Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (259)

Search Parameters:
Keywords = greenhouse gas emission avoidance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2327 KiB  
Article
From Climate Liability to Market Opportunity: Valuing Carbon Sequestration and Storage Services in the Forest-Based Sector
by Attila Borovics, Éva Király, Péter Kottek, Gábor Illés and Endre Schiberna
Forests 2025, 16(8), 1251; https://doi.org/10.3390/f16081251 - 1 Aug 2025
Viewed by 261
Abstract
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage [...] Read more.
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage and product substitution ecosystem services provided by the Hungarian forest-based sector. Using a multi-scenario framework, four complementary valuation concepts are assessed: total carbon storage (biomass, soil, and harvested wood products), annual net sequestration, emissions avoided through material and energy substitution, and marketable carbon value under voluntary carbon market (VCM) and EU Carbon Removal Certification Framework (CRCF) mechanisms. Data sources include the National Forestry Database, the Hungarian Greenhouse Gas Inventory, and national estimates on substitution effects and soil carbon stocks. The total carbon stock of Hungarian forests is estimated at 1289 million tons of CO2 eq, corresponding to a theoretical climate liability value of over EUR 64 billion. Annual sequestration is valued at approximately 380 million EUR/year, while avoided emissions contribute an additional 453 million EUR/year in mitigation benefits. A comparative analysis of two mutually exclusive crediting strategies—improved forest management projects (IFMs) avoiding final harvesting versus long-term carbon storage through the use of harvested wood products—reveals that intensified harvesting for durable wood use offers higher revenue potential (up to 90 million EUR/year) than non-harvesting IFM scenarios. These findings highlight the dual role of forests as both carbon sinks and sources of climate-smart materials and call for policy frameworks that integrate substitution benefits and long-term storage opportunities in support of effective climate and bioeconomy strategies. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Graphical abstract

24 pages, 5968 KiB  
Article
Life Cycle Assessment of a Digital Tool for Reducing Environmental Burdens in the European Milk Supply Chain
by Yuan Zhang, Junzhang Wu, Haida Wasim, Doris Yicun Wu, Filippo Zuliani and Alessandro Manzardo
Appl. Sci. 2025, 15(15), 8506; https://doi.org/10.3390/app15158506 (registering DOI) - 31 Jul 2025
Viewed by 109
Abstract
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A [...] Read more.
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A cradle-to-grave life cycle assessment (LCA) was used to quantify both the additional environmental burdens from RFID (tag production, usage, and disposal) and the avoided burdens due to reduced milk losses in the farm, processing, and distribution stages. Within the EU’s fresh milk supply chain, the implementation of digital tools could result in annual net reductions of up to 80,000 tonnes of CO2-equivalent greenhouse gas emissions, 81,083 tonnes of PM2.5-equivalent particulate matter, 84,326 tonnes of land use–related carbon deficit, and 80,000 cubic meters of freshwater-equivalent consumption. Spatial analysis indicates that regions with historically high spoilage rates, particularly in Southern and Eastern Europe, see the greatest benefits from RFID enabled digital-decision support tools. These environmental savings are most pronounced during the peak months of milk production. Overall, the study demonstrates that despite the environmental footprint of RFID systems, their integration into the EU’S dairy supply chain enhances transparency, reduces waste, and improves resource efficiency—supporting their strategic value. Full article
(This article belongs to the Special Issue Artificial Intelligence and Numerical Simulation in Food Engineering)
Show Figures

Figure 1

27 pages, 4687 KiB  
Article
EU MRV Data-Based Review of the Ship Energy Efficiency Framework
by Hui Xing, Shengdai Chang, Ranqi Ma and Kai Wang
J. Mar. Sci. Eng. 2025, 13(8), 1437; https://doi.org/10.3390/jmse13081437 - 28 Jul 2025
Viewed by 379
Abstract
The International Maritime Organization (IMO) has set a goal to reach net-zero greenhouse gas emissions from international shipping by or around 2050. The ship energy efficiency framework has played a positive role over the past decade in improving carbon intensity and reducing greenhouse [...] Read more.
The International Maritime Organization (IMO) has set a goal to reach net-zero greenhouse gas emissions from international shipping by or around 2050. The ship energy efficiency framework has played a positive role over the past decade in improving carbon intensity and reducing greenhouse gas emissions by employing the technical and operational energy efficiency metrics as effective appraisal tools. To quantify the ship energy efficiency performance and review the existing energy efficiency framework, this paper analyzed the data for the reporting year of 2023 extracted from the European Union (EU) monitoring, reporting, and verification (MRV) system, and investigated the operational profiles and energy efficiency for the ships calling at EU ports. The results show that the data accumulated in the EU MRV system could provide powerful support for conducting ship energy efficiency appraisals, which could facilitate the formulation of decarbonization policies for global shipping and management decisions for stakeholders. However, data quality, ship operational energy efficiency metrics, and co-existence with the IMO data collection system (DCS) remain issues to be addressed. With the improvement of IMO DCS system and the implementation of IMO Net-Zero Framework, harmonizing the two systems and avoiding duplicated regulation of shipping emissions at the EU and global levels are urgent. Full article
Show Figures

Figure 1

21 pages, 2552 KiB  
Article
Technical, Economic, and Environmental Optimization of the Renewable Hydrogen Production Chain for Use in Ammonia Production: A Case Study
by Halima Khalid, Victor Fernandes Garcia, Jorge Eduardo Infante Cuan, Elias Horácio Zavala, Tainara Mendes Ribeiro, Dimas José Rua Orozco and Adriano Viana Ensinas
Processes 2025, 13(7), 2211; https://doi.org/10.3390/pr13072211 - 10 Jul 2025
Viewed by 304
Abstract
Conventional ammonia production uses fossil-based hydrogen, resulting in high greenhouse gas emissions. Given the growing demand for sustainable solutions, it is essential to replace fossil hydrogen with renewable alternatives. This study assessed the technical, economic, and environmental viability of renewable ammonia production in [...] Read more.
Conventional ammonia production uses fossil-based hydrogen, resulting in high greenhouse gas emissions. Given the growing demand for sustainable solutions, it is essential to replace fossil hydrogen with renewable alternatives. This study assessed the technical, economic, and environmental viability of renewable ammonia production in Minas Gerais. To this end, an optimization model based on mixed integer linear programming (MILP) was developed and implemented in LINGO 20® software. The model incorporated investment costs; raw materials; transportation; emissions; and indicators such as NPV, payback, and minimum sale price. Hydrogen production routes integrated into the Haber–Bosch process were analyzed: biomass gasification (GS_WGS), anaerobic digestion of vinasse (Vinasse_BD_SMR), ethanol reforming (Ethanol_ESR), and electrolysis (PEM_electrolysis). Vinasse_BD_SMR showed the lowest costs and the greatest economic viability, with a payback of just 2 years, due to the use of vinasse waste as a raw material. In contrast, the electrolysis-based route had the longest payback time (8 years), mainly due to the high cost of the electrolyzers. The substitution of conventional hydrogen made it possible to avoid 580,000 t CO2 eq/year for a plant capacity of 200,000 t NH3/year, which represents 13% of the Brazilian emissions from the nitrogenated fertilizer sector. It can be concluded that the viability of renewable ammonia depends on the choice of hydrogen source and logistical optimization and is essential for reducing emissions at large scale. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

23 pages, 546 KiB  
Article
Environmental and Social Dimensions of Energy Transformation Using Geothermal Energy
by Michał Kaczmarczyk and Anna Sowiżdżał
Energies 2025, 18(13), 3565; https://doi.org/10.3390/en18133565 - 7 Jul 2025
Viewed by 395
Abstract
The use of geothermal energy is gaining strategic importance in the context of sustainable development and the decarbonisation of local energy systems. As a stable and low-emission renewable energy source, geothermal energy offers tangible environmental and social benefits, including improved air quality, reduced [...] Read more.
The use of geothermal energy is gaining strategic importance in the context of sustainable development and the decarbonisation of local energy systems. As a stable and low-emission renewable energy source, geothermal energy offers tangible environmental and social benefits, including improved air quality, reduced greenhouse gas emissions, and enhanced energy independence. This article presents a comprehensive overview of the social dimensions of geothermal energy deployment in Poland, with a particular focus on environmental impacts, public acceptance, and participatory governance. Based on a Polish geothermal district heating system example, the paper demonstrates that geothermal projects can significantly reduce local pollution and support low-carbon economic transitions. The study includes a comparative assessment of avoided emissions, a critical discussion of potential social barriers, and SWOT and PESTEL analyses identifying systemic enablers and constraints. The authors argue that for geothermal energy to fulfil its sustainability potential, it must be supported by inclusive planning, transparent communication, and a holistic policy framework integrating environmental, technological, and social criteria. Full article
Show Figures

Figure 1

20 pages, 2010 KiB  
Article
Dense Forests in the Brazilian State of Amapá Store the Highest Biomass in the Amazon Basin
by José Douglas M. da Costa, Paulo Eduardo Barni, Eleneide D. Sotta, Marcelo de J. V. Carim, Alan C. da Cunha, Marcelino C. Guedes, Perseu da S. Aparicio, Leidiane L. de Oliveira, Reinaldo I. Barbosa, Philip M. Fearnside, Henrique E. M. Nascimento and José Julio de Toledo
Sustainability 2025, 17(12), 5310; https://doi.org/10.3390/su17125310 - 9 Jun 2025
Viewed by 1099
Abstract
The Amazonian forests located within the Guiana Shield store above-average levels of biomass per hectare. However, considerable uncertainty remains regarding carbon stocks in this region, mainly due to limited inventory data and the lack of spatial datasets that account for factors influencing variation [...] Read more.
The Amazonian forests located within the Guiana Shield store above-average levels of biomass per hectare. However, considerable uncertainty remains regarding carbon stocks in this region, mainly due to limited inventory data and the lack of spatial datasets that account for factors influencing variation among forest types. The present study investigates the spatial distribution of original total forest biomass in the state of Amapá, located in the northeastern Brazilian Amazon. Using data from forest inventory plots, we applied geostatistical interpolation techniques (kriging) combined with environmental variables to generate a high-resolution map of forest biomass distribution. The stocks of biomass were associated with different forest types and land uses. The average biomass was 536.5 ± 64.3 Mg ha−1 across forest types, and non-flooding lowland forest had the highest average (619.1 ± 38.3), followed by the submontane (521.8 ± 49.8) and the floodplain (447.6 ± 45.5) forests. Protected areas represented 84.1% of Amapá’s total biomass stock, while 15.9% was in agriculture and ranching areas, but the average biomass is similar between land-use types. Sustainable-use reserves stock more biomass (40%) than integral-protection reserves (35%) due to the higher average biomass associated with well-structured forests and a greater density of large trees. The map generated in the present study contributes to a better understanding of carbon balance across multiple spatial scales and demonstrates that forests in this region contain the highest carbon stocks per hectare (260.2 ± 31.2 Mg ha−1, assuming that 48.5% of biomass is carbon) in the Amazon. To conserve these stocks, it is necessary to go further than merely maintaining protected areas by strengthening the protection of reserves, restricting logging activities in sustainable-use areas, promoting strong enforcement against illegal deforestation, and supporting the implementation of REDD+ projects. These actions are critical for avoiding substantial carbon stock losses and for reducing greenhouse-gas emissions from this region. Full article
Show Figures

Figure 1

21 pages, 921 KiB  
Article
Energy and Environmental Benefits of In-Motion Charging Trolleybuses: A Case Study of Vilnius
by Olga Orynycz, Gabriel Santos Rodrigues, João Gilberto Mendes dos Reis, Ewa Kulesza, Jonas Matijošius and Sivanilza Teixeira Machado
Energies 2025, 18(12), 3015; https://doi.org/10.3390/en18123015 - 6 Jun 2025
Viewed by 558
Abstract
Reducing greenhouse gas (GHG) emissions depends mostly on urban transport electrification. However, the role of trolleybus systems in this process is still under discussion. The objective of this study was to analyze the viability of trolleybus buses in relation to diesel buses regarding [...] Read more.
Reducing greenhouse gas (GHG) emissions depends mostly on urban transport electrification. However, the role of trolleybus systems in this process is still under discussion. The objective of this study was to analyze the viability of trolleybus buses in relation to diesel buses regarding environmental and economic aspects. The research was conducted in Vilnius, Lithuania using an extended CO2 emission methodology incorporating physicochemical fuel properties and real-world operational data that allowed us to estimate CO2 emissions and economic impacts. The findings indicate that the Vilnius trolleybus system prevents 84,996.32 kg of CO2 emissions monthly compared to diesel buses (gross avoided emissions). After accounting for emissions from electricity generation (based on Lithuania’s 2023 grid mix), the net avoided emissions are approximately 61,569 kg of CO2 per month, equivalent to EUR 4284 in carbon credits. The system also significantly reduces local air pollutants. Moreover, the new In-Motion Charging (IMC) technology improves system flexibility by decreasing dependence on overhead wires and maintaining low emission levels. IMC trolleybuses represent a cost-efficient option compared to battery-electric buses (BEBs) and hydrogen fuel cell buses (FCEBs). Our findings support the European Union’s decarbonization goals and provide essential insights for policymakers considering public transportation electrification efforts. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

27 pages, 2919 KiB  
Article
Conversion to Variable Flow Rate—Advanced Control of a District Heating (DH) System with a Focus on Operational Data
by Stanislav Chicherin
Energies 2025, 18(11), 2772; https://doi.org/10.3390/en18112772 - 26 May 2025
Viewed by 532
Abstract
This study aims to improve the operational efficiency of district heating (DH) systems by introducing a novel control method based on variable flow rate control, without compromising indoor comfort. The novelty of this work lies in its integrated analysis of flow control and [...] Read more.
This study aims to improve the operational efficiency of district heating (DH) systems by introducing a novel control method based on variable flow rate control, without compromising indoor comfort. The novelty of this work lies in its integrated analysis of flow control and substation configurations in DH networks, linking real-world operational strategies with mathematical modeling to improve energy efficiency and infrastructure costs. Using a case study from Omsk, Russia, where supply temperatures and energy demand profiles are traditionally rigid, the proposed approach utilizes operational data, including outdoor temperature, supply/return temperature, and hourly consumption patterns, to optimize heat delivery. A combination of flow rate adjustments, bypass line implementation, and selective control strategies for transitional seasons (fall and spring) was modeled and analyzed. The methodology integrates heat meter data, indoor temperature tracking, and Supervisory Control and Data Acquisition (SCADA)-like system inputs to dynamically adapt supply temperatures while avoiding overheating and reducing distribution losses. The results show a significant reduction in excess heat supply during warm days, with improvements in heat demand prediction accuracy (17.3% average error) compared to standard models. Notably, the optimized configuration led to a 21% reduction in total greenhouse gas (GHG) emissions (including 6537 tons of CO2 annually), a 55.3% decrease in annualized operational costs, and a positive net present value (NPV) by year nine, with an internal rate of return (IRR) of 25.4%. Compared to conventional scenarios, the proposed solution offers better economic performance without requiring extensive infrastructure upgrades. These findings demonstrate that flexible, data-driven DH control is a feasible and sustainable alternative for aging networks in cold-climate regions. Full article
(This article belongs to the Special Issue Trends and Developments in District Heating and Cooling Technologies)
Show Figures

Figure 1

21 pages, 280 KiB  
Article
Environmental Benefits of Olive By-Products in Energy, Soil, and Sustainable Management
by Abdulaziz Alharbi and Mohamed Ghonimy
Sustainability 2025, 17(10), 4722; https://doi.org/10.3390/su17104722 - 21 May 2025
Cited by 1 | Viewed by 664
Abstract
This study aimed to evaluate the environmental benefits of utilizing by-products from olive farms and olive oil mills within the framework of sustainable resource management and the reduction in agricultural waste, through an integrated circular approach that involves composting and bioenergy recovery. A [...] Read more.
This study aimed to evaluate the environmental benefits of utilizing by-products from olive farms and olive oil mills within the framework of sustainable resource management and the reduction in agricultural waste, through an integrated circular approach that involves composting and bioenergy recovery. A total of 10.7–11.2 t/ha of biomass, including pruning residues and olive pomace, was generated, with a utilization efficiency of 63.5–67.5%. The energy potential of olive biomass was highlighted through assessments that revealed a theoretical generation potential of approximately 96 GJ/ha (25–28 MW·h/ha), primarily from repurposed woody biomass and pomace. The environmental analysis showed a 50–60% reduction in greenhouse gas emissions compared to conventional disposal, due to avoided open burning, carbon stabilization via compost, and the displacement of fossil fuels. Economically, the circular strategy yielded a net benefit of ~70 $/ha, with revenues from bioenergy and compost exceeding processing costs. Soil organic matter increased from 1.3% to 1.5% after compost application, improving fertility and water retention. The waste reduction percentage reached ~65%, significantly decreasing the volume of unutilized biomass. These outcomes, confirmed through statistical and correlation analyses, demonstrate a robust model for circular agriculture that enhances energy self-sufficiency, mitigates the environmental impact, and supports economic and agronomic sustainability. The findings offer a replicable framework for transforming olive farming waste into valuable bioresources. Full article
26 pages, 3348 KiB  
Review
A Review of the Life Cycle Assessment of the Carbon–Water–Energy Nexus of Hydrogen Production Pathways
by Douglas Peterson Munis da Silva and Rafael Silva Capaz
Hydrogen 2025, 6(2), 34; https://doi.org/10.3390/hydrogen6020034 - 19 May 2025
Viewed by 2647
Abstract
The hydrogen (H2) economy is seen as a crucial pathway for decarbonizing the energy system, with green H2—i.e., obtained from water electrolysis supplied by renewable energy—playing a key role as an energy carrier in this transition. The growing interest [...] Read more.
The hydrogen (H2) economy is seen as a crucial pathway for decarbonizing the energy system, with green H2—i.e., obtained from water electrolysis supplied by renewable energy—playing a key role as an energy carrier in this transition. The growing interest in H2 comes from its versatility, which means that H2 can serve as a raw material or energy source, and various technologies allow it to be produced from a wide range of resources. Environmental impacts of H2 production have primarily focused on greenhouse gas (GHG) emissions, despite other environmental aspects being equally relevant in the context of a sustainable energy transition. In this context, Life Cycle Assessment (LCA) studies of H2 supply chains have become more common. This paper aims to compile and analyze discrepancies and convergences among recent reported values from 42 scientific studies related to different H2 production pathways. Technologies related to H2 transportation, storage and use were not investigated in this study. Three environmental indicators were considered: Global Warming Potential (GWP), Energy Performance (EP), and Water Consumption (WF), from an LCA perspective. The review showed that H2 based on wind, photovoltaic and biomass energy sources are a promising option since it provides lower GWP, and higher EP compared to conventional fossil H2 pathways. However, WF can be higher for H2 derived from biomass. LCA boundaries and methodological choices have a great influence on the environmental indicators assessed in this paper which leads to great variability in WF results as well as GWP variation due credits given to avoid GHG emissions in upstream process. In the case of EI, the inclusion of energy embodied in renewable energy systems demonstrates great influence of upstream phase for electrolytic H2 based on wind and photovoltaic electricity. Full article
Show Figures

Graphical abstract

22 pages, 1954 KiB  
Article
Assessment of Greenhouse Gas Reduction and Sustainability Index in Waste-to-Energy Conversion Scenarios Using System Dynamics Modeling
by Ali Shahbazi, Mazaher Moeinaddini, Rajib Sinha, Mohammad Ali Abdoli, Mahnaz Hosseinzadeh, Neamatollah Jaafarzadeh Haghighi Fard and Shoaib Azizi
Energies 2025, 18(9), 2346; https://doi.org/10.3390/en18092346 - 3 May 2025
Cited by 1 | Viewed by 610
Abstract
This study aims to evaluate various waste-to-energy conversion scenarios in terms of their potential to reduce greenhouse gas (GHG) emissions and improve sustainability based on economic and environmental outcomes. To achieve this, a comprehensive waste management model was developed using the system dynamics [...] Read more.
This study aims to evaluate various waste-to-energy conversion scenarios in terms of their potential to reduce greenhouse gas (GHG) emissions and improve sustainability based on economic and environmental outcomes. To achieve this, a comprehensive waste management model was developed using the system dynamics approach in the Vensim software to predict waste generation and composition and compare pyrolysis, incineration, gasification, and sanitary landfill scenarios with the baseline scenario over 25 years (2025–2050). The analysis of different waste management scenarios highlights the superior performance of pyrolysis in terms of energy recovery, economic profit, GHG emissions reduction, environmental outcomes, and long-term sustainability. Results show that the pyrolysis scenario generates the highest electricity, with a cumulative net electricity output of 10,469 GWh. Although pyrolysis has GHG emissions due to energy consumption and direct process emissions, it results in the largest net reduction in GHG emissions, primarily due to avoided emissions from increased electricity generation, leading to a 346% reduction compared to the baseline scenario. Furthermore, the pyrolysis scenario demonstrates the highest economic profit at 354 million USD and the highest sustainability index (SI) at 499 million USD. The cumulative SI from 2025 to 2050 shows a 503% increase compared to the business-as-usual scenario, highlighting its superior sustainability performance. This study highlights the importance of strategic waste-to-energy planning in reducing GHG emissions and promoting sustainability. It also offers valuable insights for policymakers and researchers, supporting the development of sustainable waste management strategies and effective efforts for climate change mitigation. Full article
Show Figures

Figure 1

27 pages, 4039 KiB  
Article
Enhancing Energy Sustainability in Remote Mining Operations Through Wind and Pumped-Hydro Storage; Application to Raglan Mine, Canada
by Adrien Tardy, Daniel R. Rousse, Baby-Jean Robert Mungyeko Bisulandu and Adrian Ilinca
Energies 2025, 18(9), 2184; https://doi.org/10.3390/en18092184 - 24 Apr 2025
Cited by 2 | Viewed by 726
Abstract
The Raglan mining site in northern Quebec relies on diesel for electricity and heat generation, resulting in annual emissions of 105,500 tons of CO2 equivalent. This study investigates the feasibility of decarbonizing the site’s power generation system by integrating a renewable energy [...] Read more.
The Raglan mining site in northern Quebec relies on diesel for electricity and heat generation, resulting in annual emissions of 105,500 tons of CO2 equivalent. This study investigates the feasibility of decarbonizing the site’s power generation system by integrating a renewable energy network of wind turbines and a pumped hydro storage plant (PHSP). It uniquely integrates PHSP modeling with a dynamic analysis of variable wind speeds and extreme climatic conditions, providing a novel perspective on the feasibility of renewable energy systems in remote northern regions. MATLAB R2024b-based simulations assessed the hybrid system’s technical and economic performance. The proposed system, incorporating a wind farm and PHSP, reduces greenhouse gas (GHG) emissions by 50%, avoiding 68,500 tons of CO2 equivalent annually, and lowers diesel consumption significantly. The total investment costs are estimated at 2080 CAD/kW for the wind farm and 3720 CAD/kW for the PHSP, with 17.3 CAD/MWh and 72.5 CAD/kW-year operational costs, respectively. The study demonstrates a renewable energy share of 52.2% in the energy mix, with a payback period of approximately 11 years and substantial long-term cost savings. These findings highlight the potential of hybrid renewable energy systems to decarbonize remote, off-grid industrial operations and provide a scalable framework for similar projects globally. Full article
Show Figures

Figure 1

28 pages, 1220 KiB  
Article
Methodology for Quantification and Identification of Environmental Aspect in Urban Infrastructure Projects in the Planning Phase
by Adolpho Guido de Araújo, Alexandre Duarte Gusmão, Arnaldo Manoel Pereira Carneiro and Rachel Perez Palha
Buildings 2025, 15(8), 1328; https://doi.org/10.3390/buildings15081328 - 17 Apr 2025
Viewed by 436
Abstract
The accelerated development of construction has positively boosted the economy but caused environmental pollution. The objective of this article was to propose a model to quantify and identify the causes of environmental aspects in urban infrastructure projects during the pre-construction phase. The methodology [...] Read more.
The accelerated development of construction has positively boosted the economy but caused environmental pollution. The objective of this article was to propose a model to quantify and identify the causes of environmental aspects in urban infrastructure projects during the pre-construction phase. The methodology included ten environmental aspects and six construction activities, distributed in three phases: quantification, preparation of an inventory and identification of the main causes of environmental aspects. The results of projects A, B and C confirmed five environmental aspects with quantifications of the maximum normalized unitary ratios, namely greenhouse gas emissions with 1.00, 1.00 and 1.00; energy use with 0.99, 0.99 and 1.00; noise pollution with 0.84, 0.89 and 1.00; water use with 0.95, 1.00 and 0.96 and use of resources and raw materials with 1.00, 1.00 and 1.00, caused by the construction methods, machines, materials and environmental conditions of the urban infrastructure project. This proposal was the first initiative to analytically and previously investigate the environmental performance of future infrastructure works, assisting in the strategies of the pre-construction phase and improving the decision-making process regarding environmental issues in constructions. Finally, this initial effort may evolve to create opportunities to avoid, mitigate, reduce or accept the environmental effects in the infrastructure projects in developing countries. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

21 pages, 2624 KiB  
Article
Analyzing the Feasibility of Lithium Extraction in Mexico: Supply Chain Modeling with Economic and Environmental Considerations
by Jovanna Carranza-Maldonado, Rogelio Ochoa-Barragán, Hilda Guerrero-García-Rojas, César Ramírez-Márquez and José María Ponce-Ortega
Processes 2025, 13(4), 1116; https://doi.org/10.3390/pr13041116 - 8 Apr 2025
Viewed by 1166
Abstract
Lithium is a strategic resource due to its use in rechargeable batteries for electric vehicles and electronic devices, driving high demand for extraction. This study analyzes the lithium supply chain in Mexico, focusing on both the extraction of lithium carbonate for export and [...] Read more.
Lithium is a strategic resource due to its use in rechargeable batteries for electric vehicles and electronic devices, driving high demand for extraction. This study analyzes the lithium supply chain in Mexico, focusing on both the extraction of lithium carbonate for export and the potential for producing lithium–ion batteries and lithium grease, considering their environmental impact. The proposed mixed integer linear programming (MILP) model, solved using the GAMS modeling environment, suggests that lithium extraction in Mexico is viable, with Sonora having the greatest extraction capacity. Three solutions were evaluated: Solution A maximizes profits (USD 317.19 M) but has high greenhouse gas (GHG) emissions (1,119,808 tons), Solution B balances profits (USD 186.98 M) with lower emissions (559,904 tons), and Solution C prioritizes emission reduction (44,792 tons) at the cost of lower profits (USD 48.20 M). Solution C implies a scenario with severe environmental restrictions, which indirectly leads to lower investment costs by avoiding the production of lithium grease and batteries. This study highlights the potential impact of tariffs on U.S. lithium exports, with a 25% tariff making exports economically unviable. This underscores the need for Mexico to diversify its export markets. Decision-makers can use this model to explore alternative strategies, reduce dependence on a single market, and optimize the economic and environmental sustainability of the lithium sector. Full article
(This article belongs to the Special Issue Modeling and Optimization for Multi-scale Integration)
Show Figures

Figure 1

19 pages, 2575 KiB  
Article
Analysis of Fleet Management Policies for Offshore Platform Supply Vessels: The Brazilian Case
by Igor Girão Peres Vianna, Paulo Cesar Ribas, Virgílio José Martins Ferreira Filho and Irina Gribkovskaia
J. Mar. Sci. Eng. 2025, 13(4), 686; https://doi.org/10.3390/jmse13040686 - 28 Mar 2025
Viewed by 696
Abstract
Offshore oil and gas activities are crucial in the petroleum industry. Offshore oil and gas installations require different cargo to operate. A heterogeneous fleet of platform supply vessels (PSVs) transports cargo supply to installations. The PSV fleet management in Brazil faces challenges such [...] Read more.
Offshore oil and gas activities are crucial in the petroleum industry. Offshore oil and gas installations require different cargo to operate. A heterogeneous fleet of platform supply vessels (PSVs) transports cargo supply to installations. The PSV fleet management in Brazil faces challenges such as the non-availability of the spot market, variations and uncertainties in delivery order demands and due dates, inspection and corrective vessel maintenance, and multiple time windows for service at installations. PSV fleet management aims to satisfy cargo delivery requests in time and quantity, avoid delays, and achieve a balance among delivery service levels, vessel costs, and greenhouse gas emissions. We develop several PSV fleet management policies with delivery service level or fuel consumption goals, composed of new fleet management procedures such as vessel control, vessel assignment to voyages including cargo selection, vessel routing, speed selection, and dynamic re-routing. The results of tests on a real Brazilian case demonstrate that the developed policies with the incorporated fleet management procedures improve fleet performance indicators. The comparative analysis of policies shows their different impacts on indicators, allowing managers to select the best fleet management policy by considering the trade-offs between delivery service level, costs, and emissions, depending on their goals. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop