Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,858)

Search Parameters:
Keywords = grid spacing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2437 KB  
Article
Regression-Based Small Language Models for DER Trust Metric Extraction from Structured and Semi-Structured Data
by Nathan Hamill and Razi Iqbal
Big Data Cogn. Comput. 2026, 10(2), 39; https://doi.org/10.3390/bdcc10020039 (registering DOI) - 24 Jan 2026
Abstract
Renewable energy sources like wind turbines and solar panels are integrated into modern power grids as Distributed Energy Resources (DERs). These DERs can operate independently or as part of microgrids. Interconnecting multiple microgrids creates Networked Microgrids (NMGs) that increase reliability, resilience, and independent [...] Read more.
Renewable energy sources like wind turbines and solar panels are integrated into modern power grids as Distributed Energy Resources (DERs). These DERs can operate independently or as part of microgrids. Interconnecting multiple microgrids creates Networked Microgrids (NMGs) that increase reliability, resilience, and independent power generation. However, the trustworthiness of individual DERs remains a critical challenge in NMGs, particularly when integrating previously deployed or geographically distributed units managed by entities with varying expertise. Assessing DER trustworthiness ensuring reliability and security is essential to prevent system-wide instability. Thisresearch addresses this challenge by proposing a lightweight trust metric generation system capable of processing structured and semi-structured DER data to produce key trust indicators. The system employs a Small Language Model (SLM) with approximately 16 million parameters for textual data understanding and metric extraction, followed by a regression head to output bounded trust scores. Designed for deployment in computationally constrained environments, the SLM requires only 64.6 MB of disk space and 200–250 MB of memory that is significantly lesser than larger models such as DeepSeek R1, Gemma-2, and Phi-3, which demand 3–12 GB. Experimental results demonstrate that the SLM achieves high correlation and low mean error across all trust metrics while outperforming larger models in efficiency. When integrated into a full neural network-based trust framework, the generated metrics enable accurate prediction of DER trustworthiness. These findings highlight the potential of lightweight SLMs for reliable and resource-efficient trust assessment in NMGs, supporting resilient and sustainable energy systems in smart cities. Full article
Show Figures

Figure 1

17 pages, 2632 KB  
Article
Three-Dimensional Borehole–Surface TEM Forward Modeling with a Time-Parallel Method
by Sihao Wang, Hui Cao and Ruolong Ma
Appl. Sci. 2026, 16(3), 1161; https://doi.org/10.3390/app16031161 - 23 Jan 2026
Viewed by 19
Abstract
The three-dimensional borehole-to-surface transient electromagnetic (BSTEM) method plays a critical role in resolving subsurface conductivity structures under complex geological conditions. However, its application is often constrained by the high computational costs associated with large-scale simulations and fine temporal resolution. In this study, a [...] Read more.
The three-dimensional borehole-to-surface transient electromagnetic (BSTEM) method plays a critical role in resolving subsurface conductivity structures under complex geological conditions. However, its application is often constrained by the high computational costs associated with large-scale simulations and fine temporal resolution. In this study, a time-parallel forward modeling strategy is employed by integrating the finite volume method (FVM) with the Multigrid Reduction-in-Time (MGRIT) algorithm. Maxwell’s equations are discretized in space using unstructured octree meshes, while the MGRIT algorithm enables parallelism along the time axis through coarse–fine temporal grid hierarchy and multilevel iterative correction. Numerical experiments on synthetic and field-scale models demonstrate that the MGRIT-based solver significantly reduces computational time compared to conventional direct solvers, particularly when a large number of processors are utilized. In a field-scale hematite mine model, the MGRIT-based solver reduces the total runtime by more than 40% while maintaining numerical accuracy. The method exhibits parallel scalability and is especially advantageous in problems involving a large number of time channels, where simultaneous time-step updates offer substantial performance gains. These results confirm the effectiveness and robustness of the proposed approach for large-scale 3D TEM simulations under complex conditions and provide a practical foundation for future applications in high-resolution electromagnetic modeling and imaging. Full article
(This article belongs to the Special Issue Exploration Geophysics and Seismic Surveying)
Show Figures

Figure 1

28 pages, 6584 KB  
Article
Short-Term Wind Power Prediction with Improved Spatio-Temporal Modeling Accuracy: A Dynamic Graph Convolutional Network Based on Spatio-Temporal Information and KAN Enhancement
by Bo Wang, Zhao Wang, Xu Cao, Jiajun Niu, Zheng Wang and Miao Guo
Electronics 2026, 15(2), 487; https://doi.org/10.3390/electronics15020487 - 22 Jan 2026
Viewed by 12
Abstract
Aiming at the challenges of complex spatial-temporal correlation and strong nonlinearity in the power prediction of large-scale wind farm clusters, this study proposes a short-term wind power prediction method that combines a dynamic graph structure and a Kolmogorov–Arnold Network (KAN) enhanced neural network. [...] Read more.
Aiming at the challenges of complex spatial-temporal correlation and strong nonlinearity in the power prediction of large-scale wind farm clusters, this study proposes a short-term wind power prediction method that combines a dynamic graph structure and a Kolmogorov–Arnold Network (KAN) enhanced neural network. Firstly, a spectral embedding fuzzy C-means (FCM) cluster partition method combining geographic location and numerical weather prediction (NWP) is proposed to solve the problem of insufficient spatio-temporal representation ability of traditional methods. Secondly, a dynamic directed graph construction mechanism based on a stacked wind direction matrix and wind speed mutual information is designed to describe the directional correlation between stations with the evolution of meteorological conditions. Finally, a prediction model of dynamic graph convolution and Transformer based on KAN enhancement (DGTK-Net) is constructed to improve the fitting ability of complex nonlinear relationships. Based on the cluster data of 31 wind farms in Gansu Province of China and the cluster data of 70 wind farms in Inner Mongolia, a case study is carried out. The results show that the proposed model is significantly better than the comparison methods in terms of key evaluation indicators, and the root mean square error is reduced by about 1.16% on average. This method provides a prediction tool that can adapt to time and space changes for engineering practice, which is helpful to improve the wind power consumption capacity and operation economy of the power grid. Full article
Show Figures

Figure 1

16 pages, 3906 KB  
Article
S3PM: Entropy-Regularized Path Planning for Autonomous Mobile Robots in Dense 3D Point Clouds of Unstructured Environments
by Artem Sazonov, Oleksii Kuchkin, Irina Cherepanska and Arūnas Lipnickas
Sensors 2026, 26(2), 731; https://doi.org/10.3390/s26020731 (registering DOI) - 21 Jan 2026
Viewed by 96
Abstract
Autonomous navigation in cluttered and dynamic industrial environments remains a major challenge for mobile robots. Traditional occupancy-grid and geometric planning approaches often struggle in such unstructured settings due to partial observability, sensor noise, and the frequent presence of moving agents (machinery, vehicles, humans). [...] Read more.
Autonomous navigation in cluttered and dynamic industrial environments remains a major challenge for mobile robots. Traditional occupancy-grid and geometric planning approaches often struggle in such unstructured settings due to partial observability, sensor noise, and the frequent presence of moving agents (machinery, vehicles, humans). These limitations seriously undermine long-term reliability and safety compliance—both essential for Industry 4.0 applications. This paper introduces S3PM, a lightweight entropy-regularized framework for simultaneous mapping and path planning that operates directly on dense 3D point clouds. Its key innovation is a dynamics-aware entropy field that fuses per-voxel occupancy probabilities with motion cues derived from residual optical flow. Each voxel is assigned a risk-weighted entropy score that accounts for both geometric uncertainty and predicted object dynamics. This representation enables (i) robust differentiation between reliable free space and ambiguous/hazardous regions, (ii) proactive collision avoidance, and (iii) real-time trajectory replanning. The resulting multi-objective cost function effectively balances path length, smoothness, safety margins, and expected information gain, while maintaining high computational efficiency through voxel hashing and incremental distance transforms. Extensive experiments in both real-world and simulated settings, conducted on a Raspberry Pi 5 (with and without the Hailo-8 NPU), show that S3PM achieves 18–27% higher IoU in static/dynamic segmentation, 0.94–0.97 AUC in motion detection, and 30–45% fewer collisions compared to OctoMap + RRT* and standard probabilistic baselines. The full pipeline runs at 12–15 Hz on the bare Pi 5 and 25–30 Hz with NPU acceleration, making S3PM highly suitable for deployment on resource-constrained embedded platforms. Full article
(This article belongs to the Special Issue Mobile Robots: Navigation, Control and Sensing—2nd Edition)
Show Figures

Figure 1

25 pages, 3615 KB  
Article
Adaptive Hybrid Grid-Following and Grid-Forming Control with Hybrid Coefficient Transition Regulation for Transient Current Suppression
by Wujie Chao, Liyu Dai, Yichen Feng, Junwei Huang, Jinke Wang, Xinyi Lin and Chunpeng Zhang
Energies 2026, 19(2), 549; https://doi.org/10.3390/en19020549 - 21 Jan 2026
Viewed by 64
Abstract
With the increasing integration of renewable energy into power grids, voltage source converter-based high-voltage direct current (VSC-HVDC) stations often adopt hybrid grid-following (GFL) and grid-forming (GFM) control strategies to improve adaptability to varying grid strengths. In many existing schemes, the hybrid coefficient changes [...] Read more.
With the increasing integration of renewable energy into power grids, voltage source converter-based high-voltage direct current (VSC-HVDC) stations often adopt hybrid grid-following (GFL) and grid-forming (GFM) control strategies to improve adaptability to varying grid strengths. In many existing schemes, the hybrid coefficient changes abruptly, which may produce large transient current overshoots and compromise the safe and stable operation of converters. An adaptive hybrid GFL-GFM control framework equipped with a hybrid coefficient transition regulation is proposed. Small-signal state–space models are established and eigenvalue analysis confirms stability over the considered short-circuit ratio (SCR) range. The regulating method is activated only during coefficient transitions and is inactive in steady-state, thereby preserving the operating-point eigenvalue properties. Dynamic equations of the converter current change rate are derived to reveal the key role of the hybrid-coefficient change rate in driving transient current overshoots, based on which a real-time hybrid coefficient regulating method is developed to shape coefficient transitions. Simulations on a 500 kV/2100 MW VSC-HVDC project demonstrate reduced transient current overshoot and power oscillations during SCR variations, with robustness under moderate parameter deviations as well as representative SCR assessment error and update delay. Full article
Show Figures

Figure 1

20 pages, 6325 KB  
Article
A Rapid Prediction Model of Rainstorm Flood Targeting Power Grid Facilities
by Shuai Wang, Lei Shi, Xiaoli Hao, Xiaohua Ren, Qing Liu, Hongping Zhang and Mei Xu
Hydrology 2026, 13(1), 37; https://doi.org/10.3390/hydrology13010037 - 19 Jan 2026
Viewed by 101
Abstract
Rainstorm floods constitute one of the major natural hazards threatening the safe and stable operation of power grid facilities. Constructing a rapid and accurate prediction model is of great significance in order to enhance the disaster prevention capacity of the power grid. This [...] Read more.
Rainstorm floods constitute one of the major natural hazards threatening the safe and stable operation of power grid facilities. Constructing a rapid and accurate prediction model is of great significance in order to enhance the disaster prevention capacity of the power grid. This study proposes a rapid prediction model for urban rainstorm flood targeting power grid facilities based on deep learning. The model utilizes computational results of high-precision mechanism models as data-driven input and adopts a dual-branch prediction architecture of space and time: the spatial prediction module employs a multi-layer perceptron (MLP), and the temporal prediction module integrates convolutional neural network (CNN), long short-term memory network (LSTM), and attention mechanism (ATT). The constructed water dynamics model of the right bank of Liangshui River in Fengtai District of Beijing has been verified to be reliable in the simulation of the July 2023 (“23·7”) extreme rainstorm event in Beijing (the July 2023 event), which provides high-quality training and validation data for the deep learning-based surrogate model (SM model). Compared with traditional high-precision mechanism models, the SM model shows distinctive advantages: the R2 value of the overall inundation water depth prediction of the spatial prediction module reaches 0.9939, and the average absolute error of water depth is 0.013 m; the R2 values of temporal water depth processes prediction at all substations made by the temporal prediction module are all higher than 0.92. Only by inputting rainfall data can the water depth at power grid facilities be output within seconds, providing an effective tool for rapid assessment of flood risks to power grid facilities. In a word, the main contribution of this study lies in the proposal of the SM model driven by the high-precision mechanism model. This model, through a dual-branch module in both space and time, has achieved second-level high-precision prediction from rainfall input to water depth output in scenarios where the power grid is at risk of flooding for the first time, providing an expandable method for real-time simulation of complex physical processes. Full article
Show Figures

Figure 1

23 pages, 3108 KB  
Article
Hydrodynamic Study of Flow-Channel and Wall-Effect Characteristics in an Oscillating Hydrofoil Biomimetic Pumping Device
by Ertian Hua, Yang Lin, Sihan Li and Xiaopeng Wu
Biomimetics 2026, 11(1), 80; https://doi.org/10.3390/biomimetics11010080 - 19 Jan 2026
Viewed by 125
Abstract
To clarify how flow-channel configuration and wall spacing govern the hydrodynamic performance of an oscillating-hydrofoil biomimetic pumping device, this study conducted a systematic numerical investigation under confined-flow conditions. Using a finite-volume solver with an overset-grid technique, we compared pumping performance across three channel [...] Read more.
To clarify how flow-channel configuration and wall spacing govern the hydrodynamic performance of an oscillating-hydrofoil biomimetic pumping device, this study conducted a systematic numerical investigation under confined-flow conditions. Using a finite-volume solver with an overset-grid technique, we compared pumping performance across three channel configurations and a range of channel–wall distances. The results showed that bidirectional-channel confinement suppresses wake deflection and irregular vorticity evolution, enabling symmetric and periodic vortex organization and thereby improving pumping efficiency by approximately 33.6% relative to the single-channel case and by 62.7% relative to the no-channel condition. Wall spacing exhibited a distinctly non-monotonic influence on performance, revealing two high-performance regimes: under extreme confinement (gap ratio h/c= 1.4), the device attains peak pumping and thrust efficiencies of 19.9% and 30.7%, respectively, associated with a strongly guided jet-like transport mode; and under moderate spacing (h/c= 2.2–2.6), both efficiencies remain high due to an improved balance between directional momentum transport and reduced vortex-evolution losses. These findings identify key confinement-driven mechanisms and provide practical guidance for optimizing flow-channel design in ultralow-head oscillating-hydrofoil pumping applications. Full article
Show Figures

Figure 1

34 pages, 15440 KB  
Article
Spatial Identification and Evolutionary Analysis of Production–Living–Ecological Space—Taking Lincang City as an Example
by Tingyue Deng, Dongyang Hou and Cansong Li
Land 2026, 15(1), 179; https://doi.org/10.3390/land15010179 - 18 Jan 2026
Viewed by 246
Abstract
Optimizing the “production–living–ecological” space (PLES) is critical for achieving the UN Sustainable Development Goals (SDGs), particularly in ecologically sensitive mountainous border regions. This study investigates the spatial patterns and dynamic evolution of PLES in Lincang City (2010–2020) to reveal the trade-offs between development [...] Read more.
Optimizing the “production–living–ecological” space (PLES) is critical for achieving the UN Sustainable Development Goals (SDGs), particularly in ecologically sensitive mountainous border regions. This study investigates the spatial patterns and dynamic evolution of PLES in Lincang City (2010–2020) to reveal the trade-offs between development and conservation. Methodologically, we proposed a coupling-coordination-based grid-level PLES identification framework. This framework integrates the coupling coordination degree model (CCDM) directly into the functional classification process at a 600 m grid scale—a resolution selected to balance the capture of spatial heterogeneity with the maintenance of functional integrity in complex terrains. Spatiotemporal dynamics were further quantified using transition matrices and a dimension-based landscape metric system. The results reveal that (a) ecological space and production–living–ecological space represent the predominant categories in the study area. During the study period, ecological space continued to decrease, while production–living space increased steadily, and other PLES categories showed only marginal variations. (b) Mutual transitions among PLES types primarily occurred among ecological space, production–ecological space, and production–living–ecological space. These transitions intensified markedly between 2015 and 2020 compared to the 2010–2015 period. (c) From 2010 to 2020, the landscape in Lincang evolved towards lower ecological risk yet higher fragmentation. High fragmentation values, often associated with grassland, cropland, and forested areas, were evenly distributed across northeastern and northwestern regions. Likewise, high landscape dominance and isolation appeared in these regions as well as in the southeast. Conversely, landscape disturbance remained relatively uniform throughout the city, with lower values detected in forested land. Full article
Show Figures

Figure 1

23 pages, 2113 KB  
Article
Building-Integrated Solar Delivery Strategies for Algae Photobioreactors in Cold Climates
by Neda Ghaeili Ardabili, Mohammad Elmi and Julian Wang
Buildings 2026, 16(2), 391; https://doi.org/10.3390/buildings16020391 - 17 Jan 2026
Viewed by 113
Abstract
Microalgae photobioreactors (PBRs) are promising building-integrated biotechnologies for carbon capture and biomass production; however, their high energy requirements for artificial lighting remain a significant energy barrier in cold climates. This study developed an integrated spectral–optical energy modeling framework to evaluate two PBR deployment [...] Read more.
Microalgae photobioreactors (PBRs) are promising building-integrated biotechnologies for carbon capture and biomass production; however, their high energy requirements for artificial lighting remain a significant energy barrier in cold climates. This study developed an integrated spectral–optical energy modeling framework to evaluate two PBR deployment strategies in State College, PA: rooftop daylight-exposed integration and basement installation with solar-assisted lighting. Results show that fiber-optic daylighting can supply a substantial fraction of photosynthetically useful light without introducing additional internal heat loads, while photovoltaics sized at approximately 0.40–0.55 kWDC per reactor can offset the annual PBR lighting energy use when sufficient roof area is available. Whole-building energy simulations further reveal that rooftop PBR integration reduces total annual space energy consumption by ~21% relative to basement placement due to lower artificial lighting and cooling loads. When combined, PV and fiber systems can fully meet basement PBR lighting demand, whereas rooftop configurations may rely more on grid electricity. Economically, fiber-optic daylighting achieves comparable lighting offsets at roughly half the annualized cost of PV-based systems, subject to surface-area and routing constraints. Overall, solar-assisted lighting strategies markedly improve the operational sustainability of building-integrated PBRs in cold climates, with fiber-optic daylighting offering substantial spectral and thermal advantages, subject to surface-area availability and routing-related design constraints. Full article
(This article belongs to the Collection Buildings for the 21st Century)
Show Figures

Figure 1

32 pages, 10354 KB  
Article
Advanced Energy Management and Dynamic Stability Assessment of a Utility-Scale Grid-Connected Hybrid PV–PSH–BES System
by Sharaf K. Magableh, Mohammad Adnan Magableh, Oraib M. Dawaghreh and Caisheng Wang
Electronics 2026, 15(2), 384; https://doi.org/10.3390/electronics15020384 - 15 Jan 2026
Viewed by 199
Abstract
Despite the growing adoption of hybrid energy systems integrating solar photovoltaic (PV), pumped storage hydropower (PSH), and battery energy storage (BES), comprehensive studies on their dynamic stability and interaction mechanisms remain limited, particularly under weak grid conditions. Due to the high impedance of [...] Read more.
Despite the growing adoption of hybrid energy systems integrating solar photovoltaic (PV), pumped storage hydropower (PSH), and battery energy storage (BES), comprehensive studies on their dynamic stability and interaction mechanisms remain limited, particularly under weak grid conditions. Due to the high impedance of weak grids, ensuring stability across varied operating scenarios is crucial for advancing grid resilience and energy reliability. This paper addresses these research gaps by examining the interaction dynamics between PV, PSH, and BES on the DC side and the utility grid on the AC side. The study identifies operating-region-dependent instability mechanisms arising from negative incremental resistance behavior and weak grid interactions and proposes a virtual-impedance-based active damping control strategy to suppress poorly damped oscillatory modes. The proposed controller effectively reshapes the converter output impedance, shifts unstable eigenmodes into the left-half plane, and improves phase margins without requiring additional hardware components or introducing steady-state power losses. System stability is analytically assessed using root-locus, Bode, and Nyquist criteria within a developed small-signal state-space model, and further validated through large-signal real-time simulations on an OPAL-RT platform. The main contributions of this study are threefold: (i) a comprehensive stability analysis of a utility-scale grid-connected hybrid PV–PSH–BES system under weak grid conditions, (ii) identification of operating-region-dependent instability mechanisms associated with DC–link interactions, and (iii) development and real-time validation of a practical virtual-impedance-based active damping strategy for enhancing system stability and grid integration reliability. Full article
(This article belongs to the Special Issue Advances in Power Electronics Converters for Modern Power Systems)
Show Figures

Figure 1

23 pages, 3280 KB  
Article
Research on Short-Term Photovoltaic Power Prediction Method Using Adaptive Fusion of Multi-Source Heterogeneous Meteorological Data
by Haijun Yu, Jinjin Ding, Yuanzhi Li, Lijun Wang, Weibo Yuan, Xunting Wang and Feng Zhang
Energies 2026, 19(2), 425; https://doi.org/10.3390/en19020425 - 15 Jan 2026
Viewed by 129
Abstract
High-precision short-term photovoltaic (PV) power prediction has become a critical technology in ensuring grid accommodation capacity, optimizing dispatching decisions, and enhancing plant economic benefits. This paper proposes a long short-term memory (LSTM)-based short-term PV power prediction method with the genetic algorithm (GA)-optimized adaptive [...] Read more.
High-precision short-term photovoltaic (PV) power prediction has become a critical technology in ensuring grid accommodation capacity, optimizing dispatching decisions, and enhancing plant economic benefits. This paper proposes a long short-term memory (LSTM)-based short-term PV power prediction method with the genetic algorithm (GA)-optimized adaptive fusion of space-based cloud imagery and ground-based meteorological data. The effective integration of satellite cloud imagery is conducted in the PV power prediction system, and the proposed method addresses the issues of low accuracy, poor robustness, and inadequate adaptation to complex weather associated with using a single type of meteorological data for PV power prediction. The multi-source heterogeneous data are preprocessed through outlier detection and missing value imputation. Spearman correlation analysis is employed to identify meteorological attributes highly correlated with PV power output. A dedicated dataset compatible with LSTM algorithm-based prediction models is constructed. An LSTM prediction model with a GA algorithm-based adaptive multi-source heterogeneous data fusion method is proposed, and the ability to construct a precise short-term PV power prediction model is demonstrated. Experimental results demonstrate that the proposed method outperforms single-source LSTM, single-source CNN-LSTM, and dual-source CNN-Transformer models in prediction accuracy, achieving an RMSE of 0.807 kWh and an MAPE of 6.74% on a critical test day. The proposed method enables real-time precision forecasting for grid dispatch centers and lightweight edge deployment at PV plants, enhancing renewable energy integration while effectively mitigating grid instability from power fluctuations. Full article
Show Figures

Figure 1

23 pages, 6036 KB  
Article
Improved Performance of Wave Energy Converters and Arrays for Wave-to-Onshore Power Grid Integration
by Madelyn Veurink, David Wilson, Rush Robinett and Wayne Weaver
J. Mar. Sci. Eng. 2026, 14(2), 184; https://doi.org/10.3390/jmse14020184 - 15 Jan 2026
Viewed by 136
Abstract
This paper focuses on power grid integration of wave energy converter (WEC) arrays that minimize added energy storage for maximizing power capture as well as smoothing the oscillatory power inputs into the grid. In particular, a linear right circular cylinder WEC array that [...] Read more.
This paper focuses on power grid integration of wave energy converter (WEC) arrays that minimize added energy storage for maximizing power capture as well as smoothing the oscillatory power inputs into the grid. In particular, a linear right circular cylinder WEC array that implements complex conjugate control is compared and contrasted to a nonlinear WEC array that implements an hourglass buoy shape while both are integrated into the grid utilizing phase control (i.e., relative spacing of the WEC array) on the input powers to the grid. The Hamiltonians of the two WEC systems are derived, enabling a direct comparison of real and reactive power, with reactive power reflecting the utilization of stored energy. The control systems are simulated in MATLAB/Simulink under both regular wave conditions and irregular seas generated from a Bretschneider spectrum. For the linear right circular cylinder buoy, the proportional-derivative complex conjugate controller requires an external energy storage device to supply reactive power, whereas the nonlinear hourglass buoy inherently provides reactive power through its geometric design. This study demonstrates that: (i) The unique geometry of the hourglass buoy reduces the required energy storage size for the nonlinear system while simultaneously increasing power output. (ii) Phase control of the hexagonal hourglass array further enhances real power capture. Together, these effects substantially decrease the size and demand on the individual buoys and grid integration energy storage requirements. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 851 KB  
Article
Partially Observed Two-Phase Point Processes
by Olivier Jacquet, Walguen Oscar and Jean Vaillant
Axioms 2026, 15(1), 59; https://doi.org/10.3390/axioms15010059 - 15 Jan 2026
Viewed by 176
Abstract
In this paper, a two-phase spatio-temporal point process (STPP) defined on a countable metric space and characterized by a conditional intensity function is introduced. In the first phase, the process is memoryless, generating completely random point patterns. In the second phase, the location [...] Read more.
In this paper, a two-phase spatio-temporal point process (STPP) defined on a countable metric space and characterized by a conditional intensity function is introduced. In the first phase, the process is memoryless, generating completely random point patterns. In the second phase, the location and occurrence time of each event depend on the spatial configuration of previous events, thereby inducing spatio-temporal correlation. Theoretical results that characterize the distributional properties of the process are established, enabling both efficient numerical simulation and Bayesian inference. A statistical inference framework is developed, for the setting in which the STPP is observed at discrete calendar dates while the spatial locations of events are recorded, their exact occurrence times are unobserved, i.e., interval-censored. This partial observation scheme commonly arises in ecological and epidemiological applications, such as the monitoring of plant disease or insect pest spread across a spatial grid over time. The methodology is illustrated through an analysis of the spatio-temporal spread of sugarcane yellow leaf virus (SCYLV) in an initially disease-free sugarcane plot in Guadeloupe, FrenchWest Indies. Full article
(This article belongs to the Special Issue Probability Theory and Stochastic Processes: Theory and Applications)
Show Figures

Figure 1

17 pages, 1069 KB  
Article
Distributed Model Predictive Control-Based Power Management Scheme for Grid-Integrated Microgrids
by Sergio Escareno, Sijo Augustine, Liang Sun, Sathishkumar J. Ranade, Olga Lavrova, Enrico Pontelli and John Hedengren
Energies 2026, 19(2), 406; https://doi.org/10.3390/en19020406 - 14 Jan 2026
Viewed by 310
Abstract
Transitioning from traditional electrical grids to smart grids is currently an ongoing process that many nations are striving for due to their access to renewable resources. Energy management is one of the key parameters that decides the performance of such complex systems. Distributed [...] Read more.
Transitioning from traditional electrical grids to smart grids is currently an ongoing process that many nations are striving for due to their access to renewable resources. Energy management is one of the key parameters that decides the performance of such complex systems. Distributed Model Predictive Control (DMPC) is a promising technique that can be used to improve the energy management of grid-connected systems. This paper analyzes a grid-connected inverter system with DMPC that exchanges key operating parameters with the grid to optimize coordinated power sharing between its respective loads. The state-space model for the inverter is derived and verified to ensure controllability and observability. A state observer for an inverter system is then developed to estimate the nominal states in the derived state-space model. The system performance is evaluated with MATLAB simulation by implementing load disturbances, which validate the effectiveness of the proposed power management control algorithm. Full article
(This article belongs to the Special Issue Advanced Control Strategies for Power Converters and Microgrids)
Show Figures

Figure 1

21 pages, 2506 KB  
Article
Collaborative Dispatch of Power–Transportation Coupled Networks Based on Physics-Informed Priors
by Zhizeng Kou, Yingli Wei, Shiyan Luan, Yungang Wu, Hancong Guo, Bochao Yang and Su Su
Electronics 2026, 15(2), 343; https://doi.org/10.3390/electronics15020343 - 13 Jan 2026
Viewed by 149
Abstract
Under China’s “dual-carbon” strategic goals and the advancement of smart city development, the rapid adoption of electric vehicles (EVs) has deepened the spatiotemporal coupling between transportation networks and distribution grids, posing new challenges for integrated energy systems. To address this, we propose a [...] Read more.
Under China’s “dual-carbon” strategic goals and the advancement of smart city development, the rapid adoption of electric vehicles (EVs) has deepened the spatiotemporal coupling between transportation networks and distribution grids, posing new challenges for integrated energy systems. To address this, we propose a collaborative optimization framework for power–transportation coupled networks that integrates multi-modal data with physical priors. The framework constructs a joint feature space from traffic flow, pedestrian density, charging behavior, and grid operating states, and employs hypergraph modeling—guided by power flow balance and traffic flow conservation principles—to capture high-order cross-domain coupling. For prediction, spatiotemporal graph convolution combined with physics-informed attention significantly improves the accuracy of EV charging load forecasting. For optimization, a hierarchical multi-agent strategy integrating federated learning and the Alternating Direction Method of Multipliers (ADMM) enables privacy-preserving, distributed charging load scheduling. Case studies conducted on a 69-node distribution network using real traffic and charging data demonstrate that the proposed method reduces the grid’s peak–valley difference by 20.16%, reduces system operating costs by approximately 25%, and outperforms mainstream baseline models in prediction accuracy, algorithm convergence speed, and long-term operational stability. This work provides a practical and scalable technical pathway for the deep integration of energy and transportation systems in future smart cities. Full article
Show Figures

Figure 1

Back to TopTop