Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,992)

Search Parameters:
Keywords = green involvement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4010 KiB  
Article
Headwater Systems as Green Infrastructure: Prioritising Restoration Hotspots for Sustainable Rural Landscapes
by Selma B. Pena
Land 2025, 14(9), 1704; https://doi.org/10.3390/land14091704 (registering DOI) - 23 Aug 2025
Abstract
This study aims to assess the role of headwater systems (HS) in enhancing ecological connectivity and supporting Green Infrastructure in the Centre Region of Portugal. Specifically, it identifies restoration opportunity areas within HS by analysing land-use changes over the past 70 years, modelling [...] Read more.
This study aims to assess the role of headwater systems (HS) in enhancing ecological connectivity and supporting Green Infrastructure in the Centre Region of Portugal. Specifically, it identifies restoration opportunity areas within HS by analysing land-use changes over the past 70 years, modelling land-use scenarios to promote ecological resilience, and evaluating connectivity between HS and Natura 2000 sites. The methodology integrates spatial analysis of historical land-use data with connectivity modelling using least-cost path approaches. Results show substantial transformation in HS areas, notably the expansion of eucalyptus plantations and a decline in agricultural land. Approximately 58% of the HS are identified as requiring restoration, including areas within the Natura 2000 network. The connectivity assessment reveals that HS can function as effective ecological corridors, contributing to improved water regulation, soil conservation, gene flow, and wildfire mitigation. A total of 61 potential ecological linkages between Natura 2000 sites were identified. These findings highlight the strategic importance of integrating HS into regional and national Green Infrastructure planning and supporting the implementation of the EU Biodiversity Strategy for 2030. The study recommends prioritising headwater restoration through multi-scale planning approaches and active involvement of local stakeholders to ensure sustainable land-use management. Full article
(This article belongs to the Special Issue Efficient Land Use and Sustainable Development in European Countries)
Show Figures

Figure 1

36 pages, 890 KiB  
Review
Use of Depleted Oil and Gas Reservoirs as Bioreactors to Produce Hydrogen and Capture Carbon Dioxide
by Igor Carvalho Fontes Sampaio, Isabela Viana Lopes de Moura, Josilene Borges Torres Lima Matos, Cleveland Maximino Jones and Paulo Fernando de Almeida
Fermentation 2025, 11(9), 490; https://doi.org/10.3390/fermentation11090490 (registering DOI) - 23 Aug 2025
Abstract
The biological production of hydrogen offers a renewable and potentially sustainable alternative for clean energy generation. In Northeast Brazil, depleted oil reservoirs (DORs) present a unique opportunity to integrate biotechnology with existing fossil fuel infrastructure. These subsurface formations, rich in residual hydrocarbons (RH) [...] Read more.
The biological production of hydrogen offers a renewable and potentially sustainable alternative for clean energy generation. In Northeast Brazil, depleted oil reservoirs (DORs) present a unique opportunity to integrate biotechnology with existing fossil fuel infrastructure. These subsurface formations, rich in residual hydrocarbons (RH) and native H2 producing microbiota, can be repurposed as bioreactors for hydrogen production. This process, often referred to as “Gold Hydrogen”, involves the in situ microbial conversion of RH into H2, typically via dark fermentation, and is distinct from green, blue, or grey hydrogen due to its reliance on indigenous subsurface biota and RH. Strategies include nutrient modulation and chemical additives to stimulate native hydrogenogenic genera (Clostridium, Petrotoga, Thermotoga) or the injection of improved inocula. While this approach has potential environmental benefits, such as integrated CO2 sequestration and minimized surface disturbance, it also presents risks, namely the production of CO2 and H2S, and fracturing, which require strict monitoring and mitigation. Although infrastructure reuse reduces capital expenditures, achieving economic viability depends on overcoming significant technical, operational, and biotechnological challenges. If widely applied, this model could help decarbonize the energy sector, repurpose legacy infrastructure, and support the global transition toward low-carbon technologies. Full article
(This article belongs to the Special Issue Biofuels Production and Processing Technology, 3rd Edition)
26 pages, 1686 KiB  
Article
How Land-Take Impacts the Provision of Ecosystem Services—The Case of the Province of Monza and Brianza (Italy)
by Giulio Senes, Giulia Lussana, Paolo Stefano Ferrario, Roberto Rovelli, Ambra Pedrazzoli, Denise Corsini and Natalia Fumagalli
Land 2025, 14(9), 1700; https://doi.org/10.3390/land14091700 - 22 Aug 2025
Abstract
Non-urbanized areas (NUAs), including residual urban green areas, urban parks, agricultural, natural and semi-natural areas, are a fundamental part of the green infrastructure. They are essential in sustaining life and future development, providing a series of ecosystem services (ESs) vital to human society. [...] Read more.
Non-urbanized areas (NUAs), including residual urban green areas, urban parks, agricultural, natural and semi-natural areas, are a fundamental part of the green infrastructure. They are essential in sustaining life and future development, providing a series of ecosystem services (ESs) vital to human society. However, the rapid expansion of urban areas has led to a significant reduction in green spaces. Land-take, reducing available land resources, impacts ecosystem functionality, making it crucial to preserve high-quality territories and the relative ESs provided. In this context, the aim of this study was to evaluate the reduction in ESs due to the land-take having occurred in the last 20 years in the Province of Monza–Brianza, the Italian province with the highest land-take. To achieve this goal, authors used the official data of land use/cover of the Lombardy Region, with three time thresholds (T0: 1999–2003, T1: 2012–2013, T2: 2021) and applied a methodology for ESs assessment originally developed for the municipal level, adapting it to the provincial scale. The study analyzes trends in land-take and land-use changes and assesses how these changes have led to variations in ES provision. The approach involves calculating multiple indices reflecting different ESs provided by NUAs: provisioning ESs coming from agriculture, regulating ESs provided by natural resources, cultural ESs provided by landscape. Findings reveal that urban expansion has decreased provisioning ESs coming from agriculture, while ESs provided by landscape and natural resources have remained stable or improved, respectively. The natural quality index has improved due to conservation policies, despite the high land-take recorded. Anyway, although regional policies have mitigated some negative effects, the overall reduction in green spaces remains a critical issue. Full article
22 pages, 2536 KiB  
Article
Managing the Integration of Companies into Green Value Chains: A Regional Perspective
by Nadezhda Shmeleva, Vladimir Andreev, Tatyana Tolstykh, Tatiana Guseva and Viktor Rudomazin
Sustainability 2025, 17(17), 7582; https://doi.org/10.3390/su17177582 - 22 Aug 2025
Abstract
In recent years, the green and low-carbon agenda has gained importance across various economic sectors, including the construction sector, which encompasses both the development of infrastructure and buildings, as well as the production of construction materials. The purpose of this study is to [...] Read more.
In recent years, the green and low-carbon agenda has gained importance across various economic sectors, including the construction sector, which encompasses both the development of infrastructure and buildings, as well as the production of construction materials. The purpose of this study is to demonstrate that the effectiveness of green integration is achieved by balancing the collective capital of all participants in forming green value chains. The authors propose a methodology for evaluating the integration capital, which enables the assessment of both joint capital accumulation and the resulting added green value. A system of indicators is proposed to evaluate participants in green integration and determine the maturity levels of their integration capital. The methodology is tested using a case study reflecting green integration in the construction sector covering the erection of buildings and the production of building materials. The authors introduce a three-dimensional model (triangular prisms) to visualize the potential and the integration capital of the involved actors. The study’s findings are applicable to scenario modeling, particularly in developing strategic trajectories for participants in green integration. Full article
(This article belongs to the Special Issue Smart Supply Chain Innovation and Management)
Show Figures

Figure 1

39 pages, 4913 KiB  
Review
Magnetic Nanoparticle-Catalysed One-Pot Multicomponent Reactions (MCRs): A Green Chemistry Approach
by Venkatesan Kasi, Magdi EI Sayed Abdelsalam Zaki, Hussain Basha Nabisahebgari, Hussain Shaik, Sook-Keng Chang, Ling Shing Wong, Karthikeyan Parasuraman and Sobhi Mohamed Gomha
Catalysts 2025, 15(9), 800; https://doi.org/10.3390/catal15090800 - 22 Aug 2025
Abstract
The synthesis of heterocyclic compounds has gained significant attention in organic chemistry due to their diverse pharmacological properties. However, traditional synthetic approaches often involve hazardous chemicals, high energy consumption, and tedious workup procedures, leading to environmental concerns and low yields. In response, green [...] Read more.
The synthesis of heterocyclic compounds has gained significant attention in organic chemistry due to their diverse pharmacological properties. However, traditional synthetic approaches often involve hazardous chemicals, high energy consumption, and tedious workup procedures, leading to environmental concerns and low yields. In response, green chemistry strategies have emerged, emphasizing safer and more sustainable alternatives. Among these, magnetic nanoparticle (MNP)-based catalysts have shown remarkable promise in facilitating one-pot multicomponent reactions (MCRs), offering enhanced catalytic efficiency, ease of recovery, and reusability. This article provides a comprehensive overview of multicomponent reactions (MCRs) for the construction of a wide range of heterocyclic scaffolds—including chromenes, pyrazoles, phenazines, triazoles, tetrazoles, xanthenes, furans, indoles, imidazoles, pyridines, pyrimidines, oxazoles, and acridine derivatives—catalyzed by magnetic nanoparticles under sustainable and environmentally benign conditions. This review highlights recent advances (2018–2024) in the development and application of modified magnetic nanoparticles for green multicomponent synthesis. Emphasis is placed on their structural features, catalytic roles, and benefits in eco-friendly organic transformations. Full article
(This article belongs to the Section Catalysis in Organic and Polymer Chemistry)
Show Figures

Scheme 1

22 pages, 749 KiB  
Article
Enhancing Place Attachment Through Natural Design in Sports Venues: The Roles of Nature Connectedness and Biophilia
by Zhihao Zhang, Wenyue Liu, Linkang Du and Lu Ding
Buildings 2025, 15(17), 2980; https://doi.org/10.3390/buildings15172980 - 22 Aug 2025
Abstract
With the rise of green building and biophilic design, how sports venues enhance users’ place attachment through natural design features has become a critical interdisciplinary research topic in architecture and environmental psychology. This study adopts an integrated perspective of environmental psychology and architectural [...] Read more.
With the rise of green building and biophilic design, how sports venues enhance users’ place attachment through natural design features has become a critical interdisciplinary research topic in architecture and environmental psychology. This study adopts an integrated perspective of environmental psychology and architectural psychology to investigate the impact mechanism of natural design features (natural visibility, integration, and interactivity) on place attachment. Using a maximum likelihood-based structural equation model with a sample of 1022 users of waterside sports venues, this research pioneers the construction and validation of a parallel mediation model involving nature connectedness and biophilia. The findings reveal that (1) natural visibility, integration, and interactivity all significantly and positively influence place attachment; (2) nature connectedness mediates the relationship between natural design features and place attachment; and (3) biophilia also mediates the effect of natural design features on place attachment. This study makes a groundbreaking contribution by uncovering the dual-path “perception-emotion” mechanism through which natural design elements influence users’ psychological responses. The results provide empirical support for the refined application of nature-embedded strategies in architectural design and offer direct guidance for enhancing the social sustainability of high-density urban waterfront public spaces. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

23 pages, 3380 KiB  
Article
Environmental Performance of the Sewage Sludge Gasification Process Considering the Recovered CO2
by Daichi Terasawa, Mayu Hamazaki, Kanato Kumagai and Kiyoshi Dowaki
Energies 2025, 18(17), 4460; https://doi.org/10.3390/en18174460 - 22 Aug 2025
Abstract
An advanced gasification module (AGM) for green hydrogen production involves a small-scale biomass gasification process owing to the low energy density of biomass. Therefore, significant heat loss and the endothermic nature of gasification system require additional fossil fuel heat, increasing CO2 emissions. [...] Read more.
An advanced gasification module (AGM) for green hydrogen production involves a small-scale biomass gasification process owing to the low energy density of biomass. Therefore, significant heat loss and the endothermic nature of gasification system require additional fossil fuel heat, increasing CO2 emissions. This study focuses on bioenergy conversion with carbon capture and utilization (BECCU), where carbon-neutral CO2 from biomass gasification is captured and reused as a gasifying agent to reduce the greenhouse gas intensity of green hydrogen. BECCU is expected to achieve negative emissions and enhance gasification efficiency by promoting conversion of char and tar through CO2 gasification. To evaluate the effectiveness of BECCU in the AGM, we conducted a sensitivity analysis of the reformer temperature and S/C ratio using process simulation combined with life cycle assessment. In both sensitivity analyses, the GWP for CO2 capture was lower compared with conventional conditions, considering recovered CO2 from purification and the additional steam generated through heat recovery. This suggests improved hydrogen yields from enhanced char and tar conversion. Consequently, the GWP was reduced by more than 50%, demonstrating BECCU’s effectiveness in the AGM. This represents a step toward operating biomass gasification systems with lower environmental impact and contributing to sustainable energy production. Full article
Show Figures

Figure 1

20 pages, 3799 KiB  
Review
Nickel-Catalyzed Cyanation of Aryl Halides
by Zhenqiang Ma, Cuimeng Huo, Duo Zhou, Jingyi Zhang, Hongjun Kong, Wenke Ren, Fengbo Qu, Tingting Liu, Hui Chen and Xilong Wang
Molecules 2025, 30(16), 3440; https://doi.org/10.3390/molecules30163440 - 20 Aug 2025
Viewed by 149
Abstract
Nickel-catalyzed cyanation of aryl halides has emerged as a powerful and sustainable method for the synthesis of aryl nitriles—valuable motifs widely found in pharmaceuticals, agrochemicals, and functional materials. Compared to traditional cyanation methods that involve harsh conditions and toxic reagents, nickel catalysis enables [...] Read more.
Nickel-catalyzed cyanation of aryl halides has emerged as a powerful and sustainable method for the synthesis of aryl nitriles—valuable motifs widely found in pharmaceuticals, agrochemicals, and functional materials. Compared to traditional cyanation methods that involve harsh conditions and toxic reagents, nickel catalysis enables mild, efficient, and versatile transformations. This review systematically summarizes recent advances in this field, categorized by different cyanide sources, including metal cyanides (NaCN, KCN, Zn(CN)2, K4[Fe(CN)6]) and non-metal or organic cyanide sources (e.g., MeCN, nitriles, BrCN, CO2/NH3). Key developments in catalyst systems, ligand design, mechanistic insights, and green chemistry aspects are highlighted. Remaining challenges and future directions are also discussed. Full article
(This article belongs to the Special Issue Organic Synthesis of Nitrogen-Containing Molecules)
Show Figures

Scheme 1

29 pages, 797 KiB  
Article
A Green Vehicle Routing Problem with Time-Varying Speeds and Joint Distribution
by Ying Wang, Jicong Duan, Jiajun Sun, Qin Zhang and Taofeng Ye
Sustainability 2025, 17(16), 7515; https://doi.org/10.3390/su17167515 - 20 Aug 2025
Viewed by 174
Abstract
With the rapid growth of urban logistics demand, carbon emissions and the time-varying nature of vehicle speeds have become critical challenges in sustainable transportation planning. This paper addresses a Time-Dependent Green Vehicle Routing Problem (TDGVRP) that integrates time-varying speeds, carbon emissions, and cold [...] Read more.
With the rapid growth of urban logistics demand, carbon emissions and the time-varying nature of vehicle speeds have become critical challenges in sustainable transportation planning. This paper addresses a Time-Dependent Green Vehicle Routing Problem (TDGVRP) that integrates time-varying speeds, carbon emissions, and cold chain logistics under a joint distribution framework involving multiple depots and homogeneous refrigerated vehicles. A Mixed-Integer Linear Programming (MILP) model is developed, explicitly considering carbon pricing, refrigeration energy consumption, and speed variations across different time periods. To efficiently solve large-scale instances, a Three-Phase Heuristic (TPH) algorithm is proposed, combining spatiotemporal path construction, local-improvement strategies, and an Adaptive Large Neighborhood Search (ALNS) mechanism. Computational experiments show that the proposed method outperforms traditional Genetic Algorithms (GAs) in both solution quality and computation time, and in some benchmark cases even achieves better results than the commercial solver Gurobi, demonstrating its robustness and scalability. Using real-world traffic speed data, comparative analysis reveals that the joint distribution strategy reduces total logistics costs by 14.40%, carbon emission costs by 23.12%, and fleet size by approximately 25% compared to single-entity distribution. The findings provide a practical and scalable solution framework for sustainable cold chain logistics routing in time-dependent urban road networks. Full article
Show Figures

Figure 1

19 pages, 295 KiB  
Article
On Some Inequalities with Higher Fractional Orders
by Lakhdar Ragoub
Fractal Fract. 2025, 9(8), 547; https://doi.org/10.3390/fractalfract9080547 - 19 Aug 2025
Viewed by 155
Abstract
The novelty herein pertains to a class of fractional differential equations involving the Hadamard fractional derivative of higher order. Our investigation encompasses the fractional integral operator of a logarithmic function. The mathematical tools utilized in this study are derived from an important function, [...] Read more.
The novelty herein pertains to a class of fractional differential equations involving the Hadamard fractional derivative of higher order. Our investigation encompasses the fractional integral operator of a logarithmic function. The mathematical tools utilized in this study are derived from an important function, wherein its behavior in terms of maximum value facilitates the establishment of bounds necessary for proving the existence of solutions, specifically through Green’s function. Based on this, we endeavor to estimate the bounds of Green’s function as well as analyze its properties within the considered interval. This approach enables us to establish the Hartman–Wintner- and Lyapunov-type inequalities for a class of fractional Hadamard problems. Furthermore, we introduce a novel technique to determine the maximum value of Green’s function. Finally, we illustrate these findings through two applications. Full article
15 pages, 2026 KiB  
Article
Planting Diversification Enhances Phosphorus Availability and Reshapes Fungal Community Structure in the Maize Rhizosphere
by Yannan Li, Yuming Zhang, Xiaoxin Li, Hongjun Li, Wenxu Dong, Shuping Qin, Xiuping Liu, Lijuan Zhang, Chunsheng Hu, Hongbo He, Pushan Zheng and Jingyun Zhao
Agronomy 2025, 15(8), 1993; https://doi.org/10.3390/agronomy15081993 - 19 Aug 2025
Viewed by 176
Abstract
Intercropping with green manures is an effective practice for increasing agricultural production and reducing environmental issues. However, the effects of green manure type and intercropping patten on soil nutrient availability and microbial communities remains underexplored. In the present study, the impacts of three [...] Read more.
Intercropping with green manures is an effective practice for increasing agricultural production and reducing environmental issues. However, the effects of green manure type and intercropping patten on soil nutrient availability and microbial communities remains underexplored. In the present study, the impacts of three green manure–maize intercropping patterns on maize yield, rhizosphere nutrient availability, and soil fungal community were evaluated. Four treatments (three replicate plots for each) were involved, including a monoculture treatment (MC) as a control and three intercropping patterns as follows: maize–ryegrass (Lolium perenne L.) (IntL), maize–forage soybean (Fen Dou mulv 2, a hybrid soybean cultivar) (IntF), and maize–ryegrass–forage soybean (IntLF) intercropping. The results showed that all three intercropping patterns significantly increased maize yield and rhizosphere available phosphorus (AP) compared with MC. Intercropping shifted the dominant assembly process of the maize rhizosphere fungal community from stochastic to deterministic processes, shaping a community rich in arbuscular mycorrhizal fungi (AMF) and limited in plant pathogens, primarily Exserohilum turcicum. AP showed significant correlations with fungal community and AMF, while maize yield was negatively correlated with plant pathogens. In addition, the dual-species green manure intercropping pattern (IntLF) had the strongest positive effects on maize yield, AP content, and fungal community compared with single-species patterns (IntL and IntF). These results illustrate the advantages of planting diversification in boosting crop production by improving nutrient availability and soil health in the rhizosphere and suggest that the maize–ryegrass–forage soybean intercropping system is a potential strategy for improving soil fertility and health. Full article
(This article belongs to the Special Issue Plant Nutrition Eco-Physiology and Nutrient Management)
Show Figures

Figure 1

32 pages, 4279 KiB  
Article
Modular Design Strategies for Community Public Spaces in the Context of Rapid Urban Transformation: Balancing Spatial Efficiency and Cultural Continuity
by Wen Shi, Danni Chen and Wenting Xu
Sustainability 2025, 17(16), 7480; https://doi.org/10.3390/su17167480 - 19 Aug 2025
Viewed by 334
Abstract
This study explores the application of modular design in the regeneration of community public spaces within rapidly transforming urban environments, using Haikou as a case study. The objective is to improve spatial quality and community sustainability while preserving cultural identity and community engagement. [...] Read more.
This study explores the application of modular design in the regeneration of community public spaces within rapidly transforming urban environments, using Haikou as a case study. The objective is to improve spatial quality and community sustainability while preserving cultural identity and community engagement. Through a mixed-methods approach involving questionnaires, GIS-based spatial analysis, and case studies, the research identifies key challenges such as fragmented layouts, limited accessibility, and insufficient green space. In response, a “policy–design–community” integration mechanism is proposed to guide bottom-up and top-down coordination. A multidimensional evaluation framework is developed to assess the effectiveness of modular interventions across functional, spatial, and cultural dimensions. The findings suggest that modular design—owing to its standardization and flexibility—enhances spatial adaptability and construction efficiency, and strengthens cultural identity and community engagement. This research provides a replicable and data-informed strategy for the renewal of public spaces in Chinese urban environments. Full article
Show Figures

Figure 1

15 pages, 2515 KiB  
Article
Carbon Dot Integrated Cellulose-Based Green-Fluorescent Aerogel for Detection and Removal of Copper Ions in Water
by Guanyan Fu, Chenzhan Peng, Jiangrong Yu, Jiafeng Cao, Shilin Peng, Tian Zhao and Dong Xu
Gels 2025, 11(8), 655; https://doi.org/10.3390/gels11080655 - 18 Aug 2025
Viewed by 125
Abstract
Industrial pollution caused by Cu(II) ions remains one of the most critical environmental challenges worldwide. A novel green-fluorescent aerogel has been successfully developed for simultaneous sensing and adsorption of Cu(II) through the cross-linking of carboxymethyl nanocellulose and carbon dots (C dots) using epichlorohydrin [...] Read more.
Industrial pollution caused by Cu(II) ions remains one of the most critical environmental challenges worldwide. A novel green-fluorescent aerogel has been successfully developed for simultaneous sensing and adsorption of Cu(II) through the cross-linking of carboxymethyl nanocellulose and carbon dots (C dots) using epichlorohydrin as a linker. The C dots were synthesized by heating glucose and aspartate mixed solutions at 150 °C. Under UV illumination, the aerogel exhibited intense homogeneous green fluorescence originating from the uniformly dispersed C dots, whose emission can be efficiently quenched by Cu(II) ions. By leveraging smartphone-based imaging, the concentration of Cu(II) was quantified within the range of 5–200 µg/L, with a detection limit of 3.7 µg/L. The adsorption isotherm of Cu(II) onto the aerogel strictly conformed to the Freundlich isotherm model (fitting coefficient R2 = 0.9992), indicating a hybrid adsorption mechanism involving both physical adsorption and chemical complexation. The maximum adsorption capacity reached 149.62 mg/g, a value surpassing many reported adsorbents. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy analyses confirmed that the interactions between the aerogel and Cu(II) involved chelation and redox reactions, mediated by functional groups such as hydroxyl, amino, and carboxyl moieties. The straightforward fabrication process of the aerogel, coupled with its low cost, abundant raw materials, facile synthesis, and superior Cu(II) removal efficiency, positions this bifunctional fluorescent material as a promising candidate for large-scale environmental remediation applications. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

27 pages, 2856 KiB  
Article
Harnessing and Degradation Mechanism of Persistent Polyethylene Waste by Newly Isolated Bacteria from Waxworm and Termite Gut Symbionts
by Sameh Samir Ali, Jianzhong Sun, Rania Al-Tohamy, Maha A. Khalil, Tamer Elsamahy, Michael Schagerl, Daochen Zhu and Shimaa El-Sapagh
Microorganisms 2025, 13(8), 1929; https://doi.org/10.3390/microorganisms13081929 - 18 Aug 2025
Viewed by 316
Abstract
Pollution from synthetic polymers, particularly low-density polyethylene (LDPE), poses a significant environmental challenge due to its chemical stability and resistance to degradation. This study investigates an eco-biotechnological approach involving bacterial strains isolated from insect guts—Bacillus cereus LDPE-DB2 (from Achroia grisella) and [...] Read more.
Pollution from synthetic polymers, particularly low-density polyethylene (LDPE), poses a significant environmental challenge due to its chemical stability and resistance to degradation. This study investigates an eco-biotechnological approach involving bacterial strains isolated from insect guts—Bacillus cereus LDPE-DB2 (from Achroia grisella) and Pseudomonas aeruginosa LDPE-DB26 (from Coptotermes formosanus)—which demonstrate the ability to degrade LDPE, potentially through the action of lignin-modifying enzymes. These strains exhibited notable biofilm formation, enzymatic activity, and mechanical destabilization of LDPE. LDPE-DB2 exhibited higher LDPE degradation efficiency than LDPE-DB26, achieving a greater weight loss of 19.8% compared with 11.6% after 45 days. LDPE-DB2 also formed denser biofilms (maximum protein content: 68.3 ± 2.3 µg/cm2) compared with LDPE-DB26 (55.2 ± 3.1 µg/cm2), indicating stronger surface adhesion. Additionally, LDPE-DB2 reduced LDPE tensile strength (TS) by 58.3% (from 15.3 MPa to 6.4 ± 0.4 MPa), whereas LDPE-DB26 induced a 43.1% reduction (to 8.7 ± 0.23 MPa). Molecular weight analysis revealed that LDPE-DB2 caused a 14.8% decrease in weight-averaged molecular weight (Mw) and a 59.1% reduction in number-averaged molecular weight (Mn), compared with 5.8% and 32.7%, respectively, for LDPE-DB26. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and gel permeation chromatography (GPC) analyses revealed substantial polymer chain scission and crystallinity disruption. Gas chromatography–mass spectrometry (GC-MS) identified environmentally benign degradation products, including alkanes, alcohols, and carboxylic acids. This study demonstrates a sustainable route to polyethylene biotransformation using insect symbionts and provides insights for scalable, green plastic waste management strategies in line with circular economy goals. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

24 pages, 10345 KiB  
Article
Dynamic Evolution and Driving Mechanism of a Multi-Agent Green Technology Cooperation Innovation Network: Empirical Evidence Based on Exponential Random Graph Model
by Jing Ma, Lihua Wu and Jingxuan Hu
Systems 2025, 13(8), 706; https://doi.org/10.3390/systems13080706 - 18 Aug 2025
Viewed by 248
Abstract
As a crucial vehicle for green technological innovation, cooperative networks significantly promote resource integration and knowledge sharing. Yet, their dynamic evolution and micro-mechanism remain underexplored. Drawing on data from the joint applications of green invention patents between 2006 and 2021, this study constructed [...] Read more.
As a crucial vehicle for green technological innovation, cooperative networks significantly promote resource integration and knowledge sharing. Yet, their dynamic evolution and micro-mechanism remain underexplored. Drawing on data from the joint applications of green invention patents between 2006 and 2021, this study constructed a multi-agent GTCIN involving multiple stakeholders, such as enterprises, universities, and research institutions, and analyzed the topological structure and evolutionary characteristics of this network; an exponential random graph model (ERGM) was introduced to elucidate its endogenous and exogenous driving mechanisms. The results indicate that while innovation connections increased significantly, the connection density decreased. The network evolved from a “loose homogeneity” to “core aggregation” and then to “outward diffusion”. State-owned enterprises in the power industry and well-known universities are located at the core of the network. Preferential attachment and transitive closure as endogenous mechanisms exert strong and continuous positive effects by reinforcing local clustering and cumulative growth. The effects of exogenous forces exhibit stage-specific characteristics. State ownership and regional location become significant positive drivers only in the mid-to-late stages. The impact of green innovation capability is nonlinear, initially promoting but later exhibiting a significant inhibitory effect. In contrast, green knowledge diversity exerts an opposite pattern, having a negative effect in the early stage due to integration difficulties that turns positive as technical standards mature. Geographical, technological, social, and institutional proximity all have a positive promoting effect on network evolution, with technological proximity being the most influential. However, organizational proximity exerts a significant inhibitory effect in the later stages of GTCIN evolution. This study reveals the shifting influence of endogenous and exogenous mechanisms across different evolutionary phases, providing theoretical and empirical insights into the formation and development of green innovation networks. Full article
Show Figures

Figure 1

Back to TopTop