Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = grooved liquid seal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 9727 KiB  
Article
An Experimental and Theoretical Analysis of Upstream Pumping Effect of Deep Spiral Grooves on Mechanical Face Seals
by Shaoxian Bai, Jiaqi Liu and Jing Yang
Materials 2025, 18(12), 2877; https://doi.org/10.3390/ma18122877 - 18 Jun 2025
Viewed by 915
Abstract
The upstream pumping effect of mechanical face seals has a significant influence on their sealing performance. In order to reveal the effect of deep grooves on upstream pumping effects, an experimental and theoretical analysis is carried out in this study. The main novelty [...] Read more.
The upstream pumping effect of mechanical face seals has a significant influence on their sealing performance. In order to reveal the effect of deep grooves on upstream pumping effects, an experimental and theoretical analysis is carried out in this study. The main novelty of this paper is to analyze the feasibility of deep grooves in a mechanical seal design from the perspective of cavitation and leakage rate. Firstly, an upstream pumping spiral groove is designed and fabricated, with different groove depths from 2 μm to 90 μm. Then, testing is performed with water as the sealing medium. Finally, the cavitation phenomena are captured, and leakage rates are measured during the experiment. The obtained results show that the groove with a depth of tens of microns can be designed according to the laminar flow hypothesis, and Reynolds equation is still valid to predict the cavitation and leakage rate theoretically. The spiral groove with a depth of tens of microns shows a significant upstream pumping effect. Both the theoretical and experimental analyses show that under certain working conditions, deep grooves can realize the zero-leakage sealing design of liquid, which might provide significant guidance for the sealing design of mechanical face seals to enhance sealing performance. Full article
Show Figures

Figure 1

21 pages, 19797 KiB  
Article
Thermal Cavitation Effect on the Hydrodynamic Performance of Spiral Groove Liquid Face Seals
by Yuansen Song and Shaoxian Bai
Materials 2024, 17(11), 2505; https://doi.org/10.3390/ma17112505 - 23 May 2024
Viewed by 938
Abstract
Cavitation in micro-scale lubricating film could be determined by the fluid’s thermal properties, which impacts the hydrodynamic lubrication capacity dramatically. This study aimed to novelly investigate the impact of the thermal cavitation effect on the hydrodynamic performance of liquid face seals, employing the [...] Read more.
Cavitation in micro-scale lubricating film could be determined by the fluid’s thermal properties, which impacts the hydrodynamic lubrication capacity dramatically. This study aimed to novelly investigate the impact of the thermal cavitation effect on the hydrodynamic performance of liquid face seals, employing the compressible cavitation model, viscosity–temperature effect, and energy equation. The finite difference method was adopted to analyze the thermal cavitation by calculating the pressure and temperature profiles of the lubricating film. The working conditions and geometric configuration of liquid face seals under different thermal cases were further studied to explore their effects on sealing performance. The results showed that thermal cavitation could reduce the temperature difference of liquid film at high speeds, and cavitation would be weakened under temperature gradients, which further dropped off the hydrodynamic performance. Contrary to the leakage rate, the opening forces tended to be lower with the increasing seal pressure and film thickness under high-temperature gradients. Furthermore, apart from the spiral angle of grooves, the hydrodynamic performance exhibited significant variation with increasing groove depth, number, and radius at high-temperature gradients, which meant that the thermal cavitation effect should be considered in the design of geometric grooves to obtain better hydrodynamic performance. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

21 pages, 8587 KiB  
Article
Vaporization Phase Transition in Cryogenic Liquid Oxygen Sealing Film on Spiral Groove Faces
by Junjie Chen, Chunhong Ma, Shaoxian Bai and Jing Yang
Materials 2024, 17(6), 1443; https://doi.org/10.3390/ma17061443 - 21 Mar 2024
Viewed by 1502
Abstract
The property of vaporization phase transition in liquid oxygen face seals is a key factor affecting the stability of mechanical face seals in many fields, especially under cryogenic conditions. Here, a numerical model based on the saturated vapor pressure is established to investigate [...] Read more.
The property of vaporization phase transition in liquid oxygen face seals is a key factor affecting the stability of mechanical face seals in many fields, especially under cryogenic conditions. Here, a numerical model based on the saturated vapor pressure is established to investigate the vaporization phase transition property of liquid oxygen sealing film. The novelty of this model is to take the influence of heat transfer and face distortions into consideration at the same time. The pressure and temperature distributions as well as face distortions are calculated, and then the property of vaporization phase transition and sealing performance are analyzed. It is found that spiral grooves may lead to the complex film temperature distributions and irregular vaporization distributions. With the increase in seal temperature and decrease in seal pressure, the vaporization area extends from the low-pressure side to the grooves area, and the vaporization rate increases rapidly. The more important thing is that the vaporization often brings a drastic fluctuation and non-monotonic change in opening force. Specifically, with the increase inin seal temperature from 55 K to 140 K, the opening force fluctuates violently, and the fluctuation range is more than 50%, showing an obvious instability. Finally, this study provides a design range of pressure and temperature values for liquid oxygen face seals. In these ranges, this kind of face seals can have a stable operation, which is beneficial to the practice engineering related to the complex properties of sealing fluid. Full article
(This article belongs to the Topic Research on the Mechanical Wear of Gear-Shaped Parts)
Show Figures

Figure 1

16 pages, 3174 KiB  
Article
Reliability Evaluation of a Dynamic-Pressure Mechanical Seal Based on Liquid Film Vaporization Phase Transition
by Guangyao Bei, Xiaodong Xu, Chenbo Ma, Jianjun Sun, Yuyan Zhang and Qiuping Yu
Coatings 2024, 14(2), 233; https://doi.org/10.3390/coatings14020233 - 17 Feb 2024
Viewed by 1587
Abstract
Aiming at the problem of researching the reliability of dynamic-pressure mechanical seals, this paper proposes a reliability evaluation method for dynamic-pressure mechanical seals based on the Monte Carlo method. Based on the influence of the mass transfer coefficient on vaporization phase transition, a [...] Read more.
Aiming at the problem of researching the reliability of dynamic-pressure mechanical seals, this paper proposes a reliability evaluation method for dynamic-pressure mechanical seals based on the Monte Carlo method. Based on the influence of the mass transfer coefficient on vaporization phase transition, a liquid film vaporization model of a hydrodynamic mechanical seal’s end face is established, and the working condition parameters and groove structure parameters are designed using the experimental design method. The vaporization characteristics of the liquid film under various parameters are analyzed, and the functional functions of the vaporization characteristics are obtained by fitting. Combined with the maximum vapor phase volume fraction when the dynamic-pressure mechanical seal changes from the liquid miscible phase to the vapor miscible phase, the limit state equation of the vapor phase volume fraction is obtained. Finally, based on the Monte Carlo simulation method, the sealing reliability under specific groove structure parameters is calculated. Our research shows that this method has practicability and effectiveness for the reliability evaluation of mechanical seals with different working conditions and different groove structures. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

18 pages, 1004 KiB  
Article
Lubrication Film Friction Model for Grooved Annular Seals
by Robin M. Robrecht and Peter F. Pelz
Int. J. Turbomach. Propuls. Power 2023, 8(4), 45; https://doi.org/10.3390/ijtpp8040045 - 10 Nov 2023
Viewed by 1889
Abstract
Grooved liquid annular seals have a significant influence on the design of turbomachines. Corresponding lubrication film models need to account for the different friction behavior of the grooves compared to plain seals. However, there is a lack of reliable and validated models for [...] Read more.
Grooved liquid annular seals have a significant influence on the design of turbomachines. Corresponding lubrication film models need to account for the different friction behavior of the grooves compared to plain seals. However, there is a lack of reliable and validated models for this purpose. Thus, the applicability of a friction factor model is explored and a calibration method is presented. A single square groove is investigated by means of 96 steady-state RANS simulations for different operation conditions and groove geometries. The results are used to calibrate the friction model and successfully verify it in terms of the pressure drop over the groove. For validation, two full grooved seals with relatively large square grooves were investigated by experiment. The friction model was incorporated in a lubrication model and compared to the measurement data for the pressure difference and the resulting force for specified leakage and eccentricity. The model predictions for the pressure difference can be considered very good. The force predictions show significant deviation, but can be considered acceptable given the low force magnitudes and measurement uncertainty. The results offer a general validity to our friction model approach, assumptions and the calibration method. Full article
Show Figures

Figure 1

15 pages, 9568 KiB  
Article
The Tribological Performance of Frictional Pair of Gas–Liquid Miscible Backflow Pumping Seal in Oil–Air Environment
by Shicong Li, Haoran Liao, Jun Zhao and Shuangxi Li
Lubricants 2023, 11(5), 220; https://doi.org/10.3390/lubricants11050220 - 14 May 2023
Cited by 1 | Viewed by 1937
Abstract
The gas–liquid miscible backflow pumping seal (G-LMBPHS) is a non-contact mechanical seal that is suitable for high-speed bearing chambers. However, the tribological properties and wear mechanisms of the frictional pair of G-LMBPHS in an oil–air environment have not yet been comprehensively studied. In [...] Read more.
The gas–liquid miscible backflow pumping seal (G-LMBPHS) is a non-contact mechanical seal that is suitable for high-speed bearing chambers. However, the tribological properties and wear mechanisms of the frictional pair of G-LMBPHS in an oil–air environment have not yet been comprehensively studied. In this study, the tribological properties of six frictional pairs, consisting of three hard materials (18Cr2Ni4WA, Al2O3 coating, and Cr2O3 coating) and two soft materials (metal-impregnated graphite [Metal-IG] and resin-impregnated graphite [Resin-IG]), were analyzed using a disc-on-disc tribometer. An oil–air environment was created using a minimal quantity lubrication (MQL) system and a closed chamber. The results show that the COF of the four frictional pairs consisting of two coatings and two graphites decreases gradually with increasing rotational speed, and the frictional pairs composed of Al2O3 coating and Resin-IG and Cr2O3 coating and Resin-IG have the lowest COF between 0.022 and 0.03. Therefore, the frictional pairs of G-LMBPHS are in a mixed lubrication condition. The lubricant in the oil–air environment is adsorbed and stored in pits on the surface of graphite and coatings, enhancing the hydrodynamic effect of the spiral grooves and reducing the COF by up to 45%. Metal-IG has better wear resistance than Resin-IG, and the frictional pair consisting of Cr2O3 coating and Metal-IG has the lightest wear. This study provides an important basis for the selection of G-LMBPHS frictional pairs in oil–air environments. Full article
(This article belongs to the Special Issue Coatings and Lubrication in Extreme Environments)
Show Figures

Figure 1

14 pages, 8469 KiB  
Article
Numerical Simulation of a New Designed Mechanical Seals with Spiral Groove Structures
by Tao He, Qiangqiang Zhang, Ying Yan, Jintong Dong and Ping Zhou
Lubricants 2023, 11(2), 70; https://doi.org/10.3390/lubricants11020070 - 9 Feb 2023
Cited by 7 | Viewed by 3030
Abstract
The spiral groove seal has a strong hydrodynamic effect, but it has poor pollution resistance at the seal’s end and has unfavorable sealing stability. Circumferential waviness seals can use the fluid to clean the surface and have a strong ability to self-rush, protecting [...] Read more.
The spiral groove seal has a strong hydrodynamic effect, but it has poor pollution resistance at the seal’s end and has unfavorable sealing stability. Circumferential waviness seals can use the fluid to clean the surface and have a strong ability to self-rush, protecting the main cover from contamination. This study presents a novel wave-tilt-dam seal design that integrates spiral groove structures to enhance the hydrodynamic performance of circumferential waviness seals. The objective of the research is to evaluate the mechanical effectiveness of this new design through simulation modeling, with a focus on the impact of structural parameters such as rotational speed and seal pressure on the hydrodynamic behavior under various operating conditions. The results of the study indicate that the new structure effectively improves the hydrodynamic performance of the liquid seal, resulting in a significant increase in film rigidity. Additionally, the study identifies optimal values for structural parameters under specific conditions. By addressing the limitations of traditional spiral groove seals and improving their hydrodynamic performance, this research contributes to the advancement of seal technology. Full article
(This article belongs to the Special Issue Fluid–Structure Interaction in Bearings and Seals)
Show Figures

Figure 1

20 pages, 8601 KiB  
Article
The Optimization of a First-Stage Liquid-Sealing Impeller Structure for a Turbopump Based on Response Surface Methodology
by Qiong Liu, Suguo Zhuang, Haifeng Bao, Zhoufeng He, Kai Wang and Houlin Liu
Processes 2022, 10(10), 1999; https://doi.org/10.3390/pr10101999 - 3 Oct 2022
Cited by 4 | Viewed by 1790
Abstract
This study investigated the sealing performance of the multistage liquid-sealing impellers of a turbopump. To achieve this purpose, the influence of each structural parameter in the impeller on the pressurization coefficient φ2 and the leakage flow rate Q was analyzed based on [...] Read more.
This study investigated the sealing performance of the multistage liquid-sealing impellers of a turbopump. To achieve this purpose, the influence of each structural parameter in the impeller on the pressurization coefficient φ2 and the leakage flow rate Q was analyzed based on response surface methodology, taking the maximum pressurization coefficient φ2 and the minimum leakage flow rate Q as the optimization objectives. We obtained satisfactory ranges for parameters φ2 and Q. A set of parameter combinations was selected as the optimization scheme using the Box–Behnken method for the optimal solution design. The numerical simulation results show that to keep φ2 and Q in the better range, the value ranges of groove width b, groove depth h and groove number z should be (12.8–14 mm), (4.5–5.6 mm) and (23.5–28), respectively. Compared with the original model, the optimized version has an average increase of about 2.5% in pressurization coefficient φ2 at each rotation speed, an average of about 8.2% reduction in the leakage flow rate Q in the leakage state and an average increase in the reverse flow rate Q by about 6.7% in the negative pressure sealing state, indicating better sealing. By comparing pressure data at the experimental monitoring points, the proposed method was verified to have a high degree of confidence. Full article
Show Figures

Figure 1

22 pages, 9063 KiB  
Article
CFD-Predicted Rotordynamic Characteristics for High-Temperature Water Liquid Seal Considering Tooth Deformation
by Pingwei Chen, Tong Wang, Wensheng Ma, Zhongliang Xie and Guangbin Yu
Lubricants 2022, 10(10), 240; https://doi.org/10.3390/lubricants10100240 - 28 Sep 2022
Viewed by 1839
Abstract
With the development of high-temperature centrifugal pump, the temperature of the medium in the pump must be higher than the normal water temperature. It is particularly important to study the rotordynamic characteristics of the seal at high temperature due to it being the [...] Read more.
With the development of high-temperature centrifugal pump, the temperature of the medium in the pump must be higher than the normal water temperature. It is particularly important to study the rotordynamic characteristics of the seal at high temperature due to it being the core component of the rotor system. This paper takes the high temperature water liquid seal as a research object to study its rotordynamic characteristics based on the fluid-solid-thermal coupling, the deformation of seal teeth under thermal and dynamic loads was calculated. Based on the test rig, the leakage flow rate and drag power loss of water liquid seal at 20 °C, 50 °C, and 86 °C temperatures were tested and compared with the CFD (Computational Fluid Dynamics) calculation. Meanwhile, the DEFINE-CG-MOTION and DEFINE-PROFILE control macro were used to establish the rotor whirling equation, the frequency-independent rotordynamic coefficients (K, k, C, c) and frequency-dependent rotordynamic coefficients (Keff,Ceff) were evaluated by transient CFD method. This analysis was done at three different pressure drops (2.08, 4.12, and 8.25 bar) and three rotational speeds (2000, 4000, and 6000 r/min). The results show that with the increase of water temperature, both the leakage flow rate and drag power loss decrease, indicating the 86 °C water seal has a better sealing capacity. From the rotordynamic perspective, with the increase of water temperature, the direct stiffness coefficient decreases, and the effective stiffness coefficient Keff for 20 °C water seal possesses a better stiffness capability than the other two temperature seals. The effective damping coefficient Ceff for 20 °C water seal is larger than the other two temperature seals, which means it is more stable for the rotor system. Full article
Show Figures

Figure 1

18 pages, 10869 KiB  
Article
The Influence of Rotating Speed on the Sealing Characteristics of a Liquid-Sealing Impeller for a Liquid Oxygen Turbopump
by Suguo Zhuang, Haifeng Bao, Zhoufeng He, Kai Wang and Houlin Liu
Processes 2022, 10(7), 1366; https://doi.org/10.3390/pr10071366 - 13 Jul 2022
Cited by 4 | Viewed by 1789
Abstract
In order to explore the influence of rotating speed on the internal flow and sealing characteristics of the liquid-sealing impeller for a liquid oxygen turbopump of a rocket engine, unsteady numerical simulations of the flow characteristics and sealing performance of the first-stage liquid-sealing [...] Read more.
In order to explore the influence of rotating speed on the internal flow and sealing characteristics of the liquid-sealing impeller for a liquid oxygen turbopump of a rocket engine, unsteady numerical simulations of the flow characteristics and sealing performance of the first-stage liquid-sealing impeller for a liquid oxygen turbopump under liquid phase conditions were performed. The results show that the pressurization value increases with the increase in the rotating speed. The first-stage liquid-sealing impeller, whose structure is symmetrically distributed along the center of the rotation axis, tends to be an isobaric seal at a rotating speed of 12,000 rpm, and when the rotating speed is decreased or increased, it enters the leakage state or negative pressure sealing state, respectively. The matching relationship between the rotating speed and inlet pressure has a significant effect on the pressurization value, pressurization coefficient and leakage flow rate. Under the working condition with a good match between the rotating speed and inlet pressure, the pressurization value increases significantly and the leakage flow rate decreases significantly, and the pressurization coefficient is stable between 0.88 and 0.89. The empirical formulas proposed by Wood and the Shanghai Research Institute of Chemical Industry (1979) have high reference values for the design of the liquid-sealing impeller with a flow channel (groove) and retainer. Full article
Show Figures

Figure 1

20 pages, 7517 KiB  
Article
Effect of Surface Roughness on the Performance of a Shallow Spiral Groove Liquid Mechanical Seal
by Huilong Chen, Yingjian Chen, Ting Han, Yanxia Fu, Qian Cheng, Zepeng Wei and Bingjuan Zhao
Processes 2022, 10(4), 651; https://doi.org/10.3390/pr10040651 - 27 Mar 2022
Cited by 2 | Viewed by 3181
Abstract
Because surface roughness is similar to the size of the sealing gap in terms of scale, the effect of surface roughness on sealing performance must be considered. A calculation model determining the micro-gap flow and surface roughness is used to prove that the [...] Read more.
Because surface roughness is similar to the size of the sealing gap in terms of scale, the effect of surface roughness on sealing performance must be considered. A calculation model determining the micro-gap flow and surface roughness is used to prove that the existence of surface roughness can effectively improve the sealing performance and that it can especially improve the opening force. The results indicated that the opening force of the lubrication film increases as the surface roughness increases and that the growth rate increases as the rotating speed increases. Due to different roughness sensitivities, the opening force increases differently in different parts of the seal. With regard to leakage, the roughness of the rotating ring’s grooved zone only increases the negative leakage when the rotating speed is higher than 8000 rpm. When the non-grooved zone of the rotating ring is rough, it can inhibit the negative leakage flow and cause the negative leakage to become positive when the rotating speed is higher than 1000 rpm. When the end face of the stationary ring is rough, the amount of leakage decreases. Furthermore, the surface roughness increases the friction torque when the rotating speed is higher than 5000 rpm. When the rotating speed is in the range of 1000–10,000 rpm, the roughness of the non-grooved area and the end face of the rotating ring increase the opening force by 2.40~57.94% and 3.55~69.33%, respectively. Meanwhile, by defining SF and SQ, a scheme for providing sealing performance is provided. Full article
Show Figures

Figure 1

17 pages, 5163 KiB  
Article
Gas–Liquid Mass Transfer Behavior of Upstream Pumping Mechanical Face Seals
by Shaoxian Bai, Jialin Hao, Jing Yang and Yuansen Song
Materials 2022, 15(4), 1482; https://doi.org/10.3390/ma15041482 - 16 Feb 2022
Cited by 13 | Viewed by 2975
Abstract
For gas–liquid medium isolation seals in aero-engines, the upstream pumping function of directional grooves provides an effective way to realize the design of longer service life and lower leakage rate. However, this produces a new problem for gas–liquid mass transfer in the sealing [...] Read more.
For gas–liquid medium isolation seals in aero-engines, the upstream pumping function of directional grooves provides an effective way to realize the design of longer service life and lower leakage rate. However, this produces a new problem for gas–liquid mass transfer in the sealing clearance. This study establishes an analytical model to investigate the gas–liquid mass transfer behavior and the change rule for the opening force of mechanical face seals with elliptical grooves. Compared with traditional studies, this model considers not only the gas–liquid transfer but also the cavitation effect. The results obtained show that with the increase of rotational speed, the gas medium transferred from the inner low-pressure side to the outer high-pressure side. In addition, the leakage rate of the liquid medium from the outer high-pressure side to the inner low-pressure side increased with the growth of sealing clearance, rotational speed and seal pressure. The upstream pumping effect of the gas medium with elliptical grooves not only led to a state of gas–liquid mixed lubrication in the sealing surfaces, but also significantly increased the opening capacity of the seal face. This research may provide a reasonable basis for the design of upstream pumping mechanical face seals. Full article
(This article belongs to the Topic Research on the Mechanical Wear of Gear-Shaped Parts)
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

15 pages, 3469 KiB  
Article
Influence of Groove Structure Parameters Based on Optimal Mass Transfer Coefficient on Vaporization Characteristics and Sealing Performance of Liquid Film Mechanical Seals
by Xiaodong Xu, Chenbo Ma, Yuyan Zhang, Jianjun Sun and Qiuping Yu
Appl. Sci. 2021, 11(19), 8941; https://doi.org/10.3390/app11198941 - 25 Sep 2021
Cited by 2 | Viewed by 1719
Abstract
In this study, a spiral groove liquid film vaporization model based on the viscosity–temperature equation, fluid internal friction, saturation temperature, and pressure relationship equation was established. Using a multiphase flow model based on the finite volume method, the influence of the change in [...] Read more.
In this study, a spiral groove liquid film vaporization model based on the viscosity–temperature equation, fluid internal friction, saturation temperature, and pressure relationship equation was established. Using a multiphase flow model based on the finite volume method, the influence of the change in the mass transfer coefficient on the vaporization of the liquid film was studied. Moreover, the influence law of structural parameter changes in liquid film vaporization characteristics and sealing performance was analyzed. The results indicate that, with an increase in the mass transfer coefficient, the average vapor phase volume fraction first increases and then gradually stabilizes. When calculating the average vapor phase volume fraction, it is necessary to consider the influence of the mass transfer coefficient, whereas its effect on the opening force and leakage can usually be neglected. Under the optimal mass transfer coefficient conditions, the average vapor phase volume fraction increases with an increase in the helix angle, groove-weir ratio, and groove depth. By comparison, with an increase in the groove-diameter ratio, the average vapor phase volume fraction first increases and then decreases. The opening force decreases with an increase in the helix angle, groove-to-weir ratio, and groove depth. On the other hand, it first decreases and then increases with an increase in the groove-diameter ratio. The leakage rate increases first and then stabilizes with an increase in the helix angle. Moreover, it increases continuously with an increase in the groove-diameter ratio, groove-weir ratio, and groove depth. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

38 pages, 14218 KiB  
Article
Development and Research of Crosshead-Free Piston Hybrid Power Machine
by Viktor Shcherba, Viktor Shalay, Evgeniy Nosov, Evgeniy Pavlyuchenko and Ablai-Khan Tegzhanov
Machines 2021, 9(2), 32; https://doi.org/10.3390/machines9020032 - 5 Feb 2021
Cited by 7 | Viewed by 3184
Abstract
This article considers the development and research of a new design of crosshead-free piston hybrid power machine. After verification of a system of simplifying assumptions based on the fundamental laws of energy, mass, and motion conservation, as well as using the equation of [...] Read more.
This article considers the development and research of a new design of crosshead-free piston hybrid power machine. After verification of a system of simplifying assumptions based on the fundamental laws of energy, mass, and motion conservation, as well as using the equation of state, mathematical models of the work processes of the compressor section, pump section, and liquid flow in a groove seal have been developed. In accordance with the patent for the invention, a prototype of a crosshead-free piston hybrid power machine (PHPM) was developed; it was equipped with the necessary measuring equipment and a stand for studying the prototype. Using the developed mathematical model, the physical picture of the ongoing work processes in the compressor and pump sections is considered, taking into account their interaction through a groove seal. Using the developed plan, a set of experimental studies was carried out with the main operational parameters of the crosshead-free PHPM: operating processes, temperature of the cylinder–piston group and integral parameters (supply coefficient of the compressor section, volumetric efficiency of the pump section, etc.). As a result of numerical and experimental studies, it was determined that this PHPM design has better cooling of the compressor section (decrease in temperature of the valve plate is from 10 to 15 K; decrease in temperature of intake air is from 6 to 8 K, as well as there is increase in compressor and pump section efficiency up to 5%). Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

18 pages, 9797 KiB  
Article
Modifying Wicking Speeds in Paper-Based Microfluidic Devices by Laser-Etching
by Brent Kalish, Mick Kyle Tan and Hideaki Tsutsui
Micromachines 2020, 11(8), 773; https://doi.org/10.3390/mi11080773 - 14 Aug 2020
Cited by 25 | Viewed by 4317
Abstract
Paper-based microfluidic devices are an attractive platform for developing low-cost, point-of-care diagnostic tools. As paper-based devices’ detection chemistries become more complex, more complicated devices are required, often entailing the sequential delivery of different liquids or reagents to reaction zones. Most research into flow [...] Read more.
Paper-based microfluidic devices are an attractive platform for developing low-cost, point-of-care diagnostic tools. As paper-based devices’ detection chemistries become more complex, more complicated devices are required, often entailing the sequential delivery of different liquids or reagents to reaction zones. Most research into flow control has been focused on introducing delays. However, delaying the flow can be problematic due to increased evaporation leading to sample loss. We report the use of a CO2 laser to uniformly etch the surface of the paper to modify wicking speeds in paper-based microfluidic devices. This technique can produce both wicking speed increases of up to 1.1× faster and decreases of up to 0.9× slower. Wicking speeds can be further enhanced by etching both sides of the paper, resulting in wicking 1.3× faster than unetched channels. Channels with lengthwise laser-etched grooves were also compared to uniformly etched channels, with the most heavily grooved channels wicking 1.9× faster than the fastest double-sided etched channels. Furthermore, sealing both sides of the channel in packing tape results in the most heavily etched channels, single-sided, double-sided, and grooved, wicking over 13× faster than unetched channels. By selectively etching individual channels, different combinations of sequential fluid delivery can be obtained without altering any channel geometry. Laser etching is a simple process that can be integrated into the patterning of the device and requires no additional materials or chemicals, enabling greater flow control for paper-based microfluidic devices. Full article
(This article belongs to the Special Issue X-fluidics at the Micro/Nanoscale)
Show Figures

Figure 1

Back to TopTop