Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (834)

Search Parameters:
Keywords = ground scattering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8835 KiB  
Article
The Spatial Distribution Characteristics and Driving Factors of Traditional Villages’ Tourism Transformation Level in Shaanxi, China
by Huidi Jia, Lanbo Li, Siying Wu, Ruiqi Zhao and Huan Yang
Land 2025, 14(8), 1602; https://doi.org/10.3390/land14081602 (registering DOI) - 6 Aug 2025
Abstract
Although numerous studies have examined the spatial patterns of traditional villages and their driving factors, limited attention has been devoted to the transformation of tourism. This study focused on traditional villages in Shaanxi Province, employing geodetector and grounded theory methods to analyze their [...] Read more.
Although numerous studies have examined the spatial patterns of traditional villages and their driving factors, limited attention has been devoted to the transformation of tourism. This study focused on traditional villages in Shaanxi Province, employing geodetector and grounded theory methods to analyze their spatial distribution characteristics and influencing factors. First, most traditional villages have not developed tourism. Only 11.98% reached the relatively mature tourism stage. Second, the spatial distribution of mature traditional tourism villages is scattered and primarily clustered in Liuba County, Mizhi County, and Jia County. Third, the factors influencing spatial distribution characteristics include resource endowment, transportation accessibility, and regional economic conditions. Among these factors, the level of traditional villages, village heritage values, and the local tourism environment show the strongest explanatory power. These findings can help enhance cultural resilience, promote economic transformation and upgrading, and support the sustainable development of traditional villages. Full article
Show Figures

Figure 1

86 pages, 28919 KiB  
Article
Sustainable Risk Mapping of High-Speed Rail Networks Through PS-InSAR and Geospatial Analysis
by Seung-Jun Lee, Hong-Sik Yun and Sang-Woo Kwak
Sustainability 2025, 17(15), 7064; https://doi.org/10.3390/su17157064 - 4 Aug 2025
Abstract
This study presents an integrated geospatial framework for assessing the risk to high-speed railway (HSR) infrastructure, combining a persistent scatterer interferometric synthetic aperture radar (PS-InSAR) analysis with multi-criteria decision-making in a geographic information system (GIS) environment. Focusing on the Honam HSR corridor in [...] Read more.
This study presents an integrated geospatial framework for assessing the risk to high-speed railway (HSR) infrastructure, combining a persistent scatterer interferometric synthetic aperture radar (PS-InSAR) analysis with multi-criteria decision-making in a geographic information system (GIS) environment. Focusing on the Honam HSR corridor in South Korea, the model incorporates both maximum ground deformation and subsidence velocity to construct a dynamic hazard index. Social vulnerability is quantified using five demographic and infrastructural indicators, and a two-stage analytic hierarchy process (AHP) is applied with dependency correction to mitigate inter-variable redundancy. The resulting high-resolution risk maps highlight spatial mismatches between geotechnical hazards and social exposure, revealing vulnerable segments in Gongju and Iksan that require prioritized maintenance and mitigation. The framework also addresses data limitations by interpolating groundwater levels and estimating train speed using spatial techniques. Designed to be scalable and transferable, this methodology offers a practical decision-support tool for infrastructure managers and policymakers aiming to enhance the resilience of linear transport systems. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

24 pages, 6558 KiB  
Article
Utilizing Forest Trees for Mitigation of Low-Frequency Ground Vibration Induced by Railway Operation
by Zeyu Zhang, Xiaohui Zhang, Zhiyao Tian and Chao He
Appl. Sci. 2025, 15(15), 8618; https://doi.org/10.3390/app15158618 (registering DOI) - 4 Aug 2025
Viewed by 23
Abstract
Forest trees have emerged as a promising passive solution for mitigating low-frequency ground vibrations generated by railway operations, offering ecological and cost-effective advantages. This study proposes a three-dimensional semi-analytical method developed for evaluating the dynamic responses of the coupled track–ground–tree system. The thin-layer [...] Read more.
Forest trees have emerged as a promising passive solution for mitigating low-frequency ground vibrations generated by railway operations, offering ecological and cost-effective advantages. This study proposes a three-dimensional semi-analytical method developed for evaluating the dynamic responses of the coupled track–ground–tree system. The thin-layer method is employed to derive an explicit Green’s function corresponding to a har-monic point load acting on a layered half-space, which is subsequently applied to couple the foundation with the track system. The forest trees are modeled as surface oscillators coupled on the ground surface to evaluate the characteristics of multiple scattered wavefields. The vibration attenuation capacity of forest trees in mitigating railway-induced ground vibrations is systematically investigated using the proposed method. In the direction perpendicular to the track on the ground surface, a graded array of forest trees with varying heights is capable of forming a broad mitigation frequency band below 80 Hz. Due to the interaction of wave fields excited by harmonic point loads at multiple locations, the attenuation performance of the tree system varies significantly across different positions on the surface. The influence of variability in tree height, radius, and density on system performance is subsequently examined using a Monte Carlo simulation. Despite the inherent randomness in tree characteristics, the forest still demonstrates notable attenuation effectiveness at frequencies below 80 Hz. Among the considered parameters, variations in tree height exert the most pronounced effect on the uncertainty of attenuation performance, followed sequentially by variations in density and radius. Full article
Show Figures

Figure 1

22 pages, 6689 KiB  
Article
Design and Implementation of a Sun Outage Simulation System with High Uniformity and Stray Light Suppression Capability
by Zhen Mao, Zhaohui Li, Yong Liu, Limin Gao and Jianke Zhao
Sensors 2025, 25(15), 4655; https://doi.org/10.3390/s25154655 - 27 Jul 2025
Viewed by 354
Abstract
To enable accurate evaluation of satellite laser communication terminals under solar outage interference, this paper presents the design and implementation of a solar radiation simulation system targeting the 1540–1560 nm communication band. The system reconstructs co-propagating interference conditions through standardized and continuously tunable [...] Read more.
To enable accurate evaluation of satellite laser communication terminals under solar outage interference, this paper presents the design and implementation of a solar radiation simulation system targeting the 1540–1560 nm communication band. The system reconstructs co-propagating interference conditions through standardized and continuously tunable output, based on high irradiance and spectral uniformity. A compound beam homogenization structure—combining a multimode fiber and an apodizator—achieves 85.8% far-field uniformity over a 200 mm aperture. A power–spectrum co-optimization strategy is introduced for filter design, achieving a spectral matching degree of 78%. The system supports a tunable output from 2.5 to 130 mW with a 50× dynamic range and maintains power control accuracy within ±0.9%. To suppress internal background interference, a BRDF-based optical scattering model is established to trace primary and secondary stray light paths. Simulation results show that by maintaining the surface roughness of key mirrors below 2 nm and incorporating a U-shaped reflective light trap, stray light levels can be reduced to 5.13 × 10−12 W, ensuring stable detection of a 10−10 W signal at a 10:1 signal-to-background ratio. Experimental validation confirms that the system can faithfully reproduce solar outage conditions within a ±3° field of view, achieving consistent performance in spectrum shaping, irradiance uniformity, and background suppression. The proposed platform provides a standardized and practical testbed for ground-based anti-interference assessment of optical communication terminals. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

18 pages, 2878 KiB  
Article
Flow Field Reconstruction and Prediction of Powder Fuel Transport Based on Scattering Images and Deep Learning
by Hongyuan Du, Zhen Cao, Yingjie Song, Jiangbo Peng, Chaobo Yang and Xin Yu
Sensors 2025, 25(15), 4613; https://doi.org/10.3390/s25154613 - 25 Jul 2025
Viewed by 156
Abstract
This paper presents the flow field reconstruction and prediction of powder fuel transport systems based on representative feature extraction from scattering images using deep learning techniques. A laboratory-built powder fuel supply system was used to conduct scattering spectroscopy experiments on boron-based fuel under [...] Read more.
This paper presents the flow field reconstruction and prediction of powder fuel transport systems based on representative feature extraction from scattering images using deep learning techniques. A laboratory-built powder fuel supply system was used to conduct scattering spectroscopy experiments on boron-based fuel under various flow rate conditions. Based on the acquired scattering images, a prediction and reconstruction method was developed using a deep network framework composed of a Stacked Autoencoder (SAE), a Backpropagation Neural Network (BP), and a Long Short-Term Memory (LSTM) model. The proposed framework enables accurate classification and prediction of the dynamic evolution of flow structures based on learned representations from scattering images. Experimental results show that the feature vectors extracted by the SAE form clearly separable clusters in the latent space, leading to high classification accuracy under varying flow conditions. In the prediction task, the feature vectors predicted by the LSTM exhibit strong agreement with ground truth, with average mean square error, mean absolute error, and r-square values of 0.0027, 0.0398, and 0.9897, respectively. Furthermore, the reconstructed images offer a visual representation of the changing flow field, validating the model’s effectiveness in structure-level recovery. These results suggest that the proposed method provides reliable support for future real-time prediction of powder fuel mass flow rates based on optical sensing and imaging techniques. Full article
(This article belongs to the Special Issue Important Achievements in Optical Measurements in China 2024–2025)
Show Figures

Figure 1

19 pages, 2243 KiB  
Article
Theoretical Calculation of Ground and Electronically Excited States of MgRb+ and SrRb+ Molecular Ions: Electronic Structure and Prospects of Photo-Association
by Mohamed Farjallah, Hela Ladjimi, Wissem Zrafi and Hamid Berriche
Atoms 2025, 13(8), 69; https://doi.org/10.3390/atoms13080069 - 25 Jul 2025
Viewed by 307
Abstract
In this work, a comprehensive theoretical investigation is carried out to explore the electronic and spectroscopic properties of selected diatomic molecular ions MgRb+ and SrRb+. Using high-level ab initio calculations based on a pseudopotential approach, along with large Gaussian basis [...] Read more.
In this work, a comprehensive theoretical investigation is carried out to explore the electronic and spectroscopic properties of selected diatomic molecular ions MgRb+ and SrRb+. Using high-level ab initio calculations based on a pseudopotential approach, along with large Gaussian basis sets and full valence configuration interaction (FCI), we accurately determine adiabatic potential energy curves, spectroscopic constants, transition dipole moments (TDMs), and permanent electric dipole moments (PDMs). To deepen our understanding of these systems, we calculate radiative lifetimes for vibrational levels in both ground and low-lying excited electronic states. This includes evaluating spontaneous and stimulated emission rates, as well as the effects of blackbody radiation. We also compute Franck–Condon factors and analyze photoassociation processes for both ions. Furthermore, to explore low-energy collisional dynamics, we investigate elastic scattering in the first excited states (21Σ+) describing the collision between the Ra atom and Mg+ or Sr+ ions. Our findings provide detailed insights into the theoretical electronic structure of these molecular ions, paving the way for future experimental studies in the field of cold and ultracold molecular ion physics. Full article
Show Figures

Figure 1

22 pages, 12779 KiB  
Article
An Improved General Five-Component Scattering Power Decomposition Method
by Yu Wang, Daqing Ge, Bin Liu, Weidong Yu and Chunle Wang
Remote Sens. 2025, 17(15), 2583; https://doi.org/10.3390/rs17152583 - 24 Jul 2025
Viewed by 147
Abstract
The coherency matrix serves as a valuable tool for explaining the intricate details of various terrain targets. However, a significant challenge arises when analyzing ground targets with similar scattering characteristics in polarimetric synthetic aperture radar (PolSAR) target decomposition. Specifically, the overestimation of volume [...] Read more.
The coherency matrix serves as a valuable tool for explaining the intricate details of various terrain targets. However, a significant challenge arises when analyzing ground targets with similar scattering characteristics in polarimetric synthetic aperture radar (PolSAR) target decomposition. Specifically, the overestimation of volume scattering (OVS) introduces ambiguity in characterizing the scattering mechanism and uncertainty in deciphering the scattering mechanism of large oriented built-up areas. To address these challenges, based on the generalized five-component decomposition (G5U), we propose a hierarchical extension of the G5U method, termed ExG5U, which incorporates orientation and phase angles into the matrix rotation process. The resulting transformed coherency matrices are then subjected to a five-component decomposition framework, enhanced with four refined volume scattering models. Additionally, we have reformulated the branch conditions to facilitate more precise interpretations of scattering mechanisms. To validate the efficacy of the proposed method, we have conducted comprehensive evaluations using diverse PolSAR datasets from Gaofen-3, Radarsat-2, and ESAR, covering varying data acquisition timelines, sites, and frequency bands. The findings indicate that the ExG5U method proficiently captures the scattering characteristics of ambiguous regions and shows promising potential in mitigating OVS, ultimately facilitating a more accurate portrayal of scattering mechanisms of various terrain types. Full article
Show Figures

Graphical abstract

16 pages, 2088 KiB  
Article
Research on the Composite Scattering Characteristics of a Rough-Surfaced Vehicle over Stratified Media
by Chenzhao Yan, Xincheng Ren, Jianyu Huang, Yuqing Wang and Xiaomin Zhu
Appl. Sci. 2025, 15(15), 8140; https://doi.org/10.3390/app15158140 - 22 Jul 2025
Viewed by 160
Abstract
To meet the requirements for radar echo acquisition and feature extraction from stratified media and rough-surfaced targets, a vehicle was geometrically modelled in CAD. Monte Carlo techniques were applied to generate the rough interfaces at air–snow and snow–soil boundaries and over the vehicle [...] Read more.
To meet the requirements for radar echo acquisition and feature extraction from stratified media and rough-surfaced targets, a vehicle was geometrically modelled in CAD. Monte Carlo techniques were applied to generate the rough interfaces at air–snow and snow–soil boundaries and over the vehicle surface. Soil complex permittivity was characterized with a four-component mixture model, while snow permittivity was described using a mixed-media dielectric model. The composite electromagnetic scattering from a rough-surfaced vehicle on snow-covered soil was then analyzed with the finite-difference time-domain (FDTD) method. Parametric studies examined how incident angle and frequency, vehicle orientation, vehicle surface root mean square (RMS) height, snow liquid water content and depth, and soil moisture influence the composite scattering coefficient. Results indicate that the coefficient oscillates with scattering angle, producing specular reflection lobes; it increases monotonically with larger incident angles, higher frequencies, greater vehicle RMS roughness, and higher snow liquid water content. By contrast, its dependence on snow thickness, vehicle orientation, and soil moisture is complex and shows no clear trend. Full article
Show Figures

Figure 1

17 pages, 11610 KiB  
Article
Exploring the Impact of Species Participation Levels on the Performance of Dominant Plant Identification Models in the Sericite–Artemisia Desert Grassland by Using Deep Learning
by Wenhao Liu, Guili Jin, Wanqiang Han, Mengtian Chen, Wenxiong Li, Chao Li and Wenlin Du
Agriculture 2025, 15(14), 1547; https://doi.org/10.3390/agriculture15141547 - 18 Jul 2025
Viewed by 279
Abstract
Accurate plant species identification in desert grasslands using hyperspectral data is a critical prerequisite for large-scale, high-precision grassland monitoring and management. However, due to prolonged overgrazing and the inherent ecological vulnerability of the environment, sericite–Artemisia desert grassland has experienced significant ecological degradation. [...] Read more.
Accurate plant species identification in desert grasslands using hyperspectral data is a critical prerequisite for large-scale, high-precision grassland monitoring and management. However, due to prolonged overgrazing and the inherent ecological vulnerability of the environment, sericite–Artemisia desert grassland has experienced significant ecological degradation. Therefore, in this study, we obtained spectral images of the grassland in April 2022 using a Soc710 VP imaging spectrometer (Surface Optics Corporation, San Diego, CA, USA), which were classified into three levels (low, medium, and high) based on the level of participation of Seriphidium transiliense (Poljakov) Poljakov and Ceratocarpus arenarius L. in the community. The optimal index factor (OIF) was employed to synthesize feature band images, which were subsequently used as input for the DeepLabv3p, PSPNet, and UNet deep learning models in order to assess the influence of species participation on classification accuracy. The results indicated that species participation significantly impacted spectral information extraction and model classification performance. Higher participation enhanced the scattering of reflectivity in the canopy structure of S. transiliense, while the light saturation effect of C. arenarius was induced by its short stature. Band combinations—such as Blue, Red Edge, and NIR (BREN) and Red, Red Edge, and NIR (RREN)—exhibited strong capabilities in capturing structural vegetation information. The identification model performances were optimal, with a high level of S. transiliense participation and with DeepLabv3p, PSPNet, and UNet achieving an overall accuracy (OA) of 97.86%, 96.51%, and 98.20%. Among the tested models, UNet exhibited the highest classification accuracy and robustness with small sample datasets, effectively differentiating between S. transiliense, C. arenarius, and bare ground. However, when C. arenarius was the primary target species, the model’s performance declined as its participation levels increased, exhibiting significant omission errors for S. transiliense, whose producer’s accuracy (PA) decreased by 45.91%. The findings of this study provide effective technical means and theoretical support for the identification of plant species and ecological monitoring in sericite–Artemisia desert grasslands. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

21 pages, 15482 KiB  
Article
InSAR Detection of Slow Ground Deformation: Taking Advantage of Sentinel-1 Time Series Length in Reducing Error Sources
by Machel Higgins and Shimon Wdowinski
Remote Sens. 2025, 17(14), 2420; https://doi.org/10.3390/rs17142420 - 12 Jul 2025
Viewed by 360
Abstract
Using interferometric synthetic aperture radar (InSAR) to observe slow ground deformation can be challenging due to many sources of error, with tropospheric phase delay and unwrapping errors being the most significant. While analytical methods, weather models, and data exist to mitigate tropospheric error, [...] Read more.
Using interferometric synthetic aperture radar (InSAR) to observe slow ground deformation can be challenging due to many sources of error, with tropospheric phase delay and unwrapping errors being the most significant. While analytical methods, weather models, and data exist to mitigate tropospheric error, most of these techniques are unsuitable for all InSAR applications (e.g., complex tropospheric mixing in the tropics) or are deficient in spatial or temporal resolution. Likewise, there are methods for removing the unwrapping error, but they cannot resolve the true phase when there is a high prevalence (>40%) of unwrapping error in a set of interferograms. Applying tropospheric delay removal techniques is unnecessary for C-band Sentinel-1 InSAR time series studies, and the effect of unwrapping error can be minimized if the full dataset is utilized. We demonstrate that using interferograms with long temporal baselines (800 days to 1600 days) but very short perpendicular baselines (<5 m) (LTSPB) can lower the velocity detection threshold to 2 mm y−1 to 3 mm y−1 for long-term coherent permanent scatterers. The LTSPB interferograms can measure slow deformation rates because the expected differential phases are larger than those of small baselines and potentially exceed the typical noise amplitude while also reducing the sensitivity of the time series estimation to the noise sources. The method takes advantage of the Sentinel-1 mission length (2016 to present), which, for most regions, can yield up to 300 interferograms that meet the LTSPB baseline criteria. We demonstrate that low velocity detection can be achieved by comparing the expected LTSPB differential phase measurements to synthetic tests and tropospheric delay from the Global Navigation Satellite System. We then characterize the slow (~3 mm/y) ground deformation of the Socorro Magma Body, New Mexico, and the Tampa Bay Area using LTSPB InSAR analysis. The method we describe has implications for simplifying the InSAR time series processing chain and enhancing the velocity detection threshold. Full article
Show Figures

Graphical abstract

16 pages, 9897 KiB  
Article
Combination of High-Rate Ionosonde Measurements with COSMIC-2 Radio Occultation Observations for Reference Ionosphere Applications
by Iurii Cherniak, David Altadill, Irina Zakharenkova, Víctor de Paula, Víctor Navas-Portella, Douglas Hunt, Antoni Segarra and Ivan Galkin
Atmosphere 2025, 16(7), 804; https://doi.org/10.3390/atmos16070804 - 1 Jul 2025
Viewed by 315
Abstract
Knowledge of ionospheric plasma altitudinal distribution is crucial for the effective operation of radio wave propagation, communication, and navigation systems. High-frequency sounding radars—ionosondes—provide unbiased benchmark measurements of ionospheric plasma density due to a direct relationship between the frequency of sound waves and ionospheric [...] Read more.
Knowledge of ionospheric plasma altitudinal distribution is crucial for the effective operation of radio wave propagation, communication, and navigation systems. High-frequency sounding radars—ionosondes—provide unbiased benchmark measurements of ionospheric plasma density due to a direct relationship between the frequency of sound waves and ionospheric electron density. But ground-based ionosonde observations are limited by the F2 layer peak height and cannot probe the topside ionosphere. GNSS Radio Occultation (RO) onboard Low-Earth-Orbiting satellites can provide measurements of plasma distribution from the lower ionosphere up to satellite orbit altitudes (~500–600 km). The main goal of this study is to investigate opportunities to obtain full observation-based ionospheric electron density profiles (EDPs) by combining advantages of ground-based ionosondes and GNSS RO. We utilized the high-rate Ebre and El Arenosillo ionosonde observations and COSMIC-2 RO EDPs colocated over the ionosonde’s area of operation. Using two types of ionospheric remote sensing techniques, we demonstrated how to create the combined ionospheric EDPs based solely on real high-quality observations from both the bottomside and topside parts of the ionosphere. Such combined EDPs can serve as an analogy for incoherent scatter radar-derived “full profiles”, providing a reference for the altitudinal distribution of ionospheric plasma density. Using the combined reference EDPs, we analyzed the performance of the International Reference Ionosphere model to evaluate model–data discrepancies. Hence, these new profiles can play a significant role in validating empirical models of the ionosphere towards their further improvements. Full article
Show Figures

Figure 1

24 pages, 18914 KiB  
Article
Canopy Chlorophyll Content Inversion of Mountainous Heterogeneous Grasslands Based on the Synergy of Ground Hyperspectral and Sentinel-2 Data: A New Vegetation Index Approach
by Yi Zheng, Yao Wang, Tayir Aziz, Ali Mamtimin, Yang Li and Yan Liu
Remote Sens. 2025, 17(13), 2149; https://doi.org/10.3390/rs17132149 - 23 Jun 2025
Viewed by 435
Abstract
Canopy chlorophyll content (CCC) is a key indicator for assessing the carbon sequestration capacity and material cycling efficiency of ecosystems, and its accurate retrieval holds significant importance for analyzing ecosystem functioning. Although numerous destructive and remote sensing methods have been developed to estimate [...] Read more.
Canopy chlorophyll content (CCC) is a key indicator for assessing the carbon sequestration capacity and material cycling efficiency of ecosystems, and its accurate retrieval holds significant importance for analyzing ecosystem functioning. Although numerous destructive and remote sensing methods have been developed to estimate CCC, the accurate estimation of CCC remains a significant challenge in mountainous regions with complex terrain and heterogeneous vegetation types. Through the synergistic analysis of ground hyperspectral and Sentinel-2 data, this study employed Pearson correlation analysis and spectral resampling techniques to identify Sentinel-2 blue band B1 (443 nm) and red band B4 (665 nm) as chlorophyll-sensitive bands through spectral matching with the hyperspectral reflectance of typical grassland vegetation. Based on this, we developed a new four-band vegetation index (VI), the Dual Red-edge and Coastal Aerosol Vegetation Index (DRECAVI), for estimating the CCC of heterogeneous grasslands in the middle section of the Tianshan Mountains. DRECAVI incorporates red-edge anti-saturation modules (bands B4 and B7) and aerosol correction modules (bands B1 and B8). In order to test the performance of the new index, we compared it with eight commonly used indices and a hybrid model, the Sentinel-2 Biophysical Processor (S2BP). The results indicated the following: (1) DRECAVI demonstrated the highest accuracy in CCC retrieval for mountainous vegetation (R2 = 0.74, RMSE = 16.79, MAE = 12.50) compared to other VIs and hybrid methods, effectively mitigating saturation effects in high biomass areas and capturing a weak bimodal distribution pattern of CCC in the montane meadow. (2) The blue band B1 enhances atmospheric correction robustness by suppressing aerosol scattering, and the red-edge band B7 overcomes the sensitivity limitations of conventional red-edge indices (such as NDVI705, CIred-edge, and NDRE), demonstrating the potential application of the synergy mechanism between the blue band and the red-edge band. (3) Although the S2BP achieved high accuracy (R2 = 0.73, RMSE = 19.83, MAE = 14.71) without saturation effects and detected a bimodal distribution of CCC in the montane meadow of the study area, its algorithmic complexity hindered large-scale operational applications. In contrast, DRECAVI maintained similar precision while reducing algorithmic complexity, making it more suitable for regional-scale grassland dynamic monitoring. This study confirms that the synergistic use of multi-source data effectively overcomes the limitations of the spectral–spatial resolution of a single data source, providing a novel methodology for the precision monitoring of mountain ecosystems. Full article
Show Figures

Figure 1

22 pages, 2561 KiB  
Article
JPSS-4 VIIRS Pre-Launch Calibration Performance and Assessment
by Amit Angal, David Moyer, Xiaoxiong Xiong, Daniel Link, Thomas Schwarting, Jeff McIntire, Qiang Ji and Chengbo Sun
Remote Sens. 2025, 17(13), 2146; https://doi.org/10.3390/rs17132146 - 23 Jun 2025
Viewed by 311
Abstract
The Joint Polar Satellite System (JPSS) is a collaborative program between NASA and NOAA to provide scientific measurements from multiple polar-orbiting satellites. The development, testing, launch, and operation of the satellites is jointly overseen by NASA and NOAA, with NASA responsible for developing [...] Read more.
The Joint Polar Satellite System (JPSS) is a collaborative program between NASA and NOAA to provide scientific measurements from multiple polar-orbiting satellites. The development, testing, launch, and operation of the satellites is jointly overseen by NASA and NOAA, with NASA responsible for developing and building instruments, spacecraft, ground systems, and launching into orbit. While three VIIRS instruments are currently on-orbit, spacecraft integration of the two VIIRS instruments planned for launch on the JPSS-3 and -4 spacecraft is ongoing. The latest build in the series, set to be launched on the JPSS-4 platform, recently completed its main ground calibration program at the vendor facility. This program covered a comprehensive series of performance metrics designed to ensure that the instrument can maintain its calibration successfully on-orbit. In this paper, we present the results from the radiometric calibration process, which includes metrics such as dynamic range, signal-to-noise ratio, noise equivalent differential temperature, polarization sensitivity, scattered light response, relative spectral response, response versus scan angle, and crosstalk. All key metrics have met or exceeded their design requirements, with some minor exceptions. Also included are comparisons with previous VIIRS instruments, as well as a description of their expected performance once on-orbit. Full article
(This article belongs to the Collection The VIIRS Collection: Calibration, Validation, and Application)
Show Figures

Figure 1

26 pages, 4998 KiB  
Article
Comprehensive Validation of MODIS-MAIAC Aerosol Products and Long-Term Aerosol Detection over an Urban–Rural Area Around Rome in Central Italy
by Valentina Terenzi, Patrizio Tratzi, Valerio Paolini, Antonietta Ianniello, Francesca Barnaba and Cristiana Bassani
Remote Sens. 2025, 17(12), 2051; https://doi.org/10.3390/rs17122051 - 14 Jun 2025
Viewed by 617
Abstract
Aerosols play a crucial role in air quality, climate regulation, and public health; their timely monitoring is hence fundamental. The aerosol optical depth (AOD) is the parameter used to investigate the spatial–temporal distribution of aerosols from space. Specifically, the AOD retrieved from the [...] Read more.
Aerosols play a crucial role in air quality, climate regulation, and public health; their timely monitoring is hence fundamental. The aerosol optical depth (AOD) is the parameter used to investigate the spatial–temporal distribution of aerosols from space. Specifically, the AOD retrieved from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm applied to a Moderate Resolution Imaging Spectroradiometer (MODIS) is suitable for aerosol investigation at a local scale by exploiting its high spatial resolution (1 km × 1 km). In this study, the MAIAC AOD retrieval over Rome (Italy) was validated for the first time, using ground-based data provided by an AERONET station operating in a semi-rural environment close to the city, over a time series from January 2001 to December 2022. Moreover, AOD trends were evaluated in a study area encompassing Rome and its surroundings, characterized by a transition zone between urban and rural environments. The results show a general underestimation of the MAIAC AOD; specifically, the validation process highlighted the less accurate performance of the algorithm under higher aerosol loading and with predominantly coarse mode aerosol. Interesting results were obtained concerning the influence of the geometrical configuration of satellite acquisition on the accuracy of the MAIAC product. In particular, the solar zenith angle, the relative azimuth and the scattering angle between the principal plane of the sun and satellite synergistically influence retrievals. Finally, the spatial distribution of the AOD shows a decreasing trend over the 2001–2022 period and a strong influence of the city of Rome over the whole study area. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

16 pages, 18276 KiB  
Article
Accurate Terrain Modeling After Dark: Evaluating Nighttime Thermal UAV-Derived DSMs
by Nizar Polat, Abdulkadir Memduhoğlu and Yunus Kaya
Drones 2025, 9(6), 430; https://doi.org/10.3390/drones9060430 - 13 Jun 2025
Viewed by 505
Abstract
Nighttime terrain mapping has remained a significant challenge in photogrammetry due to the absence of visible light required by conventional imaging systems. This study evaluates the feasibility of generating Digital Surface Models (DSMs) from nighttime aerial thermal imagery using structure-from-motion photogrammetry. A DJI [...] Read more.
Nighttime terrain mapping has remained a significant challenge in photogrammetry due to the absence of visible light required by conventional imaging systems. This study evaluates the feasibility of generating Digital Surface Models (DSMs) from nighttime aerial thermal imagery using structure-from-motion photogrammetry. A DJI Mavic 3 Enterprise Thermal Unmanned Aerial Vehicle (UAV) captured 1746 images at 35 m altitude over a 9.4-hectare campus environment. Reflective aluminum sheets served as ground control points, ensuring visibility in thermal imagery under nocturnal conditions. The resulting thermal DSM achieved a point density of 0.117 points/cm2. Statistical analysis of four independent checkpoints yielded a root mean square error (RMSE) of 0.0522 m, a mean error (ME) of −0.052 m, and a standard deviation (SD) of 0.0054 m, indicating high vertical accuracy with minimal scatter around the systematic bias. Comparison with a reference RGB-based DSM revealed a correlation coefficient of 0.975, demonstrating strong spatial agreement. These results establish that high-quality DSMs can be generated solely from nighttime thermal imagery, providing a viable alternative for applications requiring 24-h operational capability, including emergency response, post-disaster assessment, and nocturnal environmental monitoring where traditional photogrammetry is impractical. Full article
(This article belongs to the Special Issue Unconventional Drone-Based Surveying 2nd Edition)
Show Figures

Figure 1

Back to TopTop