Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (544)

Search Parameters:
Keywords = green organic solvent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1775 KiB  
Review
Forensic Narcotics Drug Analysis: State-of-the-Art Developments and Future Trends
by Petar Ristivojević, Božidar Otašević, Petar Todorović and Nataša Radosavljević-Stevanović
Processes 2025, 13(8), 2371; https://doi.org/10.3390/pr13082371 - 25 Jul 2025
Viewed by 554
Abstract
Narcotics trafficking is a fundamental part of organized crime, posing significant and evolving challenges for forensic investigations. Addressing these challenges requires rapid, precise, and scientifically validated analytical methods for reliable identification of illicit substances. Over the past five years, forensic drug testing has [...] Read more.
Narcotics trafficking is a fundamental part of organized crime, posing significant and evolving challenges for forensic investigations. Addressing these challenges requires rapid, precise, and scientifically validated analytical methods for reliable identification of illicit substances. Over the past five years, forensic drug testing has advanced considerably, improving detection of traditional drugs—such as tetrahydrocannabinol, cocaine, heroin, amphetamine-type stimulants, and lysergic acid diethylamide—as well as emerging new psychoactive substances (NPS), including synthetic cannabinoids (e.g., 5F-MDMB-PICA), cathinones (e.g., α-PVP), potent opioids (e.g., carfentanil), designer psychedelics (e.g., 25I-NBOMe), benzodiazepines (e.g., flualprazolam), and dissociatives (e.g., 3-HO-PCP). Current technologies include colorimetric assays, ambient ionization mass spectrometry, and chromatographic methods coupled with various detectors, all enhancing accuracy and precision. Vibrational spectroscopy techniques, like Raman and Fourier transform infrared spectroscopy, have become essential for non-destructive identification. Additionally, new sensors with disposable electrodes and miniaturized transducers allow ultrasensitive on-site detection of drugs and metabolites. Advanced chemometric algorithms extract maximum information from complex data, enabling faster and more reliable identifications. An important emerging trend is the adoption of green analytical methods—including direct analysis, solvent-free extraction, miniaturized instruments, and eco-friendly chromatographic processes—that reduce environmental impact without sacrificing performance. This review provides a comprehensive overview of innovations over the last five years in forensic drug analysis based on the ScienceDirect database and highlights technological trends shaping the future of forensic toxicology. Full article
(This article belongs to the Special Issue Feature Review Papers in Section “Pharmaceutical Processes”)
Show Figures

Figure 1

27 pages, 1179 KiB  
Article
Properties of Plant Extracts from Adriatic Maritime Zone for Innovative Food and Packaging Applications: Insights into Bioactive Profiles, Protective Effects, Antioxidant Potentials and Antimicrobial Activity
by Petra Babić, Tea Sokač Cvetnić, Iva Čanak, Mia Dujmović, Mojca Čakić Semenčić, Filip Šupljika, Zoja Vranješ, Frédéric Debeaufort, Nasreddine Benbettaieb, Emilie Descours and Mia Kurek
Antioxidants 2025, 14(8), 906; https://doi.org/10.3390/antiox14080906 - 24 Jul 2025
Viewed by 303
Abstract
Knowledge about the composition (volatile and non-volatile) and functionality of natural extracts from Mediterranean plants serves as a basis for their further application. In this study, five selected plants were used for the extraction of plant metabolites. Leaves and flowers of Critmum maritimum [...] Read more.
Knowledge about the composition (volatile and non-volatile) and functionality of natural extracts from Mediterranean plants serves as a basis for their further application. In this study, five selected plants were used for the extraction of plant metabolites. Leaves and flowers of Critmum maritimum, Rosmarinus officinalis, Olea europea, Phylliera latifolia and Mellisa officinalis were collected, and a total of 12 extracts were prepared. Extractions were performed under microwave-assisted conditions, with two solvent types: water (W) and a hydroalcoholic (ethanolic) solution (HA). Detailed extract analysis was conducted. Phenolics were analyzed by detecting individual bioactive compounds using high-performance liquid chromatography and by calculating total phenolic and total flavonoid content through spectrophotometric analysis. Higher concentrations of total phenolics and total flavonoids were obtained in the hydroalcoholic extracts, with the significantly highest total phenolic and flavonoid values in the rosemary hydroalcoholic extract (3321.21 mgGAE/L) and sea fennel flower extract (1794.63 mgQE/L), respectively; and the lowest phenolics in the water extract of olive leaves (204.55 mgGAE/L) and flavonoids in the water extracts of sea fennel leaves, rosemary, olive and mock privet (around 100 mgQE/L). Volatile organic compounds (VOC) were detected using HS-SPME/GC–MS (Headspace Solid-Phase Microextraction coupled with Gas Chromatography-Mass Spectrometry), and antioxidant capacity was estimated using DPPH (2,2-diphenyl-1-picrylhydrazyl assay) and FRAP (Ferric Reducing Antioxidant Power) methods. HS-SPME/GC–MS analysis of samples revealed that sea fennel had more versatile profile, with the presence of 66 and 36 VOCs in W and HA sea fennel leaf extracts, 52 and 25 in W and HA sea fennel flower extracts, 57 in rosemary W and 40 in HA, 20 in olive leaf W and 9 in HA, 27 in W mock privet and 11 in HA, and 35 in lemon balm W and 10 in HA extract. The lowest values of chlorophyll a were observed in sea fennel leaves (2.52 mg/L) and rosemary (2.21 mg/L), and chlorophyll b was lowest in sea fennel leaf and flower (2.47 and 2.25 mg/L, respectively), while the highest was determined in olive (6.62 mg/L). Highest values for antioxidant activity, determined via the FRAP method, were obtained in the HA plant extracts (up to 11,216 mgAAE/L for lemon balm), excluding the sea fennel leaf (2758 mgAAE/L) and rosemary (2616 mgAAE/L). Considering the application of these plants for fresh fish preservation, antimicrobial activity of water extracts was assessed against Vibrio fischeri JCM 18803, Vibrio alginolyticus 3050, Aeromonas hydrophila JCM 1027, Moraxella lacunata JCM 20914 and Yersinia ruckeri JCM 15110. No activity was observed against Y. ruckeri and P. aeruginosa, while the sea fennel leaf showed inhibition against V. fisheri (inhibition zone of 24 mm); sea fennel flower was active against M. lacunata (inhibition zone of 14.5 mm) and A. hydrophila (inhibition zone of 20 mm); and rosemary and lemon balm showed inhibition only against V. fisheri (inhibition zone from 18 to 30 mm). This study supports the preparation of natural extracts from Mediterranean plants using green technology, resulting in extracts rich in polyphenolics with strong antioxidant potential, but with no clear significant antimicrobial efficiency at the tested concentrations. Full article
Show Figures

Figure 1

17 pages, 2950 KiB  
Article
Obtention of ZnO-Based Hybrid Pigments: Exploring Textile Dye Adsorption and Co-Adsorption with Copper Ion
by Taiane L. Dlugoviet, Andressa dos Santos, Julia de Oliveira Primo and Fauze Jacó Anaissi
Colorants 2025, 4(3), 23; https://doi.org/10.3390/colorants4030023 - 14 Jul 2025
Viewed by 236
Abstract
Annually, more than 10,000 synthetic dyes are produced worldwide, generating around 280,000 tons of waste, posing risks to human and aquatic life, and potentially creating even more toxic products than the dyes themselves. This study aims to immobilize organic dyes, forming hybrid pigments [...] Read more.
Annually, more than 10,000 synthetic dyes are produced worldwide, generating around 280,000 tons of waste, posing risks to human and aquatic life, and potentially creating even more toxic products than the dyes themselves. This study aims to immobilize organic dyes, forming hybrid pigments using ZnO as support obtained through starch combustion. ZnO was obtained by starch (sago) combustion and characterized by XRD, SEM and the BET method. It was then used for the adsorption of orange and green textile dyes, evaluating the adsorbent dosage, initial dye concentration, contact time, and selectivity with copper ions. The removal studies indicated up to 100% removal of both dyes at low concentrations. The co-adsorption system showed excellent performance, with removal percentages exceeding 90% for both textile dyes and Cu (II) ions. Hybrid pigments were assessed for solvent resistance and durability under extended white light exposure. ZnO immobilized the dyes, showing resistance to organic solvents and good stability under prolonged white light exposure. Full article
Show Figures

Figure 1

15 pages, 990 KiB  
Article
Towards a Green and Sustainable Valorization of Salix amplexicaulis: Integrating Natural Deep Eutectic Solvents and Microwave-Assisted Extraction for Enhanced Recovery of Phenolic Compounds
by Milica Vidić, Nevena Grujić-Letić, Branislava Teofilović and Emilia Gligorić
Sustainability 2025, 17(14), 6347; https://doi.org/10.3390/su17146347 - 10 Jul 2025
Viewed by 318
Abstract
Combining advanced extraction technologies with non-pollutant solvents represents a sustainable approach toward valorizing medicinal plants and aligns with the principles of green chemistry. This study aimed to evaluate the efficiency of microwave-assisted extraction (MAE) combined with natural deep eutectic solvents (NADES) to extract [...] Read more.
Combining advanced extraction technologies with non-pollutant solvents represents a sustainable approach toward valorizing medicinal plants and aligns with the principles of green chemistry. This study aimed to evaluate the efficiency of microwave-assisted extraction (MAE) combined with natural deep eutectic solvents (NADES) to extract bioactive compounds from the underexplored leaves and bark of Salix amplexicaulis Bory & Chaub. Additionally, the potential of NADES as sustainable alternatives to conventional solvents was assessed through a comparative evaluation of MAE-NADES with MAE–water and traditional ethanol maceration. NADES based on lactic acid–glycerol, lactic acid–glucose, glycerol–glucose, and glycerol–urea were synthesized by heating and stirring. Willow extracts were characterized by HPLC-DAD, resulting in the identification and quantification of seven phenolic acids and four flavonoids. Lactic acid–glucose (5:1)-based NADES extracted the highest number of phenolics in the greatest amount from the bark and leaves of S. amplexicaulis. MAE-NADES offers a fast, cost-effective preparation, high extraction efficiency, and environmentally friendly properties, opening new perspectives on the valorization of S. amplexicaulis in the pharmaceutical field. Furthermore, NADES provide a promising alternative to water and toxic organic solvents for extracting bioactives. Full article
Show Figures

Figure 1

13 pages, 2631 KiB  
Article
TEMPO-Oxidized Cellulose Hydrogels Loaded with Copper Nanoparticles as Highly Efficient and Reusable Catalysts for Organic Pollutant Reduction
by Yangyang Zhang, Yuanyuan Li and Xuejun Yu
Gels 2025, 11(7), 512; https://doi.org/10.3390/gels11070512 - 1 Jul 2025
Viewed by 313
Abstract
To successfully prepare cellulose hydrogels through a dissolution–regeneration process, 60 wt% LiBr aqueous solution was used as a green solvent. Carboxyl groups were precisely introduced onto the surface of the cellulose hydrogels through a TEMPO-mediated oxidation reaction, while the three-dimensional network structure and [...] Read more.
To successfully prepare cellulose hydrogels through a dissolution–regeneration process, 60 wt% LiBr aqueous solution was used as a green solvent. Carboxyl groups were precisely introduced onto the surface of the cellulose hydrogels through a TEMPO-mediated oxidation reaction, while the three-dimensional network structure and open pore morphology were completely retained. This modification strategy significantly enhanced the loading capacity of the hydrogels with copper nanoparticles (Cu NPs). The experimental results show that the LiBr aqueous solution can efficiently dissolve cellulose, and the TEMPO oxidation introduces carboxyl groups without destroying the stability of the hydrogels. Cu NPs are uniformly dispersed and highly loaded on the surface of the hydrogel because of the anchoring effect of the carboxyl groups. Cu NP-loaded hydrogels exhibit excellent catalytic activity in the NaBH4 reduction of 4-nitrophenol (4-NP). Cu NP-loaded hydrogels maintain their complete structure and good catalytic performance after five consecutive cycles. Moreover, Cu NP-loaded hydrogels demonstrate high efficiency in degrading organic dyes such as methyl orange and Congo red. This study successfully developed efficient, low-cost, and environmentally friendly Cu NP-loaded hydrogel catalysts through the synergistic effect of LiBr green solvent and TEMPO oxidation modification, providing a feasible alternative to noble metal catalysts. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Hydrogels (3rd Edition))
Show Figures

Figure 1

34 pages, 1252 KiB  
Review
Greener Extraction Solutions for Microalgal Compounds
by Gwendoline Kopp and Chiara Lauritano
Mar. Drugs 2025, 23(7), 269; https://doi.org/10.3390/md23070269 - 27 Jun 2025
Viewed by 895
Abstract
Conventional methods for extracting bioactive compounds from microalgae rely on organic solvents that are both polluting and potentially harmful to human health. In recent years, a noticeable shift has emerged toward greener extraction alternatives that are more environmentally friendly and sustainable. This review [...] Read more.
Conventional methods for extracting bioactive compounds from microalgae rely on organic solvents that are both polluting and potentially harmful to human health. In recent years, a noticeable shift has emerged toward greener extraction alternatives that are more environmentally friendly and sustainable. This review highlights various green extraction techniques, compounds, and yields obtained from different microalgal species for a range of applications and provides a comparison between the yields of conventional and green extraction methods. Green extraction methods have shown yields that are comparable to, or even exceed, those of conventional techniques, although they are predominantly studied for the extraction of lipids and pigments. This review aims to provide an overview of the current state of green extraction applied to microalgae, and to outline future research perspectives in this emerging field. Full article
Show Figures

Graphical abstract

13 pages, 530 KiB  
Article
Synthesis of Natural Carboxylic Acids and Alcohols from Cinnamon cassia Oil via Green Chemistry
by Gökhan Özokan, Abdulkerim Bilginer and Mustafa Kemal Gümüş
Processes 2025, 13(7), 2002; https://doi.org/10.3390/pr13072002 - 24 Jun 2025
Viewed by 828
Abstract
Benzoic acid and benzyl alcohol are the most used raw materials in cosmetics and pharmaceutical industries as preservative ingredients. Cinnamon cassia oil is an important natural starting material to synthesize organic compounds because it contains a high amount of cinnamaldehyde and benzaldehyde. Thanks [...] Read more.
Benzoic acid and benzyl alcohol are the most used raw materials in cosmetics and pharmaceutical industries as preservative ingredients. Cinnamon cassia oil is an important natural starting material to synthesize organic compounds because it contains a high amount of cinnamaldehyde and benzaldehyde. Thanks to green chemistry techniques using mild solvents such as water and ethanol, as well as low-cost and safe reagents such as potassium permanganate, and sodium borohydride, this natural starting material was used to synthesize high yields of benzoic acid, benzyl alcohol, cinnamyl alcohol, phenylpropanol, and cinnamic acid; these products are used in cosmetics, pharmaceutical, and food industries. Various reaction conditions were applied to find convenient green chemistry procedures. Equivalents (molar) of catalysts to starting materials were optimized. The highest yields (60–90%) were achieved using water as a solvent, potassium permanganate as an oxidation catalyst, and sodium borohydride as a reduction catalyst. Water was used as a solvent in all reactions except phenylpropanol. The uses of a single natural starting material, water as a solvent, and mild reagents to synthesize five important organic compounds are all in line with green chemistry techniques. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Graphical abstract

26 pages, 8375 KiB  
Article
Water-Soluble Formulations of Curcumin and Eugenol Produced by Spray Drying
by Iskra Z. Koleva, Katya Kamenova, Petar D. Petrov and Christo T. Tzachev
Pharmaceuticals 2025, 18(7), 944; https://doi.org/10.3390/ph18070944 - 23 Jun 2025
Viewed by 600
Abstract
Background/Objectives: In this study, we present a green, scalable platform for the production of water-dispersible powders co-encapsulating the lipophilic bioactives curcumin (Cur) and eugenol (Eug) within the amphiphilic polymer Soluplus® (SP) via low-temperature spray drying. Methods: The amount of Cur [...] Read more.
Background/Objectives: In this study, we present a green, scalable platform for the production of water-dispersible powders co-encapsulating the lipophilic bioactives curcumin (Cur) and eugenol (Eug) within the amphiphilic polymer Soluplus® (SP) via low-temperature spray drying. Methods: The amount of Cur (1%, 5%, and 10%) and Eug (5%, 10%, 15%, and 20%) was varied to achieve single- and double-loaded water-soluble powders with the maximum amount of active substances. The powders containing a higher loading of Cur, 5% and 10% (and Eug), were obtained from water/ethanol mixtures (2:1 and 5:1 v/v ratio), while the formulation with 1% of Cur was spray-dried by using water as a solvent. Results: By leveraging aqueous or aqueous–ethanolic feed systems, we achieved high loading of the bioactive substances—up to 10% Cur and 20% Eug (w/w)—while minimizing organic solvent use. Myo-inositol was incorporated as a stabilizing excipient to modulate particle morphology, improve powder flowability, and enhance redispersibility. Physicochemical characterization revealed nanoscale micellization (53–127 nm), amorphization of both actives as confirmed by XRD and DSC, and the absence of crystalline residue. Encapsulation efficiencies exceeded 95% for Cur and 93% for Eug. Dissolution tests demonstrated a rapid release from the 5% Cur/5% Eug formulation (>85% in 5 min), while higher-loaded single-formulations showed progressively slower release (up to 45 min). Conclusions: This work demonstrates a robust and environmentally responsible encapsulation strategy, suitable for delivering poorly water-soluble phytochemicals with potential applications in oral nutraceuticals and pharmaceutical dosage forms. Full article
Show Figures

Figure 1

23 pages, 1943 KiB  
Article
Exploring the Characterization, Physicochemical Properties, and Antioxidant Activities of Chitosan-Encapsulated Green Tea Extract Microsphere Resin
by Lina Yu, Siyu Feng, Yu Song, Jie Bi, Yuan Gao, Luhui Wang, Chen Jiang and Mingqing Wang
Polymers 2025, 17(12), 1633; https://doi.org/10.3390/polym17121633 - 12 Jun 2025
Viewed by 466
Abstract
Chitosan, a naturally occurring alkaline polysaccharide with excellent biocompatibility, non-toxicity, and renewability, has the ability to undergo cross-linking reactions with polyphenolic compounds. In this study, chitosan-encapsulated green tea extract microsphere resin (CS-GTEMR) was successfully prepared using chitosan and green tea extract via reversed-phase [...] Read more.
Chitosan, a naturally occurring alkaline polysaccharide with excellent biocompatibility, non-toxicity, and renewability, has the ability to undergo cross-linking reactions with polyphenolic compounds. In this study, chitosan-encapsulated green tea extract microsphere resin (CS-GTEMR) was successfully prepared using chitosan and green tea extract via reversed-phase suspension cross-linking polymerization. The structural characterization of CS-GTEMR was conducted using Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). Additionally, its physical properties, swelling behavior, polyphenol content, and antioxidant activities were investigated. The results indicate that CS-GTEMR consists of reddish-brown microspheres with a smooth surface and dense pores. The study found that the total content of polyphenolic compounds encapsulated in CS-GTEMR was 50.485 ± 0.840 μg/g. The characteristic absorption peak of phenolic hydroxyl groups appeared in the FTIR spectrum, suggesting that the polyphenolic compounds had been successfully encapsulated within the CS-GTEMR. The equilibrium swelling ratio of CS-GTEMR was determined to be 229.7%, indicating their suitability for use in solutions with a pH range of 1–13. In simulated gastric and intestinal fluids, the release rates of polyphenolic compounds from CS-GTEMR were 24.934% and 3.375%, respectively, indicating that CS-GTEMR can exert a sustained-release effect on polyphenolic compounds. CS-GTEMR demonstrated antioxidant activities such as scavenging DPPH radicals, superoxide anion radicals, hydroxyl radicals, and hydrogen peroxide, as well as exhibiting iron-reducing and molybdenum-reducing powers. With its high mechanical strength, acid resistance, and organic solvent resistance, CS-GTEMR can protect polyphenolic compounds from damage. Therefore, CS-GTEMR can be utilized as a natural antioxidant or preventive agent in food, expanding the application scope of green tea extracts. Full article
Show Figures

Figure 1

15 pages, 11557 KiB  
Article
Toward Versatile Transient Electronics: Electrospun Biocompatible Silk Fibroin/Carbon Quantum Dot-Based Green-Emission, Water-Soluble Piezoelectric Nanofibers
by Zhipei Xia, Chubao Liu, Juan Li, Biyao Huang, Chu Pan, Yu Lai, Zhu Liu, Dongling Wu, Sen Liang, Xuanlun Wang, Weiqing Yang and Jun Lu
Polymers 2025, 17(11), 1579; https://doi.org/10.3390/polym17111579 - 5 Jun 2025
Viewed by 587
Abstract
The rapid development of wearable electronics requires multifunctional, transient electronic devices to reduce the ecological footprint and ensure data security. Unfortunately, existing transient electronic materials need to be degraded in chemical solvents or body fluids. Here, we report green luminescent, water-soluble, and biocompatible [...] Read more.
The rapid development of wearable electronics requires multifunctional, transient electronic devices to reduce the ecological footprint and ensure data security. Unfortunately, existing transient electronic materials need to be degraded in chemical solvents or body fluids. Here, we report green luminescent, water-soluble, and biocompatible piezoelectric nanofibers developed by electrospinning green carbon quantum dots (G-CQDs), mulberry silk fibroin (SF), and polyvinyl alcohol (PVA). The introduction of G-CQDs significantly enhances the piezoelectric output of silk fibroin-based fiber materials. Meanwhile, the silk fibroin-based hybrid fibers maintain the photoluminescent response of G-CQDs without sacrificing valuable biocompatibility. Notably, the piezoelectric output of a G-CQD/PVA/SF fiber-based nanogenerator is more than three times higher than that of a PVA/SF fiber-based nanogenerator. This is one of the highest levels of state-of-the-art piezoelectric devices based on biological organic materials. As a proof of concept, in the actual scenario of a rope skipping exercise, the G-CQD/PVA/SF fiber-based nanogenerator is further employed as a self-powered wearable sensor for real-time sensing of athletic motions. It demonstrates high portability, good flexibility, and stable piezoresponse for smart sports applications. This class of water-disposable, piezo/photoactive biological materials could be compelling building blocks for applications in a new generation of versatile, transient, wearable/implantable devices. Full article
(This article belongs to the Special Issue Polymer-Based Wearable Electronics)
Show Figures

Figure 1

16 pages, 1321 KiB  
Article
Solvent-Free 1,3-Dipolar Cycloadditions of Nitrones for a More Sustainable Synthesis of Glycomimetics
by Debora Pratesi, Alessio Morano, Andrea Goti, Francesca Cardona and Camilla Matassini
Reactions 2025, 6(2), 36; https://doi.org/10.3390/reactions6020036 - 5 Jun 2025
Viewed by 849
Abstract
1,3-Dipolar cycloadditions on nitrone dipoles are key reactions to access five-membered heterocycles, which are useful intermediates in the synthesis of biologically relevant glycomimetics. The good atomic balance and high stereoselectivity characteristic of such reactions make them good candidates for the development of green [...] Read more.
1,3-Dipolar cycloadditions on nitrone dipoles are key reactions to access five-membered heterocycles, which are useful intermediates in the synthesis of biologically relevant glycomimetics. The good atomic balance and high stereoselectivity characteristic of such reactions make them good candidates for the development of green protocols. In the present work, these features were maximized by avoiding the use of organic solvents and considering starting materials derived from biomass. Reactions involving (acyclic and cyclic) carbohydrate-derived nitrones as dipoles and levoglucosenone as dipolarophile were considered. Performing selected 1,3-dipolar cycloadditions in neat conditions showed reduced reaction times, maintaining similar selectivity and yields with respect to the classical protocols. The use of microwave irradiation and orbital shaking were also exploited to increase the sustainability of the synthetic protocols. The collected results highlight the potential of solvent-free 1,3-dipolar cycloadditions in the design of efficient synthetic routes according to green chemistry principles, such as prevention, atom economy, safer solvents and auxiliaries, and use of renewable feedstocks. Full article
(This article belongs to the Special Issue Cycloaddition Reactions at the Beginning of the Third Millennium)
Show Figures

Graphical abstract

19 pages, 533 KiB  
Review
Extraction of Phenolic Compounds from Agro-Industrial By-Products Using Natural Deep Eutectic Solvents: A Review of Green and Advanced Techniques
by Fernanda de Sousa Bezerra and Maria Gabriela Bello Koblitz
Separations 2025, 12(6), 150; https://doi.org/10.3390/separations12060150 - 3 Jun 2025
Cited by 1 | Viewed by 856
Abstract
As sustainability gains prominence, the circular economy has encouraged the valorization of agri-food by-products, which are rich in phenolic compounds known for their antioxidant and anti-inflammatory properties. Conventional extraction methods commonly employ organic solvents, which contradict green chemistry principles. Natural deep eutectic solvents [...] Read more.
As sustainability gains prominence, the circular economy has encouraged the valorization of agri-food by-products, which are rich in phenolic compounds known for their antioxidant and anti-inflammatory properties. Conventional extraction methods commonly employ organic solvents, which contradict green chemistry principles. Natural deep eutectic solvents (NaDESs) have emerged as environmentally friendly alternatives for recovering bioactive compounds from food waste. This review investigated recent studies (2020–2024) on ultrasound (UAE), microwave (MAE), and pressurized liquid extraction (PLE) using NaDESs to extract phenolic compounds from agri-food by-products. A total of 116 publications were initially identified, of which 19 met the inclusion criteria. UAE combined with NaDESs proved effective, particularly for fruit and oilseed residues. MAE achieved good yields for phenolic acids and flavonoids but showed limitations on high temperatures. PLE, though less explored, demonstrated promising results when optimized for temperature, pressure, and NaDES composition. The combination of NaDESs with assisted extraction techniques enhanced yield, selectivity, and environmental performance compared to conventional approaches. These findings highlight a greener and more efficient strategy for phenolic recovery within a biorefinery framework. Ultimately, this approach contributes to the sustainable management and valorization of agri-food by-products, supporting circular economy principles and the development of cleaner extraction technologies for functional ingredients. Full article
Show Figures

Figure 1

19 pages, 1415 KiB  
Article
Green and Efficient Synthetic Protocol for 1,3,5-Triazine Derivatives with Anticancer Potential Against Colorectal Cancer
by Julia Chrzan, Anna Karolina Drabczyk, Izabela Siemińska, Monika Baj-Krzyworzeka, Katarzyna Ewa Greber, Jolanta Jaśkowska, Damian Kułaga and Krzesimir Ciura
Molecules 2025, 30(11), 2437; https://doi.org/10.3390/molecules30112437 - 2 Jun 2025
Viewed by 2249
Abstract
Colorectal cancer (CRC) remains a major global health challenge, necessitating the development of more effective and environmentally sustainable treatments. This study presents a novel green synthetic protocol for 1,3,5-triazine derivatives with anticancer potential, employing both microwave-assisted and ultrasound-assisted methods. The synthesis was optimized [...] Read more.
Colorectal cancer (CRC) remains a major global health challenge, necessitating the development of more effective and environmentally sustainable treatments. This study presents a novel green synthetic protocol for 1,3,5-triazine derivatives with anticancer potential, employing both microwave-assisted and ultrasound-assisted methods. The synthesis was optimized using 4-chloro-N-(2-chlorophenyl)-6-(morpholin-4-yl)-1,3,5-triazin-2-amine as the key intermediate, with sodium carbonate, TBAB, and DMF providing optimal yields under microwave conditions. To enhance sustainability, a modified sonochemical method was also developed, enabling efficient synthesis in aqueous media with a minimal use of organic solvents. A series of nine morpholine-functionalized derivatives were synthesized and evaluated for cytotoxic activity against SW480 and SW620 colorectal cancer cell lines. Compound 11 demonstrated superior antiproliferative activity (IC₅₀ = 5.85 µM) compared to the reference drug 5-fluorouracil, while compound 5 showed promising dual-line activity. In silico ADME analysis supported the drug likeness of the synthesized compounds, and biomimetic chromatography analysis confirmed favorable physicochemical properties, including lipophilicity and membrane affinity. These results underscore the potential of the developed protocol to produce bioactive triazine derivatives through an efficient, scalable, and environmentally friendly process, offering a valuable strategy for future anticancer drug development. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

17 pages, 1271 KiB  
Review
Deep Eutectic Systems: A Game Changer for Marine Bioactives Recovery
by Sandro Amador, Alice Martins, Margarida Matias, Rui Pedrosa and Susete Pinteus
Mar. Drugs 2025, 23(5), 211; https://doi.org/10.3390/md23050211 - 16 May 2025
Cited by 2 | Viewed by 1039
Abstract
The extraction of bioactive compounds from marine natural products has gained increasing attention due to their diverse applications, such as in pharmaceuticals, nutraceuticals, and cosmetics. Yet, low extraction yields and toxicity associated with common solvents are a major bottleneck. Deep eutectic solvents (DESs) [...] Read more.
The extraction of bioactive compounds from marine natural products has gained increasing attention due to their diverse applications, such as in pharmaceuticals, nutraceuticals, and cosmetics. Yet, low extraction yields and toxicity associated with common solvents are a major bottleneck. Deep eutectic solvents (DESs) and natural deep eutectic solvents (NADESs) have emerged as promising green alternatives to conventional organic solvents, offering advantages such as biodegradability, greater environmental and economic sustainability, low toxicity, and enhanced extraction selectivity. This review provides a comprehensive analysis of the principles, physicochemical properties, and applications of DESs/NADESs to obtain bioactive compounds from marine organisms. Among the most recent works, it is possible to verify the success of NADESs to extract carrageenan from the seaweed Kappaphycus alvarezii; pigments from Palmaria palmata; and polyphenols and proteins from different brown seaweeds. NADESs have also shown high potential to extract other valuable compounds from marine by-products, such as chitin from crabs and shrimp shells, and also lipids and proteins from different fish species and protein rich extracts from tilapia viscera. The challenges for DESs/NADESs use at industrial scale are also discussed, and success cases are revealed, highlighting their potential as game changers for extracting bioactive compounds from marine organisms and driving the development of innovative biotechnological products. Full article
Show Figures

Figure 1

22 pages, 5233 KiB  
Article
A Novel Green In Situ Amine-Functionalized Aerogel UiO-66-NH2/TOCNF for the Removal of Azo Anionic Dyes
by Rabia Amen, Islam Elsayed, Yunsang Kim, Gregory T. Schueneman, Emad M. El-Giar and El Barbary Hassan
Gels 2025, 11(5), 365; https://doi.org/10.3390/gels11050365 - 15 May 2025
Viewed by 1072
Abstract
UiO-66-NH2 is a metal–organic framework (MOF) with open metal sites, making it a promising candidate for adsorption and catalysis. However, the powdery texture of MOFs and the use of toxic solvents during synthesis limit their application. A novel solution to this issue [...] Read more.
UiO-66-NH2 is a metal–organic framework (MOF) with open metal sites, making it a promising candidate for adsorption and catalysis. However, the powdery texture of MOFs and the use of toxic solvents during synthesis limit their application. A novel solution to this issue is to create a layered porous composite by encasing the MOF within a flexible and structurally robust aerogel substrate using safe, eco-friendly, and green solvents such as ethanol. The fibrous MOF aerogels, characterized by a desirable macroscopic shape of cylindrical block and hierarchical porosity, were synthesized by two approaches: in situ growth of amine-functionalized UiO-66-NH2 crystals on a TEMPO-oxidized cellulose nanofiber (TOCNF) and ex situ crosslinking of UiO-66-NH2 crystals onto a TOCNF network to form UiO-66-NH2/TOCNF. The incorporation of MOF into the cellulose nanofibrils via the in situ method reduces their aggregation potential, alters the nucleation/growth balance to produce smaller MOF crystals, and enhances mechanical flexibility, as evidenced by SEM images. The three adsorbents, including UiO-66-NH2, ex situ UiO-66-NH2/TOCNF, and in situ UiO-66-NH2/TOCNF, were synthesized and used in this study. The effects of pH, time, temperature, and initial concentration were studied. A maximum adsorption capacity (Qmax) of 549.45 mg/g for Congo Red (CR) and 171.23 mg/g for Orange II (ORII) was observed at pH 6, using 10 mg of in situ UiO-66-NH2/TOCNF at 40 °C with a contact time of 75 min for CR and 2 h for ORII. The adsorption of both dyes primarily occurs through monolayer chemisorption on the in situ UiO-66-NH2/TOCNF. The main removal mechanisms were hydrogen bonding and surface complexation. The noteworthy adsorption capacity of in situ UiO-66-NH2/TOCNF coupled with environment-friendly fabrication techniques indicates its potential applications on a large scale in real wastewater systems. Full article
(This article belongs to the Special Issue Cellulose-Based Gels: Synthesis, Properties, and Applications)
Show Figures

Figure 1

Back to TopTop