Headwater Systems as Green Infrastructure: Prioritising Restoration Hotspots for Sustainable Rural Landscapes
Abstract
1. Introduction
1.1. Planning Green Infrastructure in Rural Landscapes
1.2. Headwater Systems as Green Infrastructures: The Mountain Corridors
1.3. Ecological Connectivity in Portuguese National Spatial Planning Policy Programme
1.4. Goal of This Study
2. Materials and Methods
2.1. Phase 1—Land-Use Change Analysis
2.2. Phase 2—Proposed Land-Use Change Scenario—Identification of Restoration Hotspots
- The ideal land use is mixed woods with native broadleaved species to maximise water infiltration and soil conservation, provide a biodiversity hub and reduce fire spread;
- Mixed woods are generally better at guaranteeing water infiltration due to improved soil hydraulic properties, higher infiltration rates, and better water storage capacity. These benefits are attributed to the diversity in root systems, litter composition, and complementary ecological functions of mixed-species forests [34,35].
- In contrast, monoculture plantations, such as eucalyptus, while economically valuable, often have shallower roots and higher water consumption rates, which can lead to reduced soil moisture and increased erosion risk [36].
- Understanding these differences is crucial for optimising land-use strategies that balance ecological functions, restoration goals, and economic considerations.
- If agriculture or pastures exist, they should be kept, only adding sustainable management actions and hedges;
- A hedge is a linear feature composed of closely planted shrubs or trees that serves as a boundary marker, windbreak, or habitat corridor in rural and agricultural landscapes. Hedges provide ecological functions such as offering shelter and food for wildlife, facilitating species movement, reducing soil erosion, and contributing to landscape connectivity.
- If high-quality soils are present—such as fertile soils—agricultural land use may be proposed, accompanied by sustainable management practices and the integration of hedges.
- The settlements located in the headwaters system should include agriculture or pastures in the wildland-urban interface;
- The existing shrubs are important in biodiversity, soil and water conservation, and economic add-in (aromatic, honey, etc). Their regeneration can be assisted.
2.3. Phase 3—Connectivity Assessment Between Headwater Systems and Natura 2000 Sites
3. Results
3.1. Land Use Change
3.2. Proposed Land-Use Change Scenario—Identification of Hotspots
3.3. Connectivity Assessment Between Headwater Systems and Natura 2000 Sites
4. Discussion
4.1. Land Use Dynamics in Headwater Systems
4.2. Restoration in Headwater Systems
4.3. From Science to Policy: Bridging Restoration and Governance
4.4. Study Limitations
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GI | Green Infrastructure |
EU | European Union |
PNPOT | National Spatial Planning Policy |
SNAC | National System for Classified Areas |
RNAP | National Protected Areas Network |
REN | National Ecological Reserve |
REN | National Agriculture |
DPH | Water Public Domain |
REOT | Report on the State of Spatial Planning |
SAC | Special Areas of Conservation from Natura 2000 |
ISA | School of Agriculture from the University of Lisbon |
ICNF | Institute for Nature Conservation and Forests from Portugal |
DGT | Directorate-General for Territory from Portugal |
A | Agriculture |
AFS | Agro-forest system |
CF | Chestnut forest |
COF | Cork oak forest |
EF | Eucalyptus forest |
IF | Invasive Forest |
OBF | Other broadleaved forest |
OCF | Other conifers forest |
OOF | Other oak forest |
P | Pastures |
PPeF | Pinus Pinea forest |
PPF | Pinus pinaster forest |
RO | Rock Outcrops |
S | Shrubs |
SV | Sparse vegetation; |
URS | Urban/Rural Settlements |
W | Water |
References
- EC. Green Infrastructure (GI)—Enhancing Europe’s Natural Capital COM(2013) 249 Final. 2013. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:d41348f2-01d5-4abe-b817-4c73e6f1b2df.0014.03/DOC_1&format=PDF (accessed on 11 March 2024).
- EC. Our Life Insurance, Our Natural Capital: An EU Biodiversity Strategy to 2020 COM(2011) 244 Final. 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52011DC0244 (accessed on 11 March 2024).
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. 2019. Available online: https://doi.org/10.5281/ZENODO.6417333 (accessed on 11 March 2024).
- EC. EU Biodiversity Strategy for 2030—Bringing Nature Back into Our Lives. 2021. Available online: https://data.europa.eu/doi/10.2779/677548 (accessed on 11 March 2024).
- EHF. The Implementation of the EU 2020 Biodiversity Strategy and Recommendations for the Post 2020 Biodiversity Strategy. 2019. Available online: https://www.europarc.org/wp-content/uploads/2019/05/EHF-paper_Post-2020-EU-Biodiversity-Strategy_May2019.pdf (accessed on 11 March 2024).
- Reitberger, R.; Pattnaik, N.; Parhizgar, L.; Trost, C.; Yazdi, H.; Rahman, M.A.; Pauleit, S.; Roetzer, T.; Pretzsch, H.; Traidl-Hoffmann, C.; et al. A Systems Perspective on the Interactions Between Urban Green Infrastructure and the Built Environment. IOP Conf. Ser. Earth Environ. Sci. 2024, 1363, 012071. [Google Scholar] [CrossRef]
- Robinson, J.M.; Mavoa, S.; Robinson, K.; Brindley, P. Urban centre green metrics in Great Britain: A geospatial and socio-ecological study. PLoS ONE 2022, 17, e0276962. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef]
- Mell, I. ‘But who’s going to pay for it?’ Contemporary approaches to green infrastructure financing, development and governance in London, UK. J. Environ. Policy Plan. 2021, 23, 628–645. [Google Scholar] [CrossRef]
- Nastran, M.; Kobal, M.; Eler, K. Urban heat islands in relation to green land use in European cities. Urban For. Urban Green. 2019, 37, 33–41. [Google Scholar] [CrossRef]
- La Rosa, D. Open Spaces and Green Infrastructure—A Comparison with Planning Indications for the City of Rome. In International Conference on Innovation in Urban and Regional Planning; La Rosa, D., Privitera, R., Eds.; Lecture Notes in Civil Engineering; Springer International Publishing: Cham, Switzerland, 2022; Volume 242, pp. 47–55. [Google Scholar] [CrossRef]
- Probst, N.; Bach, P.M.; Cook, L.M.; Maurer, M.; Leitão, J.P. Blue Green Systems for urban heat mitigation: Mechanisms, effectiveness and research directions. Blue Green Syst. 2022, 4, 348–376. [Google Scholar] [CrossRef]
- Kušar, S. Green Infrastructure as A Facilitator of Sustainable Spatial Development in Rural Areas: Experiences from The Vipava Valley (Slovenia). Eur. Countrys. 2019, 11, 17–28. [Google Scholar] [CrossRef]
- Wu, K.; Bryant, M.; Toland, A.; He, Y.; Chen, B. Regenerating tradition: Empowering rural revitalisation through Li culture and green infrastructure in a design case study of Yulong village, Hainan, China. J. Chin. Arch. Urban. 2024, 6, 1304. [Google Scholar] [CrossRef]
- Mertens, E.; Stiles, R.; Karadeniz, N. Green May Be Nice, but Infrastructure Is Necessary. Land 2022, 11, 89. [Google Scholar] [CrossRef]
- Pantaloni, M.; Botticini, F.; Mazzoni, S.; Domenella, L.; Marinelli, G. Green Infrastructure and Ecosystem Services to Guide the Revision Process of Land-Use Plan. A Methodological Framework. In Innovation in Urban and Regional Planning; Marucci, A., Zullo, F., Fiorini, L., Saganeiti, L., Eds.; Lecture Notes in Civil Engineering; Springer Nature: Cham, Switzerland, 2024; Volume 463, pp. 117–128. [Google Scholar] [CrossRef]
- Magalhães, M.R.; Cunha, N.S.; Pena, S.B.; Müller, A. FIRELAN—An Ecologically Based Planning Model towards a Fire Resilient and Sustainable Landscape. A Case Study in Center Region of Portugal. Sustainability 2021, 13, 7055. [Google Scholar] [CrossRef]
- Liquete, C.; Kleeschulte, S.; Dige, G.; Maes, J.; Grizzetti, B.; Olah, B.; Zulian, G. Mapping green infrastructure based on ecosystem services and ecological networks: A Pan-European case study. Environ. Sci. Policy 2015, 54, 268–280. [Google Scholar] [CrossRef]
- Wickham, J.D.; Riitters, K.H.; Wade, T.G.; Vogt, P. A national assessment of green infrastructure and change for the conterminous United States using morphological image processing. Landsc. Urban Plan. 2010, 94, 186–195. [Google Scholar] [CrossRef]
- Pena, S.B.; Magalhães, M.R.; Abreu, M.M. Mapping headwater systems using a HS-GIS model. An application to landscape structure and land use planning in Portugal. Land Use Policy 2018, 71, 543–553. [Google Scholar] [CrossRef]
- Cui, X.; Alam, M.A.; Perry, G.L.; Paterson, A.M.; Wyse, S.V.; Curran, T.J. Green firebreaks as a management tool for wildfires: Lessons from China. J. Environ. Manag. 2019, 233, 329–336. [Google Scholar] [CrossRef]
- Yu, K.; Li, H.; Li, D. Ecological infrastructure as a tool for smart preservation and smart growth. The Negative Approach, In Reinventing Planning: Examples from the Profession; Nan, S., Reilly, J., Klaas, F., Eds.; ISOCARP review; International Society of City and Regional Planners: Hague, The Netherlands, 2015; pp. 228–241. Available online: https://www.isocarp-institute.org/wp-content/uploads/2020/08/Review11_Ecological-Infrastructure-as-a-Tool-for-smart-Preservation-and-smart-Growth.pdf (accessed on 2 July 2024).
- Davies, P.M. Climate change implications for river restoration in global biodiversity hotspots. Restor. Ecol. 2010, 18, 261–268. [Google Scholar] [CrossRef]
- Funk, A.; Martínez-López, J.; Borgwardt, F.; Trauner, D.; Bagstad, K.J.; Balbi, S.; Magrach, A.; Villa, F.; Hein, T. Identification of conservation and restoration priority areas in the Danube River based on the multi-functionality of river-floodplain systems. Sci. Total. Environ. 2019, 654, 763–777. [Google Scholar] [CrossRef]
- Noss, R.F.; Platt, W.J.; Sorrie, B.A.; Weakley, A.S.; Means, D.B.; Costanza, J.; Peet, R.K. How global biodiversity hotspots may go unrecognised: Lessons from the North American Coastal Plain. Divers. Distrib. 2015, 21, 236–244. [Google Scholar] [CrossRef]
- Xu, P.; Wang, Y.; Yang, J.; Peng, Y. Identification of hotspots for biodiversity conservation in the Wenchuan earthquake-hit area. Shengtai Xuebao Acta Ecol. Sin. 2013, 33, 718–725. [Google Scholar] [CrossRef]
- Gilby, B.L.; Olds, A.D.; Duncan, C.K.; Ortodossi, N.L.; Henderson, C.J.; Schlacher, T.A. Identifying restoration hotspots that deliver multiple ecological benefits. Restor. Ecol. 2020, 28, 222–232. [Google Scholar] [CrossRef]
- Brancalion, P.H.S.; Niamir, A.; Broadbent, E.; Crouzeilles, R.; Barros, F.S.M.; Zambrano, A.M.A.; Baccini, A.; Aronson, J.; Goetz, S.; Reid, J.L.; et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 2019, 5, eaav3223. [Google Scholar] [CrossRef] [PubMed]
- Wende, W.; Tucker, G.; Quétier, F.; Rayment, M.; Darbi, M. Introduction: Biodiversity Offsets—The European Perspective on No Net Loss of Biodiversity and Ecosystem Services. In Biodiversity Offsets; Wende, W., Tucker, G.-M., Quétier, F., Rayment, M., Darbi, M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–3. [Google Scholar] [CrossRef]
- European Environment Agency. State of Nature in the EU: Results from Reporting Under the Nature Directives 2013–2018; LU: Publications Office: Luxembourg, 2020. [Google Scholar] [CrossRef]
- Cavaco, C.; Mourato, J.; Costa, J.P.; Pereira, A.; Vilares, E.; Moreira, P.; Magalhães, M. Spatial Planning and Regional Development in Portugal; Direção-Geral Do Território: Lisboa, Portugal, 2021. [Google Scholar]
- DGT. Programa Nacional da Política de Ordenamento do Território. Primeira Revisão. 2019. Available online: https://pnpot.dgterritorio.gov.pt/pcat/ficheiros/SQ_Vconc_PNPOT_1.pdf#page=16 (accessed on 3 February 2025).
- DGT. Relatório de Estado do Ordenamento do Território (REOT). Versão Para Discussão Pública. 2024. Available online: https://www.dgterritorio.gov.pt/download/reot/REOT_2024_Discuss%C3%A3oP%C3%BAblica.pdf (accessed on 3 February 2025).
- Zema, D.A.; Van Stan, J.T.; Plaza-Alvarez, P.A.; Xu, X.; Carra, B.G.; Lucas-Borja, M.E. Effects of stand composition and soil properties on water repellency and hydraulic conductivity in Mediterranean forests. Ecohydrology 2021, 14, e2276. [Google Scholar] [CrossRef]
- Ilek, A.; Błońska, E.; Miszewski, K.; Kasztelan, A.; Zborowska, M. Investigating Water Storage Dynamics in the Litter Layer: The Impact of Mixing and Decay of Pine Needles and Oak Leaves. Forests 2024, 15, 350. [Google Scholar] [CrossRef]
- Amazonas, N.T.; Forrester, D.I.; Oliveira, R.S.; Brancalion, P.H.S. Combining Eucalyptus wood production with the recovery of native tree diversity in mixed plantings: Implications for water use and availability. For. Ecol. Manag. 2018, 418, 34–40. [Google Scholar] [CrossRef]
- Capelo, J.; Mesquita, S.; Costa, J.C.; Ribeiro, S.; Arsénio, P.; Neto, C.; Monteiro-Henriques, T.; Aguiar, C.; Honrado, J.; Espírito-Santo, D.; et al. A methodological approach to potential vegetation modeling using GIS techniques and phytosociological expert-knowledge: Application to mainland Portugal. Phytocoenologia 2007, 37, 399–415. [Google Scholar] [CrossRef]
- Opdam, P.; Steingröver, E.; Rooij, S.V. Ecological networks: A spatial concept for multi-actor planning of sustainable landscapes. Landsc. Urban Plan. 2006, 75, 322–332. [Google Scholar] [CrossRef]
- Hilty, J.A.; Keeley, A.T.H.; Lidicker, W.Z.; Merenlender, A.M. Corridor Ecology: Linking Landscapes for Biodiversity Conservation and Climate Adaptation, 2nd ed.; Island Press: Washington, DC, USA, 2019; Available online: https://books.google.pt/books?id=t8yJDwAAQBAJ (accessed on 4 April 2025).
- Nunes, L.J.; Meireles, C.I.; Gomes, C.J.P.; de Almeida Ribeiro, N.M.C. Socio-economic Aspects of the Forests in Portugal: Recent Evolution and Perspectives of Sustainability of the Resource. Forests 2019, 10, 361. [Google Scholar] [CrossRef]
- Álvarez Lorente, T.; Sousa Soares De Oliveira Braga, J.L.; Barros Cardoso, A. The Social Problem of Rural Depopulation in Spain and Portugal. In Social Problems in Southern Europe; Entrena-Durán, F., Soriano-Miras, R.M., Duque-Calvache, R., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2020. [Google Scholar] [CrossRef]
- Romero-Calcerrada, R.; Perry, G.L.W. The role of land abandonment in landscape dynamics in the SPA ‘Encinares del río Alberche y Cofio, Central Spain, 1984–1999. Landsc. Urban Plan. 2004, 66, 217–232. [Google Scholar] [CrossRef]
- Catry, F.X.; Moreira, F.; Tujeira, R.; Silva, J.S. Post-fire survival and regeneration of Eucalyptus globulus in forest plantations in Portugal. For. Ecol. Manag. 2013, 310, 194–203. [Google Scholar] [CrossRef]
- Zhao, X.; He, C. Landscape ecological security pattern associated with the introduction of exotic tree species Eucalyptus. Acta Ecol. Sin. 2013, 33, 1860–1871. [Google Scholar] [CrossRef]
- Faria, J.; Reino, L.; Beja, P.; Gonçalves, D.; Sánchez-Oliver, J.S.; Moreira, F.; Catry, I.; Rotenberry, J.T.; Morgado, R.; Brotons, L.; et al. Grassland vegetation height affects bird responses to forest edges in Mediterranean open farmland. Glob. Ecol. Conserv. 2024, 50, e02818. [Google Scholar] [CrossRef]
- Sheppard, J.P.; Chamberlain, J.; Agúndez, D.; Bhattacharya, P.; Chirwa, P.W.; Gontcharov, A.; Sagona, W.C.J.; Shen, H.-L.; Tadesse, W.; Mutke, S. Sustainable Forest Management Beyond the Timber-Oriented Status Quo: Transitioning to Co-production of Timber and Non-wood Forest Products—A Global Perspective. Curr. For. Rep. 2020, 6, 26–40. [Google Scholar] [CrossRef]
- Gamfeldt, L.; Snall, T.; Bagchi, R.; Jonsson, M.; Gustafsson, L.; Kjellander, P.; Ruiz-Jaen, M.C.; Froberg, M.; Stendahl, J.; Philipson, C.D.; et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 2013, 4, 1340. [Google Scholar] [CrossRef] [PubMed]
- Seavy, N.E.; Gardali, T.; Golet, G.H.; Griggs, F.T.; Howell, C.A.; Kelsey, R.; Small, S.L.; Viers, J.H.; Weigand, J.F. Why Climate Change Makes Riparian Restoration More Important than Ever: Recommendations for Practice and Research. Ecol. Restor. 2009, 27, 330–338. [Google Scholar] [CrossRef]
- Turunen, J.; Aroviita, J.; Marttila, H.; Louhi, P.; Laamanen, T.; Tolkkinen, M.; Luhta, P.L.; Kløve, B.; Muotka, T. Differential responses by stream and riparian biodiversity to in-stream restoration of forestry-impacted streams. J. Appl. Ecol. 2017, 54, 1505–1514. [Google Scholar] [CrossRef]
- Cortina-Segarra, J.; García-Sánchez, I.; Grace, M.; Andrés, P.; Baker, S.; Bullock, C.; Decleer, K.; Dicks, L.V.; Fisher, J.L.; Frouz, J.; et al. Barriers to ecological restoration in Europe: Expert perspectives. Restor. Ecol. 2021, 29, e13346. [Google Scholar] [CrossRef]
- Saura, S.; Pascual-Hortal, L. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landsc. Urban Plan. 2007, 83, 91–103. [Google Scholar] [CrossRef]
- Jongman, R.H.; Külvik, M.; Kristiansen, I. European ecological networks and greenways. Landsc. Urban Plan. 2004, 68, 305–319. [Google Scholar] [CrossRef]
- Benayas, J.M.R.; Newton, A.C.; Diaz, A.; Bullock, J.M. Enhancement of Biodiversity and Ecosystem Services by Ecological Restoration: A Meta-Analysis. Science 2009, 325, 1121–1124. [Google Scholar] [CrossRef]
- Vallejo, V.R.; Allen, E.B.; Aronson, J.; Pausas, J.G.; Cortina, J.; Gutierrez, J.R. Restoration of Mediterranean—Type Woodlands and Shrublands. In Restoration Ecology, 1st ed.; Van Andel, J., Aronson, J., Eds.; Wiley: Hoboken, NJ, USA, 2012; pp. 130–144. [Google Scholar] [CrossRef]
- Padilla Francisco, M.; Francisco, I. Pugnaire. The Role of Nurse Plants in the Restoration of Degraded Environments. Front. Ecol. Environ. 2006, 4, 196–202. Available online: http://www.jstor.org/stable/3868736 (accessed on 7 August 2025). [CrossRef]
GIS Data | Source | Authors |
---|---|---|
Agricultural and Forest Map of Mainland Portugal 1951–1980 | https://snig.dgterritorio.gov.pt/ (accessed on 4 October 2024) | ISA, DGT, ICNF |
Land Use and Land Cover Map of Mainland Portugal 1995 | https://snig.dgterritorio.gov.pt/ (accessed on 4 October 2024) | DGT |
Land Use and Land Cover Map of Mainland Portugal 2018 | https://snig.dgterritorio.gov.pt/ (accessed on 4 October 2024) | DGT |
Headwater Systems of Mainland Portugal | http://epic-webgis-portugal.isa.ulisboa.pt/ (accessed on 8 October 2024) | ISA: Pena et al. 2018 [20] |
Special Areas of Conservation (SAC) -Natura 2000 | https://geocatalogo.icnf.pt/ (accessed on 6 January 2025) | ICNF |
LULC 1951 | |||||||||||||||||||
LULC 1995 | A | AFS | CF | COF | EF | OBF | OCF | OOF | P | PPeF | PPF | RO | S | SV | URS | W | IF | Nodata | Area (ha) 1995 |
A | 65.2 | 0.6 | 0.4 | 0.5 | 0.8 | 0.3 | 0.0 | 0.5 | 0.1 | 0.1 | 8.2 | 0.0 | 4.5 | 0.0 | 1.0 | 0.0 | 0.0 | 17.6 | 163,581 |
AFS | 18.6 | 5.4 | 0.4 | 29.3 | 0.4 | 0.5 | 0.0 | 34.6 | 0.0 | 0.2 | 1.6 | 0.0 | 7.3 | 0.0 | 0.1 | 0.0 | 0.0 | 1.6 | 11,498 |
CF | 12.1 | 0.5 | 27.3 | 0.0 | 1.0 | 7.1 | 0.2 | 4.2 | 0.0 | 0.0 | 22.7 | 0.0 | 18.2 | 0.0 | 0.1 | 0.0 | 0.0 | 6.7 | 947 |
COF | 27.0 | 3.9 | 0.2 | 36.4 | 1.2 | 0.5 | 0.0 | 4.2 | 0.0 | 0.0 | 4.6 | 0.0 | 20.1 | 0.0 | 0.1 | 0.0 | 0.0 | 1.9 | 9110 |
EF | 12.3 | 0.5 | 0.1 | 1.4 | 23.6 | 0.4 | 0.1 | 1.2 | 0.0 | 0.1 | 43.9 | 0.0 | 15.4 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 90,292 |
OBF | 19.3 | 0.2 | 1.1 | 0.6 | 2.1 | 3.9 | 0.2 | 1.8 | 0.0 | 0.3 | 41.3 | 0.3 | 19.6 | 0.2 | 0.5 | 0.1 | 0.0 | 8.5 | 9254 |
OCF | 13.9 | 0.1 | 0.1 | 1.6 | 1.9 | 1.1 | 1.9 | 3.4 | 0.0 | 0.1 | 22.7 | 0.0 | 49.3 | 0.0 | 2.5 | 0.0 | 0.0 | 1.5 | 2350 |
OOF | 14.8 | 2.1 | 2.8 | 1.6 | 0.2 | 5.8 | 0.1 | 19.5 | 0.1 | 0.0 | 20.7 | 0.0 | 23.8 | 0.0 | 0.1 | 0.0 | 0.0 | 8.3 | 27,352 |
P | 47.4 | 2.2 | 0.2 | 2.3 | 1.1 | 0.3 | 0.0 | 3.5 | 0.3 | 0.0 | 5.9 | 0.1 | 24.0 | 0.0 | 0.3 | 0.0 | 0.0 | 12.3 | 28,917 |
PPeF | 25.8 | 0.6 | 0.0 | 2.0 | 1.7 | 2.0 | 0.0 | 4.1 | 0.1 | 15.0 | 30.6 | 0.0 | 16.4 | 0.0 | 0.8 | 0.0 | 0.0 | 0.8 | 1748 |
PPF | 7.7 | 0.1 | 0.2 | 0.3 | 2.2 | 0.5 | 0.1 | 0.3 | 0.0 | 0.3 | 71.4 | 0.0 | 14.5 | 0.0 | 0.1 | 0.0 | 0.0 | 2.3 | 242,869 |
RO | 0.7 | 0.1 | 0.1 | 0.0 | 0.3 | 0.0 | 0.0 | 0.7 | 0.0 | 0.0 | 13.4 | 3.5 | 79.3 | 0.0 | 0.0 | 0.3 | 0.0 | 1.4 | 1124 |
S | 11.6 | 0.2 | 0.2 | 0.4 | 0.4 | 0.5 | 0.1 | 0.8 | 0.1 | 0.1 | 23.6 | 0.0 | 55.2 | 0.0 | 0.1 | 0.0 | 0.0 | 6.5 | 121,671 |
SV | 0.8 | 0.1 | 0.0 | 0.1 | 0.0 | 0.2 | 0.0 | 0.4 | 0.0 | 0.0 | 10.9 | 0.4 | 78.3 | 5.3 | 0.1 | 1.1 | 0.0 | 2.3 | 7441 |
URS | 39.3 | 0.3 | 0.1 | 0.3 | 2.1 | 0.2 | 0.0 | 0.3 | 0.1 | 0.2 | 16.7 | 0.1 | 5.9 | 0.0 | 22.9 | 0.0 | 0.0 | 11.3 | 35,022 |
W | 29.4 | 0.9 | 0.0 | 1.2 | 3.9 | 0.0 | 0.0 | 1.8 | 0.0 | 0.7 | 10.1 | 0.6 | 13.9 | 1.6 | 0.4 | 34.6 | 0.0 | 1.0 | 172 |
LULC 1995 | |||||||||||||||||
LULC 2018 | A | AFS | CF | COF | EF | OBF | OCF | OOF | P | PPeF | PPF | RO | S | SV | URS | W | Area (ha) 2018 |
A | 87.9 | 0.1 | 0.0 | 0.1 | 0.7 | 0.3 | 0.0 | 0.5 | 2.2 | 0.0 | 3.6 | 0.0 | 2.9 | 0.0 | 1.6 | 0.0 | 144,796 |
AFS | 2.2 | 87.4 | 0.0 | 2.2 | 0.7 | 0.0 | 0.0 | 4.4 | 1.8 | 0.0 | 0.6 | 0.0 | 0.7 | 0.0 | 0.1 | 0.0 | 10,886 |
CF | 16.3 | 0.0 | 64.5 | 0.0 | 0.2 | 0.5 | 0.0 | 0.9 | 0.6 | 0.0 | 8.3 | 0.0 | 8.6 | 0.0 | 0.2 | 0.0 | 1341 |
COF | 9.8 | 3.8 | 0.0 | 65.7 | 2.2 | 0.0 | 0.0 | 0.4 | 9.2 | 0.0 | 2.9 | 0.0 | 5.8 | 0.0 | 0.1 | 0.0 | 12,481 |
EF | 3.3 | 0.0 | 0.0 | 0.2 | 62.3 | 0.3 | 0.0 | 0.1 | 0.5 | 0.0 | 29.6 | 0.0 | 3.3 | 0.0 | 0.3 | 0.0 | 135,591 |
IF | 3.1 | 0.0 | 0.0 | 0.0 | 2.2 | 51.3 | 0.0 | 0.4 | 0.4 | 0.1 | 33.8 | 0.0 | 8.1 | 0.1 | 0.5 | 0.0 | 3224 |
OBF | 15.9 | 0.0 | 0.0 | 0.1 | 1.7 | 57.5 | 0.1 | 0.3 | 1.3 | 0.1 | 16.6 | 0.0 | 5.6 | 0.0 | 0.7 | 0.0 | 9931 |
OCF | 20.6 | 0.0 | 0.0 | 0.0 | 0.6 | 0.3 | 48.4 | 1.0 | 5.1 | 0.0 | 8.6 | 0.0 | 15.1 | 0.0 | 0.1 | 0.0 | 4325 |
OOF | 4.3 | 1.3 | 0.0 | 0.1 | 0.2 | 0.1 | 0.0 | 86.7 | 1.4 | 0.0 | 1.3 | 0.0 | 4.4 | 0.1 | 0.1 | 0.0 | 28,250 |
P | 23.6 | 2.3 | 0.0 | 0.2 | 0.8 | 0.2 | 0.0 | 0.8 | 62.7 | 0.0 | 1.9 | 0.0 | 6.9 | 0.1 | 0.4 | 0.0 | 30,772 |
PPeF | 20.9 | 0.3 | 0.0 | 0.5 | 1.6 | 0.9 | 0.0 | 0.4 | 5.7 | 50.2 | 13.9 | 0.0 | 4.8 | 0.0 | 0.8 | 0.0 | 3013 |
PPF | 2.9 | 0.0 | 0.0 | 0.0 | 0.8 | 0.2 | 0.1 | 0.2 | 0.5 | 0.0 | 90.8 | 0.0 | 4.1 | 0.0 | 0.3 | 0.0 | 189,468 |
RO | 0.7 | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.8 | 0.8 | 0.0 | 1.8 | 88.2 | 5.6 | 1.8 | 0.1 | 0.0 | 1143 |
S | 4.7 | 0.0 | 0.0 | 0.1 | 0.4 | 0.2 | 0.0 | 0.5 | 1.3 | 0.0 | 12.7 | 0.0 | 79.6 | 0.2 | 0.2 | 0.0 | 122,038 |
SV | 0.3 | 0.0 | 0.0 | 0.0 | 0.1 | 0.7 | 0.0 | 0.3 | 0.5 | 0.0 | 1.3 | 0.1 | 5.1 | 91.5 | 0.1 | 0.0 | 7618 |
URS | 14.9 | 0.2 | 0.0 | 0.1 | 3.8 | 0.6 | 0.0 | 0.3 | 1.6 | 0.1 | 10.0 | 0.0 | 3.3 | 0.1 | 65.1 | 0.0 | 48,184 |
W | 13.3 | 1.4 | 0.0 | 1.4 | 2.4 | 0.1 | 0.0 | 1.6 | 4.9 | 0.0 | 16.4 | 0.2 | 3.7 | 1.3 | 1.5 | 51.8 | 290 |
Restoration Actions in the Headwater Systems of the Natura 2000 Sites (SAC) | Area (ha) | % Concerning Total Headwaters Area in SAC |
Areas to be maintained and conserved | 45,285 | 43.6 |
Hotspot: restoring forest landscape (converting eucalyptus to mixed woods) | 2805 | 2.7 |
Hotspot: restoring forest landscape (assisted regeneration) | 25,072 | 24.1 |
Hotspot: restoring forest landscape (converting pines to mixed woods) | 18,912 | 18.2 |
Hotspot: restoring towards agriculture landscape (converting from eucalyptus forest, adding native tree hedges) | 1406 | 1.4 |
Hotspot: restoring towards agriculture landscape (converting from shrubs, adding native tree hedges) | 1510 | 1.5 |
Hotspot: restoring towards agriculture landscape (converting from pine forest, adding native tree hedges) | 2859 | 2.8 |
Hotspot: restoring towards an agriculture landscape (converting from invasive tree forest, adding native tree hedges) | 73 | 0.1 |
Hotspot: restoring the coastal landscape | 2185 | 2.1 |
Restoration Action in the HS Corridors Between Natura 2000 Sites | Area (ha) | Percentage |
Hotspot: restoring forest landscape (converting pines to mixed woods) | 19,852 | 18.8 |
Hotspot: restoring forest landscape (converting eucalyptus to mixed woods) | 18,116 | 17.2 |
Hotspot: restoring forest landscape (assisted regeneration) | 17,747 | 16.8 |
Hotspot: restoring forest landscape (deal with invasive trees) | 204 | 0.2 |
Hotspot: restoring towards agriculture landscape (converting from eucalyptus forest, adding native tree hedges) | 6359 | 6.0 |
Hotspot: restoring towards agriculture landscape (converting from pine forest, adding native tree hedges) | 6216 | 5.9 |
Hotspot: restoring towards agriculture landscape (converting from shrubs, adding native tree hedges) | 1931 | 1.8 |
Hotspot: restoring the coastal landscape | 339 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pena, S.B. Headwater Systems as Green Infrastructure: Prioritising Restoration Hotspots for Sustainable Rural Landscapes. Land 2025, 14, 1704. https://doi.org/10.3390/land14091704
Pena SB. Headwater Systems as Green Infrastructure: Prioritising Restoration Hotspots for Sustainable Rural Landscapes. Land. 2025; 14(9):1704. https://doi.org/10.3390/land14091704
Chicago/Turabian StylePena, Selma B. 2025. "Headwater Systems as Green Infrastructure: Prioritising Restoration Hotspots for Sustainable Rural Landscapes" Land 14, no. 9: 1704. https://doi.org/10.3390/land14091704
APA StylePena, S. B. (2025). Headwater Systems as Green Infrastructure: Prioritising Restoration Hotspots for Sustainable Rural Landscapes. Land, 14(9), 1704. https://doi.org/10.3390/land14091704