Minimizing the Utilized Area of PV Systems by Generating the Optimal Inter-Row Spacing Factor
Abstract
:1. Introduction
- Generating the optimal inter-row spacing factor for minimizing the installation area and maximizing the energy output of the PV system for flat and non-flat terrains.
- A detailed method of estimating the needed angles of the sun’s path, which play an essential role in systems design.
- A comprehensive description of inter-row spacing estimation is given to establish the most appropriate spacing that avoids the worst-case scenario of the shading effect.
- Generating an inter-row spacing factor formula and validating it through a case study that was conducted in the Kingdom of Saudi Arabia (KSA), which has high solar radiation and solar energy potential but insufficient studies in this regard.
2. Definitions and Methodology
2.1. Sun Angles Calculation
2.2. Multiplier Factor Estimation
2.3. Inter-Row Spacing Considered for Non-Flat Terrain
3. Methodology of Optimum Area Estimation
4. Objective Function
5. Case Studies and Validation Process
5.1. Saudi Arabia Case Study
5.2. Yemen Case Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PV | photovoltaic |
MENA | Middle East and South Africa (MENA) |
MPPT | maximum power point tracking |
2-D | 2-dimensional |
ΔH | PV panel height from the ground |
θaz | Azimuth angle |
θelev | Elevation angle |
θtilt | Tilt angle |
X | Shading length |
D | Spacing between rows |
L | PV panel length |
w | PV panel width |
F | Inter row spacing factor |
h1 | Height difference with positive slope |
h2 | Height difference with negative slope |
A | PV system area |
References
- Al-Quraan, A.; Al-Qaisi, M. Modelling, Design and Control of a Standalone Hybrid PV-Wind Micro-Grid System. Energies 2021, 14, 4849. [Google Scholar] [CrossRef]
- Belaïd, F.; Elsayed, A.H.; Omri, A. Key drivers of renewable energy deployment in the MENA Region: Empirical evidence using panel quantile regression. Struct. Chang. Econ. Dyn. 2021, 57, 225–238. [Google Scholar] [CrossRef]
- Al-Quraan, A.; Al-Masri, H.; Al-Mahmodi, M.; Radaideh, A. Power curve modelling of wind turbines—A comparison study. IET Renew. Power Gener. 2022, 16, 362–374. [Google Scholar] [CrossRef]
- Al-Quraan, A.; Al-Mahmodi, M.; Radaideh, A.; AL-Masri, H. Comparative study between measured and estimated wind energy yield. Turk. J. Electr. Eng. Comput. Sci. 2020, 28, 2926–2939. [Google Scholar] [CrossRef]
- Panigrahi, R.; Mishra, S.K.; Srivastava, S.C.; Srivastava, A.K.; Schulz, N.N. Grid integration of small-scale photovoltaic systems in secondary distribution network—A review. IEEE Trans. Ind. Appl. 2020, 56, 3178–3195. [Google Scholar] [CrossRef]
- Tavakoli, A.; Saha, S.; Arif, M.T.; Haque, M.E.; Mendis, N.; Oo, A.M. Impacts of grid integration of solar PV and electric vehicle on grid stability, power quality and energy economics: A review. IET Energy Syst. Integr. 2020, 2, 243–260. [Google Scholar] [CrossRef]
- Al-Shetwi, A.Q.; Hannan, M.A.; Jern, K.P.; Alkahtani, A.A.; PGAbas, A.E. Power quality assessment of grid-connected PV system in compliance with the recent integration requirements. Electronics 2020, 9, 366. [Google Scholar] [CrossRef] [Green Version]
- Cornejo-Bueno, L.; Casanova-Mateo, C.; Sanz-Justo, J.; Salcedo-Sanz, S. Machine learning regressors for solar radiation estimation from satellite data. Sol. Energy 2019, 183, 768–775. [Google Scholar] [CrossRef]
- Babar, B.; Graversen, R.; Boström, T. Solar radiation estimation at high latitudes: Assessment of the CMSAF databases, ASR and ERA5. Sol. Energy 2019, 182, 397–411. [Google Scholar] [CrossRef]
- Awasthi, A.; Shukla, A.K.; SR, M.M.; Dondariya, C.; Shukla, K.N.; Porwal, D.; Richhariya, G. Review on sun tracking technology in solar PV system. Energy Rep. 2020, 6, 392–405. [Google Scholar] [CrossRef]
- Karafil, A.; Ozbay, H.; Kesler, M.; Parmaksiz, H. Calculation of optimum fixed tilt angle of PV panels depending on solar angles and comparison of the results with experimental study conducted in summer in Bilecik, Turkey. In Proceedings of the 2015 9th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 26–28 November 2015; pp. 971–976. [Google Scholar]
- Hong, T.; Lee, M.; Koo, C.; Jeong, K.; Kim, J. Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis. Appl. Energy 2017, 194, 320–332. [Google Scholar] [CrossRef]
- Zhan, T.S.; Lin, W.M.; Tsai, M.H.; Wang, G.S. Design and implementation of the dual-axis solar tracking system. In Proceedings of the 2013 IEEE 37th Annual Computer Software and Applications Conference, Kyoto, Japan, 22–26 July 2013; pp. 276–277. [Google Scholar]
- Nadia, A.R.; Isa, N.A.M.; Desa, M.K.M. Advances in solar photovoltaic tracking systems: A review. Renew. Sustain. Energy Rev. 2018, 82, 2548–2569. [Google Scholar] [CrossRef]
- de la Torre, F.C.; Varo-Martinez, M.; López-Luque, R.; Ramírez-Faz, J.; Fernández-Ahumada, L.M. Design and analysis of a tracking/backtracking strategy for PV plants with horizontal trackers after their conversion to agrivoltaic plants. Renew. Energy 2022, 187, 537–550. [Google Scholar] [CrossRef]
- Alrwashdeh, S.S. An energy production evaluation from PV arrays with different inter-row distances. Int. J. Mech. Prod. Eng. Res. Dev. 2019, 9-5. [Google Scholar] [CrossRef]
- Saint-Drenan, Y.M.; Barbier, T. Data-analysis and modelling of the effect of inter-row shading on the power production of photovoltaic plants. Sol. Energy 2019, 184, 127–147. [Google Scholar] [CrossRef] [Green Version]
- Joshi, K.; Bora, B.; Mishra, S.; Lalwani, M.; Kumar, S. SPV Plant Performance Analysis for Optimized Inter-Row Spacing and Module Mounting Structure. In Proceedings of the 2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), Ghaziabad, India, 27–28 September 2019; Volume 1, pp. 1–3. [Google Scholar]
- Jansson, P.M.; Schwabe, U.K. Photodiode sensor array design for photovoltaic system inter-row spacing optimization-calculating module performance during in-situ testing/simulated shading. In Proceedings of the 2010 IEEE Sensors Applications Symposium (SAS), Limerick, Ireland, 23–25 February 2010; pp. 235–240. [Google Scholar]
- Alrwashdeh, S.S. Investigation of the energy output from PV panels based on using different orientation systems in Amman-Jordan. Case Stud. Therm. Eng. 2021, 28, 101580. [Google Scholar] [CrossRef]
- Olczak, P.; Komorowska, A. An adjustable mounting rack or an additional PV panel? Cost and environmental analysis of a photovoltaic installation on a household: A case study in Poland. Sustain. Energy Technol. Assess. 2021, 47, 101496. [Google Scholar] [CrossRef]
- Kumar, R.; Rajoria, C.S.; Sharma, A.; Suhag, S. Design and simulation of standalone solar PV system using PVsyst Software: A case study. Mater. Today Proc. 2021, 46, 5322–5328. [Google Scholar] [CrossRef]
- Dondariya, C.; Porwal, D.; Awasthi, A.; Shukla, A.K.; Sudhakar, K.; SR, M.M.; Bhimte, A. Performance simulation of grid-connected rooftop solar PV system for small households: A case study of Ujjain, India. Energy Rep. 2018, 4, 546–553. [Google Scholar] [CrossRef]
- Siregar, Y.; Hutahuruk, Y. Optimization design and simulating solar PV system using PVSyst software. In Proceedings of the 2020 4rd International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM), Medan, Indonesia, 3–4 September 2020; pp. 219–223. [Google Scholar]
- Behura, A.K.; Kumar, A.; Rajak, D.K.; Pruncu, C.I.; Lamberti, L. Towards better performances for a novel rooftop solar PV system. Sol. Energy 2021, 216, 518–529. [Google Scholar] [CrossRef]
- Viana, Z.C.; Costa, J.d.S.; Silva, J.V.; Fernandes, R.M. Accuracy Analysis of Pvsyst Software for Estimating the Generation of a Photovoltaic System at the Polo de Inovação Campos dos Goytacazes. In Proceedings of the 2020 IEEE PES Transmission & Distribution Conference and Exhibition—Latin America (T&D LA), Montevideo, Uruguay, 28 September–2 October 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Al-Quraan, A.; Al-Mahmodi, M.; Al-Asemi, T.; Bafleh, A.; Bdour, M.; Muhsen, H.; Malkawi, A. A New Configuration of Roof Photovoltaic System for Limited Area Applications—A Case Study in KSA. Buildings 2022, 12, 92. [Google Scholar] [CrossRef]
- Ghaleb, B.; Asif, M. Assessment of solar PV potential in commercial buildings. Renew. Energy 2022, 187, 618–630. [Google Scholar] [CrossRef]
- Sharma, D.K.; Verma, V.; Singh, A.P. Review and analysis of solar photovoltaic software’s. Int. J. Curr. Eng. Technol. 2014, 4, 725–731. [Google Scholar]
- Yadav, P.; Kumar, N.; Chandel, S.S. Simulation and performance analysis of a 1kWp photovoltaic system using PVsyst. In Proceedings of the 2015 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), Melmaruvathur, India, 22–23 April 2015; pp. 0358–0363. [Google Scholar]
- Rekhashree, J.S.; Rajashekar, H. Naganagouda, Study on design and performance analysis of solar PV rooftop standalone and on grid system using PVSYST. Int. Res. J. Eng. Technol. (IRJET) 2018, 5, 41–48. [Google Scholar]
- Grigoriev, V.; Corsi, C.; Blanco, M. Fourier sampling of sun path for applications in solar energy. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2016; Volume 1734, p. 020008. [Google Scholar]
- Solar Radiation Monitoring Laboratory, University of Oregon, Sun Path Chart Program. Available online: http://solardat.uoregon.edu/SunChartProgram.html (accessed on 31 January 2022).
- Kelly, N.A.; Gibson, T.L. Increasing the solar photovoltaic energy capture on sunny and cloudy days. Sol. Energy 2011, 85, 111–125. [Google Scholar] [CrossRef]
- Quaschning, V.; Hanitsch, R. Increased energy yield of 50% at flat roof and field installations with optimized module structures. In Proceedings of the 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, Vienna, Austria, 6–10 July 1998; pp. 1993–1996. [Google Scholar]
Province Name | Latitude | Longitude | Elevation Angle (Degree) | Azimuth Angle (Degree) | Factor Multiplier |
---|---|---|---|---|---|
Riyadh | 24.774265 | 46.738586 | 25 | 46 | 1.49 |
Makkah | 21.422510 | 39.826168 | 27.5 | 48 | 1.29 |
Dammam | 26.551680 | 49.957581 | 24 | 45 | 1.59 |
Abha | 18.216797 | 42.503765 | 29 | 49 | 1.18 |
Jazan | 16.909683 | 42.567902 | 31 | 50 | 1.07 |
Madinah | 24.470901 | 39.612236 | 26 | 46 | 1.42 |
Buraidah | 26.32599 | 43.97497 | 24 | 45 | 1.59 |
Tabuk | 28.390393 | 36.57151 | 23 | 45 | 1.67 |
Ha’il | 27.523647 | 41.696632 | 23.5 | 45 | 1.63 |
Najran | 17.49326 | 44.12766 | 30 | 49 | 1.14 |
Sakaka | 29.953894 | 40.197044 | 22 | 44 | 1.78 |
Al-Baha | 20.01288 | 41.46767 | 28 | 48 | 1.26 |
Arar | 30.983334 | 41.016666 | 21 | 44 | 1.87 |
Jeddah | 21.543333 | 39.172779 | 28 | 45 | 1.33 |
Roof Number | Tilt Angle | Number of Modules | Installation Area (m2) | Optimal Area (m2) |
---|---|---|---|---|
A1 | 15° | 316 | 786.11 | 752 |
A2 | 15° | 292 | 786.11 | 694 |
A3 | 15° | 50 | 113.19 | 119 |
A4 | 15° | 48 | 172.59 | 114 |
A5 | 15° | 44 | 126.43 | 98 |
Total | 15° | 750 | 1984.43 | 1777 |
Roof Number | Tilt Angle | Number of Modules | Installation Area (m2) at Tilt 15° | Optimal Area (m2) with 15° and 22° Row-1 |
---|---|---|---|---|
A1 | 15° and 22°, row 1 | 316 | 786.11 | 747 |
A2 | 15° and 22°, row 1 | 292 | 786.11 | 690 |
A3 | 15° and 22°, row 1 | 50 | 113.19 | 118 |
A4 | 15° and 22°, row 1 | 48 | 172.59 | 113 |
A5 | 15° and 22°, row 1 | 44 | 126.43 | 98 |
Total | 15° and 22°, row 1 | 750 | 1984.43 | 1766 |
Parameter | Value |
---|---|
Module width | 1.134 m |
Module length | 2.274 m |
Tilt angle | 13° |
Installed inter-row spacing | 1.8 m |
Actual Total area | 370 m2 |
Parameter | Value |
---|---|
h between (A1 and A2, A2 and A3) | 20 cm |
h between (A3 and A4) | 30 cm |
Azimuth angle | 50° |
Elevation angle | 32° |
Inter-row spacing factor | 1.03, (4) |
Inter-row spacing between (A1 and A2, A2 and A3) | 1.26 m, (6) |
Inter-row spacing between (A3 and A4) | 1.36 m, (6) |
Required area | 310.17 m2, (8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Quraan, A.; Al-Mahmodi, M.; Alzaareer, K.; El-Bayeh, C.; Eicker, U. Minimizing the Utilized Area of PV Systems by Generating the Optimal Inter-Row Spacing Factor. Sustainability 2022, 14, 6077. https://doi.org/10.3390/su14106077
Al-Quraan A, Al-Mahmodi M, Alzaareer K, El-Bayeh C, Eicker U. Minimizing the Utilized Area of PV Systems by Generating the Optimal Inter-Row Spacing Factor. Sustainability. 2022; 14(10):6077. https://doi.org/10.3390/su14106077
Chicago/Turabian StyleAl-Quraan, Ayman, Mohammed Al-Mahmodi, Khaled Alzaareer, Claude El-Bayeh, and Ursula Eicker. 2022. "Minimizing the Utilized Area of PV Systems by Generating the Optimal Inter-Row Spacing Factor" Sustainability 14, no. 10: 6077. https://doi.org/10.3390/su14106077