including 4.69 GWh/year for BIPV, 159.91 GWh/year for FSPV, and 33.43 GWh/year for LSPV. Considering the development cost of different land types, several timespans (such as short-, medium-, and long-term) of PV development plans for rural areas can be considered. The method and results provide tools and data for the assessment of PV potential in rural areas and can be used as a reference for the development of village master plans and PV development plans. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

16 pages, 649 KiB  
Article
Bee-Friendly Native Seed Mixtures for the Greening of Solar Parks
by Maren Helen Meyer, Sandra Dullau, Pascal Scholz, Markus Andreas Meyer and Sabine Tischew
Land 2023, 12(6), 1265; https://doi.org/10.3390/land12061265 - 20 Jun 2023
Cited by 9 | Viewed by 3537
Abstract
Photovoltaics is one of the key technologies for reducing greenhouse gas emissions and achieving climate neutrality for Europe by 2050, which has led to the promotion of solar parks. These parks can span up to several hundred hectares, and grassland vegetation is usually [...] Read more.
Photovoltaics is one of the key technologies for reducing greenhouse gas emissions and achieving climate neutrality for Europe by 2050, which has led to the promotion of solar parks. These parks can span up to several hundred hectares, and grassland vegetation is usually created between and under the panels. Establishing species-rich grasslands using native seed mixtures can enhance a variety of ecosystem services, including pollination. We present an overall concept for designing native seed mixtures to promote pollinators, especially wild bees, in solar parks. It takes into account the specific site conditions, the small-scale modified conditions caused by the solar panels, and the requirement to avoid panel shading. We highlight the challenges and constraints resulting from the availability of species on the seed market. Furthermore, we provide an easy-to-use index for determining the value of native seed mixtures for wild bee enhancement and apply it as an example to several mixtures specifically designed for solar parks. The increased availability of regional seed would allow a more thorough consideration of pollinator-relevant traits when composing native seed mixtures, thereby enhancing ecosystem services associated with pollinators such as wild bees. Full article
Show Figures

Figure 1

19 pages, 2623 KiB  
Article
A Cost–Benefit Analysis for Utility-Scale Agrivoltaic Implementation in Italy
by Girolamo Di Francia and Paolo Cupo
Energies 2023, 16(7), 2991; https://doi.org/10.3390/en16072991 - 24 Mar 2023
Cited by 14 | Viewed by 4615
Abstract
Utility-scale photovoltaic plants can take up areas as wide as several tens of hectares, often occupying spaces normally used for other purposes. This “land competition” issue might become particularly relevant for agriculture since, similarly to the production of photovoltaic electricity, farming uses the [...] Read more.
Utility-scale photovoltaic plants can take up areas as wide as several tens of hectares, often occupying spaces normally used for other purposes. This “land competition” issue might become particularly relevant for agriculture since, similarly to the production of photovoltaic electricity, farming uses the sun as a primary energy source. Thus, there is increasing interest in investigating agrivoltaic plants that allow the coexistence of agricultural activity and the production of electricity from photovoltaics. Such solutions are more complex and expensive than standard ground-mounted photovoltaic plants, so it is questionable whether the economic revenues produced by the agrivoltaic choice and resulting from both the cropland activity and electricity production can compensate for the high costs involved. The problem is further complicated by the fact that both crop revenues and photoelectricity costs depend, in general, on the geographical location. In this study, a cost/benefit methodology was developed to investigate the conditions under which the installation of an agrivoltaic utility plant can be economically advantageous compared with a standard ground-mounted photovoltaic plant. The analysis relies on the evaluation of both the extra cost related to the agrivoltaic choice and the performance benefit related to the crop revenues. By fixing the capacity of PV utility plants to be installed in all Italian regions, results were validated, considering crops such as wheat, corn, soybean, potato, and sunflower that make use of wide areas. It was determined that the higher infrastructural costs of agrivoltaic plants seriously hamper their installation, even for high-revenue croplands, unless suitable supporting policies in the form of public subsidies are conceived. In this context, it would be useful to evaluate whether such financial aids conceived to support agrivoltaic implementation in productive agricultural areas could be better used to support agrivoltaic installations in croplands at risk of abandonment or even already abandoned croplands, recovering otherwise unproductive agricultural lands. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

18 pages, 4589 KiB  
Article
FSPV-Grid System for an Industrial Subsection with PV Price Sensitivity Analysis
by Tanu Rizvi, Satya Prakash Dubey, Nagendra Tripathi, Gautam Srivastava, Satya Prakash Makhija and Md. Khaja Mohiddin
Sustainability 2023, 15(3), 2495; https://doi.org/10.3390/su15032495 - 30 Jan 2023
Cited by 9 | Viewed by 2192
Abstract
Renewable energy sources, particularly solar photovoltaic generation, now dominate generation options. Solar generation advancements have resulted in floating solar photovoltaics, also known as FSPV systems. FSPV systems are one of the fastest growing technologies today, providing a viable replacement for ground-mounted PV systems [...] Read more.
Renewable energy sources, particularly solar photovoltaic generation, now dominate generation options. Solar generation advancements have resulted in floating solar photovoltaics, also known as FSPV systems. FSPV systems are one of the fastest growing technologies today, providing a viable replacement for ground-mounted PV systems due to their flexibility and low land-space requirement. This paper presents a systematic approach for implementing a proposed FSPV–grid integrated system in Bhilai Steel Plant’s (BSP) subsections. BSP is a steel manufacturing plant located in Bhilai, Chhattisgarh, and the FSPV system has the potential to generate sufficient energy by accessing two of its reservoirs. The system was simulated in HOMER Pro software, which provided the FSPV system power estimations, area requirements, net present cost (NPC), levelized cost of energy (LCOE), production summary, grid purchasing/selling, IRR, ROI, paybacks and pollutant emissions. A sensitivity analysis for a hike in PV prices globally due to a shortage in poly silicone in international markets during the fiscal year 2021–2022 was undertaken for the proposed FSPV–grid system. Here, the authors considered hikes in the PV price of 1%, 9%and 18% respectively, since the maximum percentage increase in PV prices globally is 18%. The authors also compared the proposed FSPV–grid system to the existing grid-only system for two sections of the BSP and the results obtained showed that the NPC and LCOE would be much lower in the case of the FSPV–grid system than the grid-only system. However, with changes in the percentage hike in PV prices, the NPC and LCOE were found to increase due to changes in the proportion of FSPV–grid systems in production. The pollutant emissions were the minimum in the case of the FSPV–grid system, whereas they were the highest in the case of the existing grid-only system. Furthermore, the payback analysis indicated that the minimum ROI for the above-defined construction would be fully covered in 15.81 years with the nominal 1% pricing for FSPV–grid generation. Therefore, the overall results suggest that the FSPV–grid system has the potential to be a perfect alternative solar energy source that can meet the current electrical energy requirements of the steel manufacturing industry with nominal pricing better than the existing grid-only system, as well as addressing economic constraints and conferring environmental benefits. Full article
Show Figures

Figure 1

15 pages, 3138 KiB  
Article
Minimizing the Utilized Area of PV Systems by Generating the Optimal Inter-Row Spacing Factor
by Ayman Al-Quraan, Mohammed Al-Mahmodi, Khaled Alzaareer, Claude El-Bayeh and Ursula Eicker
Sustainability 2022, 14(10), 6077; https://doi.org/10.3390/su14106077 - 17 May 2022
Cited by 25 | Viewed by 5989
Abstract
In mounted photovoltaic (PV) facilities, energy output losses due to inter-row shading are unavoidable. In order to limit the shadow cast by one module row on another, sufficient inter-row space must be planned. However, it is not uncommon to see PV plants with [...] Read more.
In mounted photovoltaic (PV) facilities, energy output losses due to inter-row shading are unavoidable. In order to limit the shadow cast by one module row on another, sufficient inter-row space must be planned. However, it is not uncommon to see PV plants with such close row spacing that energy losses occur owing to row-to-row shading effects. Low module prices and high ground costs lead to such configurations, so the maximum energy output per available surface area is prioritized over optimum energy production per peak power. For any applications where the plant power output needs to be calculated, an exact analysis of the influence of inter-row shading on power generation is required. In this paper, an effective methodology is proposed and discussed in detail, ultimately, to enable PV system designers to identify the optimal inter-row spacing between arrays by generating a multiplier factor. The spacing multiplier factor is mathematically formulated and is generated to be a general formula for any geographical location including flat and non-flat terrains. The developed model is implemented using two case studies with two different terrains, to provide a wider context. The first one is in the Kingdome of Saudi Arabia (KSA) provinces, giving a flat terrain case study; the inter-row spacing multiplier factor is estimated for the direct use of a systems designer. The second one is the water pump for agricultural watering using renewable energy sources, giving a non-flat terrain case study in Dhamar, Al-Hada, Yemen. In this case study, the optimal inter-row spacing factor is estimated for limited-area applications. Therefore, the effective area using the proposed formula is minimized so that the shading of PV arrays on each other is avoided, with a simple design using the spacing factor methodology. Full article
Show Figures

Figure 1

16 pages, 4302 KiB  
Article
Utility Scale Ground Mounted Photovoltaic Plants with Gable Structure and Inverter Oversizing for Land-Use Optimization
by Silvestro Cossu, Roberto Baccoli and Emilio Ghiani
Energies 2021, 14(11), 3084; https://doi.org/10.3390/en14113084 - 26 May 2021
Cited by 13 | Viewed by 6011
Abstract
The paper proposes an effective layout for ground-mounted photovoltaic systems with a gable structure and inverter oversizing, which allows an optimized use of the land and, at the same time, guarantees a valuable return on investment. A case study is presented to show [...] Read more.
The paper proposes an effective layout for ground-mounted photovoltaic systems with a gable structure and inverter oversizing, which allows an optimized use of the land and, at the same time, guarantees a valuable return on investment. A case study is presented to show the technical, economic, and environmental advantages compared with conventional “fixed-tilt” and “sun-tracking” ground-mounted photovoltaic installations. The main advantage of this solution is that it maximizes the energy produced per unit of land area used; but, also considering the economic metrics, the net present value of the proposed PV arrangement solution results in a greater annual volume of energy produced and therefore of net revenues and cash flows, and greater than the compared conventional solution with modules exposed in an optimal fixed position or which make use of sun-tracking systems. Full article
(This article belongs to the Special Issue Photovoltaic Systems: Modelling, Control, Design and Applications)
Show Figures

Figure 1

15 pages, 4565 KiB  
Article
Modeling of Stochastic Temperature and Heat Stress Directly Underneath Agrivoltaic Conditions with Orthosiphon Stamineus Crop Cultivation
by Noor Fadzlinda Othman, Mohammad Effendy Yaacob, Ahmad Suhaizi Mat Su, Juju Nakasha Jaafar, Hashim Hizam, Mohd Fairuz Shahidan, Ahmad Hakiim Jamaluddin, Guangnan Chen and Adam Jalaludin
Agronomy 2020, 10(10), 1472; https://doi.org/10.3390/agronomy10101472 - 25 Sep 2020
Cited by 27 | Viewed by 5186
Abstract
This paper presents the field measured data of the ambient temperature profile and the heat stress occurrences directly underneath ground-mounted solar photovoltaic (PV) arrays (monocrystalline-based), focusing on different temperature levels. A previous study has shown that a 1 °C increase in PV cell [...] Read more.
This paper presents the field measured data of the ambient temperature profile and the heat stress occurrences directly underneath ground-mounted solar photovoltaic (PV) arrays (monocrystalline-based), focusing on different temperature levels. A previous study has shown that a 1 °C increase in PV cell temperature results in a reduction of 0.5% in energy conversion efficiency; thus, the temperature factor is critical, especially to solar farm operators. The transpiration process also plays an important role in the cooling of green plants where, on average, it could dissipate a significant amount of the total solar energy absorbed by the leaves, making it a good natural cooling mechanism. It was found from this work that the PV system’s bottom surface temperature was the main source of dissipated heat, as shown in the thermal images recorded at 5-min intervals at three sampling times. A statistical analysis further showed that the thermal correlation for the transpiration process and heat stress occurrences between the PV system’s bottom surface and plant height will be an important factor for large scale plant cultivation in agrivoltaic farms. Full article
(This article belongs to the Special Issue Photovoltaics and Electrification in Agriculture)
Show Figures

Figure 1

14 pages, 4507 KiB  
Article
Solar Photovoltaic Electricity Generation: A Lifeline for the European Coal Regions in Transition
by Katalin Bódis, Ioannis Kougias, Nigel Taylor and Arnulf Jäger-Waldau
Sustainability 2019, 11(13), 3703; https://doi.org/10.3390/su11133703 - 5 Jul 2019
Cited by 48 | Viewed by 21341
Abstract
The use of coal for electricity generation is the main emitter of Greenhous Gas Emissions worldwide. According to the International Energy Agency, these emissions have to be reduced by more than 70% by 2040 to stay on track for the 1.5–2 °C scenario [...] Read more.
The use of coal for electricity generation is the main emitter of Greenhous Gas Emissions worldwide. According to the International Energy Agency, these emissions have to be reduced by more than 70% by 2040 to stay on track for the 1.5–2 °C scenario suggested by the Paris Agreement. To ensure a socially fair transition towards the phase-out of coal, the European Commission introduced the Coal Regions in Transition initiative in late 2017. The present paper analyses to what extent the use of photovoltaic electricity generation systems can help with this transition in the coal regions of the European Union (EU). A spatially explicit methodology was developed to assess the solar photovoltaic (PV) potential in selected regions where open-cast coal mines are planned to cease operation in the near future. Different types of solar PV systems were considered including ground-mounted systems developed either on mining land or its surroundings. Furthermore, the installation of rooftop solar PV systems on the existing building stock was also analysed. The obtained results show that the available area in those regions is abundant and that solar PV systems could fully substitute the current electricity generation of coal-fired power plants in the analysed regions. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

Back to TopTop