Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,324)

Search Parameters:
Keywords = ground-based remote sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1546 KB  
Article
Remote Sensing-Based Mapping of Forest Above-Ground Biomass and Its Relationship with Bioclimatic Factors in the Atacora Mountain Chain (Togo) Using Google Earth Engine
by Demirel Maza-esso Bawa, Fousséni Folega, Kueshi Semanou Dahan, Cristian Constantin Stoleriu, Bilouktime Badjaré, Jasmina Šinžar-Sekulić, Huaguo Huang, Wala Kperkouma and Batawila Komlan
Geomatics 2026, 6(1), 8; https://doi.org/10.3390/geomatics6010008 (registering DOI) - 22 Jan 2026
Abstract
Accurate estimation of above-ground biomass (AGB) is vital for carbon accounting, biodiversity conservation, and sustainable forest management, especially in tropical regions under strong anthropogenic pressure. This study estimated and mapped AGB in the Atacora Mountain Chain, Togo, using a multi-source remote sensing approach [...] Read more.
Accurate estimation of above-ground biomass (AGB) is vital for carbon accounting, biodiversity conservation, and sustainable forest management, especially in tropical regions under strong anthropogenic pressure. This study estimated and mapped AGB in the Atacora Mountain Chain, Togo, using a multi-source remote sensing approach within Google Earth Engine (GEE). Field data from 421 plots of the 2021 National Forest Inventory were combined with Sentinel-1 Synthetic Aperture Radar, Sentinel-2 multispectral imagery, bioclimatic variables from WorldClim, and topographic data. A Random Forest regression model evaluated the predictive capacity of different variable combinations. The best model, integrating SAR, optical, and climatic variables (S1S2allBio), achieved R2 = 0.90, MAE = 13.42 Mg/ha, and RMSE = 22.54 Mg/ha, outperforming models without climate data. Dense forests stored the highest biomass (124.2 Mg/ha), while tree/shrub savannas had the lowest (25.38 Mg/ha). Spatially, ~60% of the area had biomass ≤ 50 Mg/ha. Precipitation correlated positively with AGB (r = 0.55), whereas temperature showed negative correlations. This work demonstrates the effectiveness of integrating multi-sensor satellite data with climatic predictors for accurate biomass mapping in complex tropical landscapes. The approach supports national forest monitoring, REDD+ programs, and ecosystem restoration, contributing to SDGs 13, 15, and 12 and offering a scalable method for other tropical regions. Full article
Show Figures

Graphical abstract

21 pages, 46330 KB  
Article
Bridging the Sim2Real Gap in UAV Remote Sensing: A High-Fidelity Synthetic Data Framework for Vehicle Detection
by Fuping Liao, Yan Liu, Wei Xu, Xingqi Wang, Gang Liu, Kun Yang and Jiahao Li
Remote Sens. 2026, 18(2), 361; https://doi.org/10.3390/rs18020361 - 21 Jan 2026
Abstract
Unmanned Aerial Vehicle (UAV) imagery has emerged as a critical data source in remote sensing, playing an important role in vehicle detection for intelligent traffic management and urban monitoring. Deep learning–based detectors rely heavily on large-scale, high-quality annotated datasets, however, collecting and labeling [...] Read more.
Unmanned Aerial Vehicle (UAV) imagery has emerged as a critical data source in remote sensing, playing an important role in vehicle detection for intelligent traffic management and urban monitoring. Deep learning–based detectors rely heavily on large-scale, high-quality annotated datasets, however, collecting and labeling real-world UAV data are both costly and time-consuming. Owing to its controllability and scalability, synthetic data has become an effective supplement to address the scarcity of real data. Nevertheless, the significant domain gap between synthetic data and real data often leads to substantial performance degradation during real-world deployment. To address this challenge, this paper proposes a high-fidelity synthetic data generation framework designed to reduce the Sim2Real gap. First, UAV oblique photogrammetry is utilized to reconstruct real-world 3D model, ensuring geometric and textural authenticity; second, diversified rendering strategies that simulate real-world illumination and weather variations are adopted to cover a wide range of environmental conditions; finally, an automated ground-truth generation algorithm based on semantic masks is developed to achieve pixel-level precision and cost-efficient annotation. Based on this framework, we construct a synthetic dataset named UAV-SynthScene. Experimental results show that multiple mainstream detectors trained on UAV-SynthScene achieve competitive performance when evaluated on real data, while significantly enhancing robustness in long-tail distributions and improving generalization on real datasets. Full article
(This article belongs to the Special Issue Advances in Deep Learning Approaches: UAV Data Analysis)
Show Figures

Figure 1

23 pages, 3010 KB  
Article
Monitoring Maize Phenology Using Multi-Source Data by Integrating Convolutional Neural Networks and Transformers
by Yugeng Guo, Wenzhi Zeng, Haoze Zhang, Jinhan Shao, Yi Liu and Chang Ao
Remote Sens. 2026, 18(2), 356; https://doi.org/10.3390/rs18020356 - 21 Jan 2026
Abstract
Effective monitoring of maize phenology under stress conditions is crucial for optimizing agricultural management and mitigating yield losses. Crop prediction models constructed from Convolutional Neural Network (CNN) have been widely applied. However, CNNs often struggle to capture long-range temporal dependencies in phenological data, [...] Read more.
Effective monitoring of maize phenology under stress conditions is crucial for optimizing agricultural management and mitigating yield losses. Crop prediction models constructed from Convolutional Neural Network (CNN) have been widely applied. However, CNNs often struggle to capture long-range temporal dependencies in phenological data, which are crucial for modeling seasonal and cyclic patterns. The Transformer model complements this by leveraging self-attention mechanisms to effectively handle global contexts and extended sequences in phenology-related tasks. The Transformer model has the global understanding ability that CNN does not have due to its multi-head attention. This study, proposes a synergistic framework, in combining CNN with Transformer model to realize global-local feature synergy using two models, proposes an innovative phenological monitoring model utilizing near-ground remote sensing technology. High-resolution imagery of maize fields was collected using unmanned aerial vehicles (UAVs) equipped with multispectral and thermal infrared cameras. By integrating this data with CNN and Transformer architectures, the proposed model enables accurate inversion and quantitative analysis of maize phenological traits. In the experiment, a network was constructed adopting multispectral and thermal infrared images from maize fields, and the model was validated using the collected experimental data. The results showed that the integration of multispectral imagery and accumulated temperature achieved an accuracy of 92.9%, while the inclusion of thermal infrared imagery further improved the accuracy to 97.5%. This study highlights the potential of UAV-based remote sensing, combined with CNN and Transformer as a transformative approach for precision agriculture. Full article
Show Figures

Figure 1

19 pages, 6089 KB  
Article
Energy-Efficient Automated Detection of OPGW Features for Sustainable UAV-Based Inspection
by Xiaoling Yan, Wuxing Mao, Xiao Li, Ruiming Huang, Chi Ye, Faguang Li and Zheyu Fan
Sensors 2026, 26(2), 658; https://doi.org/10.3390/s26020658 - 19 Jan 2026
Viewed by 89
Abstract
Unmanned Aerial Vehicle (UAV)-based inspection is crucial for the maintenance and monitoring of high-voltage transmission lines, but detecting small objects in inspection images presents significant challenges, especially under complex backgrounds and varying lighting. These challenges are particularly evident when detecting the wire features [...] Read more.
Unmanned Aerial Vehicle (UAV)-based inspection is crucial for the maintenance and monitoring of high-voltage transmission lines, but detecting small objects in inspection images presents significant challenges, especially under complex backgrounds and varying lighting. These challenges are particularly evident when detecting the wire features of optical fiber composite overhead ground wire and conventional ground wires. Optical fiber composite overhead ground wire (OPGW) is a specialized cable designed to replace conventional shield wires on power utility towers. It contains one or more optical fibers housed in a protective tube, surrounded by layers of aluminum-clad steel and/or aluminum alloy wires, ensuring robust mechanical strength for grounding and high-bandwidth capabilities for remote sensing and control. Existing detection methods often struggle with low accuracy, insufficient performance, and high computational demands when dealing with small objects. To address these issues, this paper proposes an energy-efficient OPGW feature detection model for UAV-based inspection. The model incorporates a Feature Enhancement Module (FEM) to replace the C3K2 module in the sixth layer of the YOLO11 backbone, improving multi-scale feature extraction. A P2 shallow detection head is added to enhance the perception of small and edge features. Additionally, the traditional Intersection over Union (IoU) loss is replaced with Normalized Wasserstein Distance (NWD) loss function, which improves boundary regression accuracy for small objects. Experimental results show that the proposed method achieves a mAP50 of 78.3% and mAP5095 of 52.0%, surpassing the baseline by 2.3% and 1.1%, respectively. The proposed model offers the advantages of high detection accuracy and low computational resource requirements, providing a practical solution for sustainable UAV-based inspections. Full article
Show Figures

Figure 1

24 pages, 7667 KB  
Article
Trans-AODnet for Aerosol Optical Depth Retrieval and Atmospheric Correction of Moderate to High-Spatial-Resolution Satellite Imagery
by He Cai, Bo Zhong, Huilin Liu, Yao Li, Bailin Du, Yang Qiao, Xiaoya Wang, Shanlong Wu, Junjun Wu and Qinhuo Liu
Remote Sens. 2026, 18(2), 311; https://doi.org/10.3390/rs18020311 - 16 Jan 2026
Viewed by 73
Abstract
High accuracy and time synchronous aerosol optical depth (AOD) is essential for atmospheric correction (AC) of medium and high spatial resolution (MHSR) remote sensing data. However, existing high-resolution AOD retrieval methods often rely on sparsely distributed ground-based measurements, which limits their capacity to [...] Read more.
High accuracy and time synchronous aerosol optical depth (AOD) is essential for atmospheric correction (AC) of medium and high spatial resolution (MHSR) remote sensing data. However, existing high-resolution AOD retrieval methods often rely on sparsely distributed ground-based measurements, which limits their capacity to resolve fine-scale spatial heterogeneity and consequently constrains retrieval performance. To address this limitation, we propose a framework that takes GF-1 top-of-atmosphere (TOA) reflectance as input, where the model is first pre-trained using MCD19A2 as Pseudo-labels, with high-confidence samples weighted according to their spatial consistency and temporal stability, and then fine-tuned using Aerosol Robotic Network (AERONET) observations. This approach enables improved retrieval accuracy while better capturing surface variability. Validation across multiple regions demonstrates strong agreement with AOD measurements, achieving the correlation coefficient (R) of 0.941 and RMSE of 0.113. Compared to models without pretraining, the proportion of AOD retrievals within EE improves by 13%. While applied to AC, the corrected surface reflectance also shows strong consistency with in situ observations (R > 0.93, RMSE < 0.04). The proposed Trans-AODnet significantly enhances the accuracy and reliability of AOD inputs for AC of high-resolution wide-field sensors (e.g., GF-WFV), offering robust support for regional environmental monitoring and exhibiting strong potential for broader remote sensing applications. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

36 pages, 2298 KB  
Review
Onboard Deployment of Remote Sensing Foundation Models: A Comprehensive Review of Architecture, Optimization, and Hardware
by Hanbo Sang, Limeng Zhang, Tianrui Chen, Weiwei Guo and Zenghui Zhang
Remote Sens. 2026, 18(2), 298; https://doi.org/10.3390/rs18020298 - 16 Jan 2026
Viewed by 160
Abstract
With the rapid growth of multimodal remote sensing (RS) data, there is an increasing demand for intelligent onboard computing to alleviate the transmission and latency bottlenecks of traditional orbit-to-ground downlinking workflows. While many lightweight AI algorithms have been widely developed and deployed for [...] Read more.
With the rapid growth of multimodal remote sensing (RS) data, there is an increasing demand for intelligent onboard computing to alleviate the transmission and latency bottlenecks of traditional orbit-to-ground downlinking workflows. While many lightweight AI algorithms have been widely developed and deployed for onboard inference, their limited generalization capability restricts performance under the diverse and dynamic conditions of advanced Earth observation. Recent advances in remote sensing foundation models (RSFMs) offer a promising solution by providing pretrained representations with strong adaptability across diverse tasks and modalities. However, the deployment of RSFMs onboard resource-constrained devices such as nano satellites remains a significant challenge due to strict limitations in memory, energy, computation, and radiation tolerance. To this end, this review proposes the first comprehensive survey of onboard RSFMs deployment, where a unified deployment pipeline including RSFMs development, model compression techniques, and hardware optimization is introduced and surveyed in detail. Available hardware platforms are also discussed and compared, based on which some typical case studies for low Earth orbit (LEO) CubeSats are presented to analyze the feasibility of onboard RSFMs’ deployment. To conclude, this review aims to serve as a practical roadmap for future research on the deployment of RSFMs on edge devices, bridging the gap between the large-scale RSFMs and the resource constraints of spaceborne platforms for onboard computing. Full article
Show Figures

Graphical abstract

26 pages, 8634 KB  
Article
Using Satellite-Based Evapotranspiration (ESTIMET) in SWAT to Quantify Sediment Yield in Scarce Data in a Desertified Watershed
by Raul Gomes da Silva, Aline Maria Soares das Chagas, Monaliza Araújo de Santana, Cinthia Maria de Abreu Claudino, Victor Hugo Rabelo Coelho, Thayná Alice Brito Almeida, Abelardo Antônio de Assunção Montenegro, Yuri Jacques Agra Bezerra da Silva and Carolyne Wanessa Lins de Andrade Farias
Sustainability 2026, 18(2), 917; https://doi.org/10.3390/su18020917 - 16 Jan 2026
Viewed by 123
Abstract
The ESTIMET (Enhanced and Spatial-Temporal Improvement of MODIS EvapoTranspiration algorithm) model provides continuous, spatially distributed daily ET, essential for model calibration in data-scarce environments where conventional hydrological monitoring is unavailable. The challenge of applying SWAT in arid regions without ground observations, this study [...] Read more.
The ESTIMET (Enhanced and Spatial-Temporal Improvement of MODIS EvapoTranspiration algorithm) model provides continuous, spatially distributed daily ET, essential for model calibration in data-scarce environments where conventional hydrological monitoring is unavailable. The challenge of applying SWAT in arid regions without ground observations, this study proposes a remote-sensing-based calibration approach using ESTIMET to overcome data scarcity. Daily satellite-derived evapotranspiration (ET) data to assess the performance of the Soil and Water Assessment Tool (SWAT) was used to evaluate the performance of the SWAT in a desertified watershed in Brazil, aiming to assess ESTIMET’s effectiveness in supporting SWAT calibration, quantify sediment yield, and examine the influence of land-use changes on environmental quality over 21-years period. The results highlight a distinct hydrological response in SWAT initially underestimated ET, contrasting with patterns typically observed in other semi-arid applications and demonstrating that desertified environments require distinct calibration strategies. Performance indicators showed strong agreement between observed and simulated ET (R2 = 0.94; NSE = 0.76), supporting satellite-based ET as a valuable source for improving SWAT performance in watersheds where empirical hydrometeorological data are sparse or unevenly distributed. Sediment yield was generally low to moderate, with degradation concentrated in bare-soil areas associated with deforestation. Full article
(This article belongs to the Special Issue Watershed Hydrology and Sustainable Water Environments)
Show Figures

Figure 1

33 pages, 11044 KB  
Article
Monitoring the Sustained Environmental Performances of Nature-Based Solutions in Urban Environments: The Case Study of the UPPER Project (Latina, Italy)
by Riccardo Gasbarrone, Giuseppe Bonifazi and Silvia Serranti
Sustainability 2026, 18(2), 864; https://doi.org/10.3390/su18020864 - 14 Jan 2026
Viewed by 139
Abstract
This follow-up study investigates the long-term environmental sustainability and remediation outcomes of the UPPER (‘Urban Productive Parks for Sustainable Urban Regeneration’-UIA04-252) project in Latina, Italy, focusing on Nature-Based Solutions (NbS) applied to urban green infrastructure. By integrating proximal and satellite-based remote sensing methodologies, [...] Read more.
This follow-up study investigates the long-term environmental sustainability and remediation outcomes of the UPPER (‘Urban Productive Parks for Sustainable Urban Regeneration’-UIA04-252) project in Latina, Italy, focusing on Nature-Based Solutions (NbS) applied to urban green infrastructure. By integrating proximal and satellite-based remote sensing methodologies, the research evaluates persistent improvements in vegetation health, soil moisture dynamics, and overall environmental quality over multiple years. Building upon the initial monitoring framework, this case study incorporates updated data and refined techniques to quantify temporal changes and assess the ecological performance of NbS interventions. In more detail, ground-based data from meteo-climatic, air quality stations and remote satellite data from the Sentinel-2 mission are adopted. Ground-based measurements such as temperature, humidity, radiation, rainfall intensity, PM10 and PM2.5 are carried out to monitor the overall environmental quality. Updated satellite imagery from Sentinel-2 is analyzed using advanced band ratio indices, including the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI) and the Normalized Difference Moisture Index (NDMI). Comparative temporal analysis revealed consistent enhancements in vegetation health, with NDVI values significantly exceeding baseline levels (NDVI 2022–2024: +0.096, p = 0.024), demonstrating successful vegetation establishment with larger gains in green areas (+27.0%) than parking retrofits (+11.4%, p = 0.041). However, concurrent NDWI decline (−0.066, p = 0.063) indicates increased vegetation water stress despite irrigation infrastructure. NDMI improvements (+0.098, p = 0.016) suggest physiological adaptation through stomatal regulation. Principal Component Analysis (PCA) of meteo-climatic variables reveals temperature as the dominant environmental driver (PC2 loadings > 0.8), with municipality-wide NDVI-temperature correlations of r = −0.87. These multi-scale findings validate sustained NbS effectiveness in enhancing vegetation density and ecosystem services, yet simultaneously expose critical water-limitation trade-offs in Mediterranean semi-arid contexts, necessitating adaptive irrigation management and continued monitoring for long-term urban climate resilience. The integrated monitoring approach underscores the critical role of continuous, multi-scale assessment in ensuring long-term success and adaptive management of NbS-based interventions. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies for Environmental Sustainability)
Show Figures

Figure 1

19 pages, 2840 KB  
Article
Estimating Post-Logging Changes in Forest Biomass from Annual Satellite Imagery Based on an Efficient Forest Dynamic and Radiative Transfer Coupled Model
by Xiaoyao Li, Xuexia Sun, Yuxuan Liu, Bingxiang Tan, Jun Lu, Kai Du and Yunqian Jia
Remote Sens. 2026, 18(2), 258; https://doi.org/10.3390/rs18020258 - 13 Jan 2026
Viewed by 186
Abstract
The abundant satellite data have enabled the study of the dynamics of forest logging and its corresponding carbon balance with remote sensing. Change detection techniques with moderate-resolution imagery have been widely developed. Yet the signal processing or machine learning methods are sample-dependent, lacking [...] Read more.
The abundant satellite data have enabled the study of the dynamics of forest logging and its corresponding carbon balance with remote sensing. Change detection techniques with moderate-resolution imagery have been widely developed. Yet the signal processing or machine learning methods are sample-dependent, lacking an understanding of spectral signals of forest growth and logging cycles, which is necessary to distinguish logging from other types of disturbance, and mechanism models addressing post-logging tree changes are too complex for parameter inversion. We therefore proposed an efficient physical-based model for spectral simulation of annual forest logging by coupling forest dynamic model ZELIG and the stochastic radiative transfer (SRT) model. The forest logging simulation was conducted and validated by Abies forest field data before and after logging in Wangqing County, Northeastern China (R2 = 0.85, RMSE = 10.82 t/ha). The spectral changes in Abies forest stands with annual growth and varying logging intensities were simulated by the novel model. The annual Landsat-8 and Gaofen-1 fusion multispectral imagery of the study area from 2013 to 2016 was furtherly used to extract annual sequence spectral data of 350 forest plots and perform inversion of the annual difference in above-ground biomass (dAGB). With the inversion method combining the look-up table of the ZELIG-SRT model and the random forest regression, the retrieved dAGB of the 350 plots indicated consistency with the measured data on the whole (R2 = 0.71, RMSE = 13.32 t/ha). The novel physical-based approach for AGB monitoring is more efficient than previous 3D computer models and less dependent on field samples than data-driven models. This study provides a theoretical basis for understanding the remote sensing response mechanism of forest logging and a methodological basis for improving forest logging monitoring algorithms. Full article
(This article belongs to the Special Issue Forest Disturbance Monitoring with Optical Satellite Imagery)
Show Figures

Graphical abstract

18 pages, 5494 KB  
Article
Multi-Source Monitoring of High-Temperature Heat Damage During Summer Maize Flowering Period Based on Machine Learning
by Xiaofei Wang, Hongwei Tian, Lin Cheng, Fangmin Zhang and Lizhu Xing
Agriculture 2026, 16(2), 207; https://doi.org/10.3390/agriculture16020207 - 13 Jan 2026
Viewed by 196
Abstract
With the intensification of global climate change, high temperatures have emerged as a major abiotic stressor adversely affecting summer maize yields in North China. This study presents a high-resolution monitoring framework for Henan Province. First, an hourly, high-resolution (0.02° × 0.02°) near-surface air [...] Read more.
With the intensification of global climate change, high temperatures have emerged as a major abiotic stressor adversely affecting summer maize yields in North China. This study presents a high-resolution monitoring framework for Henan Province. First, an hourly, high-resolution (0.02° × 0.02°) near-surface air temperature dataset was generated by fusing Himawari-8 satellite observations, ERA5 reanalysis data, and ground-based measurements through a machine learning approach. Among the tested algorithms (support vector regression, random forest, and XGBoost), XGBoost achieved the best performance (R2 = 0.933 and RMSE = 0.841 °C). Second, a High-Temperature Damage Index (HTDI) was constructed using hourly temperature thresholds of 32 °C and 35 °C, respectively. The index exhibited a statistically significant but modest negative correlation with ear grain number (R2 = 0.054 and p = 0.0007). Spatial assessment revealed intensified heat damage in 2024 (average HTDI = 0.51; over 67% of the area experienced moderate or worse damage) compared to 2023 (average HTDI = 0.22), with severe damage concentrated in south–central and east–central Henan. This approach surpasses the limitations of conventional daily scale assessments by enabling refined, hourly monitoring of high-temperature heat stress. It not only advances the deep integration of remote sensing and machine learning in agricultural meteorology but also provides technical support for addressing food security challenges under climate change. Full article
Show Figures

Figure 1

18 pages, 5889 KB  
Article
High-Resolution Mapping Coastal Wetland Vegetation Using Frequency-Augmented Deep Learning Method
by Ning Gao, Xinyuan Du, Peng Xu, Erding Gao and Yixin Yang
Remote Sens. 2026, 18(2), 247; https://doi.org/10.3390/rs18020247 - 13 Jan 2026
Viewed by 106
Abstract
Coastal wetland vegetation exhibits pronounced spectral mixing, complex mosaic spatial patterns, and small target sizes, posing considerable challenges for fine-grained classification in high-resolution UAV imagery. At present, remote sensing classification of ground objects based on deep learning mainly relies on spectral and structural [...] Read more.
Coastal wetland vegetation exhibits pronounced spectral mixing, complex mosaic spatial patterns, and small target sizes, posing considerable challenges for fine-grained classification in high-resolution UAV imagery. At present, remote sensing classification of ground objects based on deep learning mainly relies on spectral and structural features, while the frequency domain features of ground objects are not fully considered. To address these issues, this study proposes a vegetation classification model that integrates spatial-domain and frequency-domain features. The model enhances global contextual modeling through a large-kernel convolution branch, while a frequency-domain interaction branch separates and fuses low-frequency structural information with high-frequency details. In addition, a shallow auxiliary supervision module is introduced to improve local detail learning and stabilize training. With a compact parameter scale suitable for real-world deployment, the proposed framework effectively adapts to high-resolution remote sensing scenarios. Experiments on typical coastal wetland vegetation including Reeds, Spartina alterniflora, and Suaeda salsa demonstrate that the proposed method consistently outperforms representative segmentation models such as UNet, DeepLabV3, TransUNet, SegFormer, D-LinkNet, and MCCA across multiple metrics including Accuracy, Recall, F1 Score, and mIoU. Overall, the results show that the proposed model effectively addresses the challenges of subtle spectral differences, pervasive species mixture, and intricate structural details, offering a robust and efficient solution for UAV-based wetland vegetation mapping and ecological monitoring. Full article
Show Figures

Figure 1

27 pages, 16442 KB  
Article
Co-Training Vision-Language Models for Remote Sensing Multi-Task Learning
by Qingyun Li, Shuran Ma, Junwei Luo, Yi Yu, Yue Zhou, Fengxiang Wang, Xudong Lu, Xiaoxing Wang, Xin He, Yushi Chen and Xue Yang
Remote Sens. 2026, 18(2), 222; https://doi.org/10.3390/rs18020222 - 9 Jan 2026
Viewed by 233
Abstract
With Transformers achieving outstanding performance on individual remote sensing (RS) tasks, we are now approaching the realization of a unified model that excels across multiple tasks through multi-task learning (MTL). Compared to single-task approaches, MTL methods offer improved generalization, enhanced scalability, and greater [...] Read more.
With Transformers achieving outstanding performance on individual remote sensing (RS) tasks, we are now approaching the realization of a unified model that excels across multiple tasks through multi-task learning (MTL). Compared to single-task approaches, MTL methods offer improved generalization, enhanced scalability, and greater practical applicability. Recently, vision-language models (VLMs) have achieved promising results in RS image understanding, grounding, and ultra-high-resolution (UHR) image reasoning, respectively. Moreover, the unified text-based interface demonstrates significant potential for MTL. Hence, in this work, we present RSCoVLM, a simple yet flexible VLM baseline for RS MTL. Firstly, we create the data curation procedure, including data acquisition, offline processing and integrating, as well as online loading and weighting. This data procedure effectively addresses complex RS data enviroments and generates flexible vision-language conversations. Furthermore, we propose a unified dynamic-resolution strategy to address the diverse image scales inherent in RS imagery. For UHR images, we introduce the Zoom-in Chain mechanism together with its corresponding dataset, LRS-VQA-Zoom. The strategies are flexible and effectively mitigate the computational burdens. Additionally, we significantly enhance the model’s object detection capability and propose a novel evaluation protocol that ensures fair comparison between VLMs and conventional detection models. Extensive experiments demonstrate that RSCoVLM achieves state-of-the-art performance across diverse tasks, outperforming existing RS VLMs and even rivaling specialized expert models. All the training and evaluating tools, model weights, and datasets have been fully open-sourced to support reproducibility. We expect that this baseline will promote further progress toward general-purpose RS models. Full article
Show Figures

Figure 1

19 pages, 12335 KB  
Article
Method for Monitoring the Safety of Urban Subway Infrastructure Along Subway Lines by Fusing Inter-Track InSAR Data
by Guosheng Cai, Xiaoping Lu, Yao Lu, Zhengfang Lou, Baoquan Huang, Yaoyu Lu, Siyi Li and Bing Liu
Sensors 2026, 26(2), 454; https://doi.org/10.3390/s26020454 - 9 Jan 2026
Viewed by 186
Abstract
Urban surface subsidence is primarily induced by intensive above-ground and underground construction activities and excessive groundwater extraction. Integrating InSAR techniques for safety monitoring of urban subway infrastructure is therefore of great significance for urban safety and sustainable development. However, single-track high-spatial-resolution SAR imagery [...] Read more.
Urban surface subsidence is primarily induced by intensive above-ground and underground construction activities and excessive groundwater extraction. Integrating InSAR techniques for safety monitoring of urban subway infrastructure is therefore of great significance for urban safety and sustainable development. However, single-track high-spatial-resolution SAR imagery is insufficient to achieve full coverage over large urban areas, and direct mosaicking of inter-track InSAR results may introduce systematic biases, thereby compromising the continuity and consistency of deformation fields at the regional scale. To address this issue, this study proposes an inter-track InSAR correction and mosaicking approach based on the mean vertical deformation difference within overlapping areas, aiming to mitigate the overall offset between deformation results derived from different tracks and to construct a spatially continuous urban surface deformation field. Based on the fused deformation results, subsidence characteristics along subway lines and in key urban infrastructures were further analyzed. The main urban area and the eastern and western new districts of Zhengzhou, a national central city in China, were selected as the study area. A total of 16 Radarsat-2 SAR scenes acquired from two tracks during 2022–2024, with a spatial resolution of 3 m, were processed using the SBAS-InSAR technique to retrieve surface deformation. The results indicate that the mean deformation rate difference in the overlapping areas between the two SAR tracks is approximately −5.54 mm/a. After applying the difference-constrained correction, the coefficient of determination (R2) between the mosaicked InSAR results and leveling observations increased to 0.739, while the MAE and RMSE decreased to 4.706 and 5.538 mm, respectively, demonstrating good stability in achieving inter-track consistency and continuous regional deformation representation. Analysis of the corrected InSAR results reveals that, during 2022–2024, areas exhibiting uplift and subsidence trends accounted for 37.6% and 62.4% of the study area, respectively, while the proportions of cumulative subsidence and uplift areas were 66.45% and 33.55%. In the main urban area, surface deformation rates are generally stable and predominantly within ±5 mm/a, whereas subsidence rates in the eastern new district are significantly higher than those in the main urban area and the western new district. Along subway lines, deformation rates are mainly within ±5 mm/a, with relatively larger deformation observed only in localized sections of the eastern segment of Line 1. Further analysis of typical zones along the subway corridors shows that densely built areas in the western part of the main urban area remain relatively stable, while building-concentrated areas in the eastern region exhibit a persistent relative subsidence trend. Overall, the results demonstrate that the proposed inter-track InSAR mosaicking method based on the mean deformation difference in overlapping areas can effectively support subsidence monitoring and spatial pattern identification along urban subway lines and key regions under relative calibration conditions, providing reliable remote sensing information for refined urban management and infrastructure risk assessment. Full article
(This article belongs to the Special Issue Application of SAR and Remote Sensing Technology in Earth Observation)
Show Figures

Figure 1

27 pages, 6110 KB  
Article
A Prediction Framework of Apple Orchard Yield with Multispectral Remote Sensing and Ground Features
by Shuyan Pan and Liqun Liu
Plants 2026, 15(2), 213; https://doi.org/10.3390/plants15020213 - 9 Jan 2026
Viewed by 173
Abstract
Aiming at the problem that the current traditional apple yield estimation methods rely on manual investigation and do not make full use of multi-source information, this paper proposes an apple orchard yield prediction framework combining multispectral remote sensing features and ground features. The [...] Read more.
Aiming at the problem that the current traditional apple yield estimation methods rely on manual investigation and do not make full use of multi-source information, this paper proposes an apple orchard yield prediction framework combining multispectral remote sensing features and ground features. The framework is oriented to the demand of yield prediction at different scales. It can not only realize the prediction of apple yield at the district and county scales, but also modify the prediction results of small-scale orchards based on the acquisition of orchard features. The framework consists of three parts, namely, apple orchard planting area extraction, district and county large-scale yield prediction and small-scale orchard yield prediction correction. (1) During apple orchard planting area extraction, the samples of some apple planting areas in the study area were obtained through field investigation, and the orchard and non-orchard areas were classified and discriminated, providing a spatial basis for the collection of subsequent yield prediction-related data. (2) In the large-scale yield prediction of districts and counties, based on the obtained orchard-planting areas, the corresponding multispectral remote sensing features and environmental features were obtained using Google Earth engine platform. In order to avoid the noise interference caused by local pixel differences, the obtained data were median synthesized, and the feature set was constructed by combining the yield and other information. On this basis, the feature set was divided and sent to Apple Orchard Yield Prediction Network (APYieldNet) for training and testing, and the district and county large-scale yield prediction model was obtained. (3) During the part of small-scale orchard yield prediction correction, the optimal model for large-scale yield prediction at the district and county levels is utilized to forecast the yield of the entire planting area and the internal local sampling areas of the small-scale orchard. Within the local sampling areas, the number of fruits is identified through the YOLO-A model, and the actual yield is estimated based on the empirical single fruit weight as a ground feature, which is used to calculate the correction factor. Finally, the proportional correction method is employed to correct the error in the prediction results of the entire small-scale orchard area, thus obtaining a more accurate yield prediction for the small-scale orchard. The experiment showed that (1) the yield prediction model APYieldNet (MAE = 152.68 kg/mu, RMSE = 203.92 kg/mu) proposed in this paper achieved better results than other methods; (2) the proposed YOLO-A model achieves superior detection performance for apple fruits and flowers in complex orchard environments compared to existing methods; (3) in this paper, through the method of proportional correction, the prediction results of APYieldNet for small-scale orchard are closer to the real yield. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

26 pages, 8147 KB  
Article
Deep Learning Applied to Spaceborne SAR Interferometry for Detecting Sinkhole-Induced Land Subsidence Along the Dead Sea
by Gali Dekel, Ran Novitsky Nof, Ron Sarafian and Yinon Rudich
Remote Sens. 2026, 18(2), 211; https://doi.org/10.3390/rs18020211 - 8 Jan 2026
Viewed by 846
Abstract
The Dead Sea (DS) region has experienced a sharp increase in sinkhole formation in recent years, posing environmental and infrastructure risks. The Geological Survey of Israel (GSI) employs Interferometric Synthetic Aperture Radar (InSAR) to monitor sinkhole activity and manually map land subsidence along [...] Read more.
The Dead Sea (DS) region has experienced a sharp increase in sinkhole formation in recent years, posing environmental and infrastructure risks. The Geological Survey of Israel (GSI) employs Interferometric Synthetic Aperture Radar (InSAR) to monitor sinkhole activity and manually map land subsidence along the western shore of the DS. This process is both time-consuming and prone to human error. Automating detection with Deep Learning (DL) offers a transformative opportunity to enhance monitoring precision, scalability, and real-time decision-making. DL segmentation architectures such as UNet, Attention UNet, SAM, TransUNet, and SegFormer have shown effectiveness in learning geospatial deformation patterns in InSAR and related remote sensing data. This study provides a first comprehensive evaluation of a DL segmentation model applied to InSAR data for detecting land subsidence areas that occur as part of the sinkhole-formation process along the western shores of the DS. Unlike image-based tasks, our new model learns interferometric phase patterns that capture subtle ground deformations rather than direct visual features. As the ground truth in the supervised learning process, we use subsidence areas delineated on the phase maps by the GSI team over the years as part of the operational subsidence surveillance and monitoring activities. This unique data poses challenges for annotation, learning, and interpretability, making the dataset both non-trivial and valuable for advancing research in applied remote sensing and its application in the DS. We train the model across three partition schemes, each representing a different type and level of generalization, and introduce object-level metrics to assess its detection ability. Our results show that the model effectively identifies and generalizes subsidence areas in InSAR data across different setups and temporal conditions and shows promising potential for geographical generalization in previously unseen areas. Finally, large-scale subsidence trends are inferred by reconstructing smaller-scale patches and evaluated for different confidence thresholds. Full article
Show Figures

Figure 1

Back to TopTop