Dynamic Evolution and Driving Mechanism of a Multi-Agent Green Technology Cooperation Innovation Network: Empirical Evidence Based on Exponential Random Graph Model
Abstract
1. Introduction
2. Literature Review and Hypothesis Development
2.1. Green Innovation Network
2.2. The Driving Mechanism of Multi-Agent GTCIN
2.2.1. Network Structure
2.2.2. Network Entity Attributes
2.2.3. Proximity
3. Research Methods and Data Sources
3.1. Construction of a Multi-Agent GTCIN
3.2. Social Network Analysis Method
3.3. Exponential Random Graph Model
4. Result and Analysis
4.1. Structural Characteristics of the Evolution of the Multi-Agent GTCIN
4.2. Dynamic Evolution Feature Analysis
4.3. Dynamic Mechanism of GTCIN
4.3.1. Empirical Results
4.3.2. Goodness of Fit Test
5. Discussion
5.1. Discussion of the Main Results
5.2. Policy Implications
5.3. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Perruchas, F.; Consoli, D.; Barbieri, N. Specialisation, diversification and the ladder of green technology development. Res. Policy 2020, 49, 103992. [Google Scholar] [CrossRef]
- De Marchi, V. Environmental innovation and R&D cooperation: Empirical evidence from Spanish manufacturing firms. Res. Policy 2012, 41, 614–623. [Google Scholar]
- Berchicci, L. Towards an open R&D system: Internal R&D investment, external knowledge acquisition and innovative performance. Res. Policy 2013, 42, 117–127. [Google Scholar]
- Gui, Q.; Liu, C.; Du, D. Globalization of science and international scientific collaboration: A network perspective. Geoforum 2019, 105, 1–12. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, X.; Tang, M.; Lan, H. Spatio-temporal evolution of green innovation network and its multidimensional proximity analysis: Empirical evidence from China. J. Clean. Prod. 2021, 283, 1–17. [Google Scholar] [CrossRef]
- Liang, Z.; Chen, J.; Jiang, D.; Sun, Y. Assessment of the spatial association network of green innovation: Role of energy resources in green recovery. Resour. Pol. 2022, 79, 103072. [Google Scholar] [CrossRef]
- Wang, X. Why do firms form R&D cooperation: A resource dependence perspective. Technol. Anal. Strateg. Manag. 2021, 33, 586–598. [Google Scholar]
- Wu, A.; Li, H. The impact of government subsidies on contract design of green technology R&D cooperation. Technol. Anal. Strateg. Manag. 2021, 34, 1263–1279. [Google Scholar]
- Ma, R.; Lin, B. Internet development, information availability, and Chinese enterprises’ cooperative green technology innovation. J. Environ. Manag. 2024, 367, 121972. [Google Scholar] [CrossRef]
- Xiang, X.; Liu, C.; Yang, M. Who is financing corporate green innovation? Int. Rev. Econ. Financ. 2022, 78, 321–337. [Google Scholar] [CrossRef]
- Orsatti, G.; Quatraro, F.; Scandura, A. Green technological diversification and regional recombinant capabilities: The role of technological novelty and academic inventors. Reg. Stud. 2023, 58, 120–134. [Google Scholar] [CrossRef]
- Květoň, V.; Horák, P. The effect of public R&D subsidies on firms’ competitiveness: Regional and sectoral specifics in emerging innovation systems. Appl. Geogr. 2018, 94, 119–129. [Google Scholar]
- Fusillo, F.; Quatraro, F.; Usai, S. Going green: The dynamics of green technological alliances. Econ. Innov. New Tech. 2020, 31, 362–386. [Google Scholar] [CrossRef]
- Nie, L.; Gong, H.; Zhao, D.; Lai, X.; Chang, M. Heterogeneous knowledge spillover channels in universities and green technology innovation in local firms: Stimulating quantity or quality? Front. Psychol. 2022, 13, 943665. [Google Scholar] [CrossRef]
- Song, M.; Guo, L.; Shen, J. Exponential Random Graph Model Perspective: Formation and Evolution of a Collaborative Innovation Network in China’s New Energy Vehicle Industry. Systems 2024, 12, 423. [Google Scholar] [CrossRef]
- Liang, X.; Liu, A.M.M. The evolution of government sponsored collaboration network and its impact on innovation: A bibliometric analysis in the Chinese solar PV sector. Res. Policy 2018, 47, 1295–1308. [Google Scholar] [CrossRef]
- Freeman, C. Networks of innovators: A synthesis of research issues. Res. Policy 1991, 20, 499–514. [Google Scholar] [CrossRef]
- Crossan, M.M. The Knowledge-Creating Company: How Japanese Companies Create the Dynamics of Innovation; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Dong, S.; Ren, G.; Xue, Y.; Liu, K. Urban green innovation’s spatial association networks in china and their mechanisms. Sustain. Cities Soc. 2024, 93, 104536. [Google Scholar] [CrossRef]
- Yang, G.; Cheng, S.; Qin, Y.; Gui, Q. Analysis of the spatial association network structure of China’s green innovation efficiency. J. Asia Pac. Econ. 2024, 1–27. [Google Scholar] [CrossRef]
- Hu, F.; Mou, S.; Wei, S.; Qiu, L.; Hu, H.; Zhou, H. Research on the evolution of China’s photovoltaic technology innovation network from the perspective of patents. Energy Strategy Rev. 2024, 51, 101309. [Google Scholar] [CrossRef]
- Boschma, R. Proximity and Innovation: A Critical Assessment. Reg. Stud. 2005, 39, 61–74. [Google Scholar] [CrossRef]
- Li, Y.; Qian, K.; Wang, Z.; Xu, A. The evolution of China’s wind power industry innovation network from the perspective of multidimensional proximity. Technol. Anal. Strateg. Manag. 2024, 1–15. [Google Scholar] [CrossRef]
- Lusher, D.; Koskinen, J.; Robins, G. Exponential Random Graph Models for Social Networks: Theory, Methods, and Applications; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Kim, J.Y.; Howard, M.; Cox Pahnke, E.; Boeker, W. Understanding network formation in strategy research: Exponential random graph models. Strateg. Manag. J. 2016, 37, 22–44. [Google Scholar]
- Liu, J.; Wang, R.; Tian, Y.; Zhang, M. The driving mechanisms of industrial air pollution spatial correlation networks: A case study of 168 Chinese cities. J. Clean. Prod. 2024, 470, 143255. [Google Scholar] [CrossRef]
- Liu, C.; Sun, S.; Piao, J.; Mao, W. Unveiling the dynamics and determinants of world city network: Insights from global airline data. Cities 2025, 157, 105613. [Google Scholar]
- Zhang, W.; Chong, Z.; Li, X.; Nie, G. Spatial patterns and determinant factors of population flow networks in China: Analysis on Tencent Location Big Data. Cities 2020, 99, 102640. [Google Scholar] [CrossRef]
- Song, H. Uncovering the Structural Underpinnings of Political Discussion Networks: Evidence From an Exponential Random Graph Model. J. Commun. 2015, 65, 146–169. [Google Scholar] [CrossRef]
- Gulati, R.; Gargiulo, M. Where do interorganizational networks come from? Am. J. Sociol. 1999, 104, 1439–1493. [Google Scholar] [CrossRef]
- Provan, K.G.; Fish, A.; Sydow, J. Interorganizational networks at the network level: A review of the empirical literature on whole networks. J. Manag. 2007, 33, 479–516. [Google Scholar] [CrossRef]
- Kobarg, S.; Stumpf-Wollersheim, J.; Welpe, I.M. More is not always better: Effects of collaboration breadth and depth on radical and incremental innovation performance at the project level. Res. Policy 2019, 48, 1–10. [Google Scholar] [CrossRef]
- Robins, G.; Pattison, P.; Wang, P. Closure, connectivity and degree distributions: Exponential random graph (p*) models for directed social networks. Soc. Netw. 2009, 31, 105–117. [Google Scholar] [CrossRef]
- Cova, C.; De Noni, I.; Ganzaroli, A. Scale and Geographical Scope of Environmental Technology Collaboration. A Patent-Based Comparative Analysis. Sci. Reg. 2023, 24, 378–399. [Google Scholar]
- Capone, F.; Innocenti, N.; Oliva, S.; Lazzeretti, L. The role of network structure and complexity for green inventions. Reg. Stud. 2024, 59, 1–15. [Google Scholar] [CrossRef]
- Ter Wal, A.L.J. The dynamics of the inventor network in German biotechnology: Geographic proximity versus triadic closure. J. Econ. Geogr. 2014, 14, 589–620. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, W. State ownership and green innovation in China: The contingent roles of environmental and organizational factors. J. Clean. Prod. 2021, 314, 128029. [Google Scholar] [CrossRef]
- Tao, A.; Wang, C.; Zhang, S.; Kuai, P. Does enterprise digital transformation contribute to green innovation? Micro-level evidence from China. J. Environ. Manag. 2024, 370, 122609. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jin, J.L.; Banister, D. Resources, state ownership and innovation capability: Evidence from Chinese automakers. Creat. Innov. Manag. 2019, 28, 203–217. [Google Scholar] [CrossRef]
- Zhou, K.Z.; Gao, G.Y.; Zhao, H. State ownership and firm innovation in China: An integrated view of institutional and efficiency logics. Adm. Sci. Q. 2017, 62, 375–404. [Google Scholar] [CrossRef]
- Peng, X.; Liu, Y. Behind eco-innovation: Managerial environmental awareness and external resource acquisition. J. Clean. Prod. 2016, 139, 347–360. [Google Scholar] [CrossRef]
- Fernandes, C.I.; Ferreira, J.J.J.R.; Management, D. Knowledge spillovers: Cooperation between universities and KIBS. RD Manag. 2013, 43, 461–472. [Google Scholar] [CrossRef]
- Belderbos, R.; Carree, M.; Lokshin, B. Cooperative R&D and firm performance. Res. Policy 2004, 33, 1477–1492. [Google Scholar]
- Ferreira, J.J.M.; Fernandes, C.I.; Raposo, M.L. The Effects of Location on Firm Innovation Capacity. J. Knowl. Econ. 2017, 8, 77–96. [Google Scholar] [CrossRef]
- Elisa, G.; Martin, B. The micro-determinants of meso-level learning and innovation: Evidence from a Chilean wine cluster. Res. Policy 2005, 34, 47–68. [Google Scholar]
- Bai, Y.; Wang, J.; Jiao, J. A framework for determining the impacts of a multiple relationship network on green innovation. Sustain. Prod. Consum. 2021, 27, 471–484. [Google Scholar] [CrossRef]
- Benedikt, B.; Schmidt, T.S.; Stephan, S.; Hoffmann, V.H. Internal or external spillovers—Which kind of knowledge is more likely to flow within or across technologies. Res. Policy 2016, 45, 27–41. [Google Scholar]
- Antony, P.; Stephanie, G. Supplier involvement in eco-innovation: The co-development of electric, hybrid and fuel cell technologies within the Japanese automotive industry. J. Clean. Prod. 2019, 210, 1216–1228. [Google Scholar]
- De Fuentes, C.; Dutrénit, G. Geographic proximity and university–industry interaction: The case of Mexico. J. Technol. Transf. 2016, 41, 329–348. [Google Scholar] [CrossRef]
- Fleming, L.; King, C., III; Juda, A.I. Small worlds and regional innovation. Organ. Sci. 2007, 18, 938–954. [Google Scholar] [CrossRef]
- Tan, Y.; Zhu, Z. The effect of ESG rating events on corporate green innovation in China: The mediating role of financial constraints and managers’ environmental awareness. Technol. Soc. 2022, 68, 101906. [Google Scholar] [CrossRef]
- Cheng, Q.; Du, F.; Wang, X.; Wang, Y. Seeing is believing: Analysts’ corporate site visits. Rev. Acc. Stud. 2016, 21, 1245–1286. [Google Scholar] [CrossRef]
- Cheng, Q.; Du, F.; Wang, B.Y.; Wang, X. Do corporate site visits impact stock prices? Contemp. Account. Res. 2019, 36, 359–388. [Google Scholar] [CrossRef]
- Gagliardi, L.; Iammarino, S. Innovation in risky markets: Ownership and location advantages in the UK regions. J. Econ. Geogr. 2018, 18, 1177–1201. [Google Scholar] [CrossRef]
- Petruzzelli, A.M. Balancing knowledge exploration and exploitation within and across technological and geographical domains. Knowl. Manag. Res. Pract. 2014, 12, 123–132. [Google Scholar] [CrossRef]
- Shi, L.; Wang, L. Understanding university-industry collaboration from the perspective of proximity: Insights from a case study in China. Technol. Anal. Strateg. Manag. 2024, 36, 4380–4392. [Google Scholar] [CrossRef]
- Horbach, J.; Oltra, V.; Belin, J. Determinants and specificities of eco-innovations compared to other innovations—An econometric analysis for the French and German industry based on the community innovation survey. Ind. Innov. 2013, 20, 523–543. [Google Scholar] [CrossRef]
- Ghisetti, C.; Pontoni, F. Investigating policy and R&D effects on environmental innovation: A meta-analysis. Ecol. Econ. 2015, 118, 57–66. [Google Scholar]
- Alpaydın, U.A.R.; Fitjar, R.D. Proximity across the distant worlds of university–industry collaborations. Pap. Reg. Sci. 2021, 100, 689–712. [Google Scholar] [CrossRef]
- Garcia Martinez, M.; Zouaghi, F.; Sánchez García, M. Geographical and cognitive proximity effects on innovation performance: Which types of proximity for which types of innovation? Eur. Manag. Rev. 2024, 22, 291–317. [Google Scholar] [CrossRef]
- Wu, A. Collaborative eco-innovation and green knowledge acquisition: The role of specific investments in Chinese new energy vehicle industry. Bus. Strategy Environ. 2023, 32, 2245–2260. [Google Scholar] [CrossRef]
- Balland, P.-A. Proximity and the evolution of collaboration networks: Evidence from research and development projects within the global navigation satellite system (GNSS) industry. Reg. Stud. 2012, 46, 741–756. [Google Scholar] [CrossRef]
- Yang, B.; Li, X.; Kou, K. Research on the influence of network embeddedness on innovation performance: Evidence from China’s listed firms. J. Innov. Knowl. 2022, 7, 100210. [Google Scholar]
- Fitjar, R.D.; Huber, F.; Rodríguez-Pose, A. Not too close, not too far: Testing the Goldilocks principle of ‘optimal’ distance in innovation networks. Ind. Innov. 2016, 23, 465–487. [Google Scholar] [CrossRef]
- Broekel, T.; Hartog, M. Explaining the structure of inter-organizational networks using exponential random graph models. Ind. Innov. 2013, 20, 277–295. [Google Scholar] [CrossRef]
- Ciobanu, G.; Ghinăraru, C.; Teodor, C. Eco-innovation and the development of new new opportunities on SMEs. Calitatea 2018, 19, 154–159. [Google Scholar]
- Melander, L.; Arvidsson, A. Green innovation networks: A research agenda. J. Clean. Prod. 2022, 357, 131926. [Google Scholar] [CrossRef]
- Wang, X.; Qiu, L.; Hu, F.; Hu, H. Characteristics and influencing factors of the industry-university-research collaborative innovation network in China’s new energy vehicle industry. Energy Strategy Rev. 2024, 55, 101505. [Google Scholar] [CrossRef]
- De Noni, I.; Ganzaroli, A.; Orsi, L. The impact of intra-and inter-regional knowledge collaboration and technological variety on the knowledge productivity of European regions. Technol. Forecast. Soc. Change 2017, 117, 108–118. [Google Scholar] [CrossRef]
- Jaffe, A.B. Demand and supply influences in R&D intensity and productivity growth. Rev. Econ. Stat. 1988, 70, 431–437. [Google Scholar]
- Losacker, S. ‘License to green’: Regional patent licensing networks and green technology diffusion in China. Technol. Forecast. Soc. Change 2022, 175, 121336. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, Z.; Guan, Y.; Kang, Y. Research on the structural features and influence mechanism of the green ICT transnational cooperation network. Econ. Anal. Pol. 2022, 75, 734–749. [Google Scholar] [CrossRef]
- Hu, W.; Liu, Y.; Li, Y.; Chen, D. Work together, walk forward: Unveiling collaborative innovation networks and mapping paths to breakthrough innovation in electric vehicles. J. Clean. Prod. 2024, 480, 144077. [Google Scholar] [CrossRef]
- Li, F.; Liu, W.; Bi, K. Exploring and visualizing spatial-temporal evolution of patent collaboration networks: A case of China’s intelligent manufacturing equipment industry. Technol. Soc. 2021, 64, 101483. [Google Scholar] [CrossRef]
- Liu, W.; Song, Y.; Bi, K. Exploring the patent collaboration network of China’s wind energy industry: A study based on patent data from CNIPA. Renew. Sustain. Energy Rev. 2021, 144, 110989. [Google Scholar] [CrossRef]
- Granovetter, M. Economic action and social structure: The problem of embeddedness. Am. J. Sociol. 1985, 91, 481–510. [Google Scholar] [CrossRef]
Type | Variable | Statistics | Schematic Diagram | Explanation |
---|---|---|---|---|
network structure | Edge | edges | The baseline tendency of innovation entities to form green technology innovation links is equivalent to the intercept term | |
Geometrically weighted degree distribution | gwdegree | The innovation entities form green technology innovation links with other innovative entities and measures the preferential connection effect. | ||
Geometrically weighted edge-sharing partners | gwesp | Green technology innovation links will be formed between innovation entities with common partners, measuring the transmission closure effect. | ||
network entity attributes | State-owned attributes | nodematch_own | The resource endowment advantages of innovation entities can easily attract other entities to participate in green technology cooperative innovation. | |
Regional location attribute | nodematch_city | |||
Green innovation capability | nodecov_inno | |||
Green technology diversity | nodecov_div | |||
binary proximity relationships | Geographic proximity | edgecov_geo | Green technology collaborative innovation is more likely to occur between innovation entities that are close to each other in different dimensions such as geography, technology, society, organization, and system. | |
Technical proximity | edgecov_tech | |||
Social proximity | edgecov_soc | |||
Organizational proximity | edgecov_org | |||
Institutional proximity | edgecov_sys |
Year | Network Size | Network Average Degree | Average Weighted Degree | Network Density | Network Diameter | Average Path Length | Average Clustering Coefficient |
---|---|---|---|---|---|---|---|
2006 | 54 | 1.185 | 8.630 | 0.022 | 2.000 | 1.347 | 0.344 |
2007 | 76 | 1.342 | 9.000 | 0.018 | 5.000 | 2.122 | 0.667 |
2008 | 119 | 1.345 | 7.697 | 0.011 | 3.000 | 1.287 | 0.711 |
2009 | 209 | 1.598 | 8.488 | 0.008 | 4.000 | 1.572 | 0.686 |
2010 | 247 | 1.563 | 8.607 | 0.006 | 4.000 | 1.967 | 0.712 |
2011 | 329 | 1.745 | 10.559 | 0.005 | 5.000 | 1.894 | 0.719 |
2012 | 393 | 1.990 | 10.071 | 0.005 | 7.000 | 2.577 | 0.745 |
2013 | 592 | 2.382 | 11.074 | 0.004 | 8.000 | 2.733 | 0.765 |
2014 | 703 | 2.395 | 12.467 | 0.003 | 8.000 | 2.504 | 0.760 |
2015 | 620 | 2.658 | 14.565 | 0.004 | 6.000 | 2.591 | 0.725 |
2016 | 703 | 2.518 | 13.679 | 0.004 | 11.000 | 3.134 | 0.741 |
2017 | 769 | 2.655 | 15.043 | 0.003 | 7.000 | 2.506 | 0.681 |
2018 | 909 | 2.81 | 14.988 | 0.003 | 7.000 | 2.898 | 0.694 |
2019 | 1311 | 2.941 | 17.031 | 0.002 | 8.000 | 3.166 | 0.724 |
2020 | 1178 | 2.603 | 13.380 | 0.002 | 10.000 | 3.713 | 0.677 |
2021 | 1129 | 2.487 | 13.639 | 0.002 | 11.000 | 3.686 | 0.678 |
Variable | 2006 | 2011 | 2016 | 2021 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 1 | Model 2 | Model 3 | Model 1 | Model 2 | Model 3 | Model 1 | Model 2 | Model 3 | ||
Basic item | Edge | −9.041 *** | −0.242 | −15.473 *** | −7.880 *** | −9.527 *** | −15.153 *** | −7.768 *** | −9.810 *** | −15.275 *** | −8.125 *** | −5.580 *** | −10.709 *** |
(1.258) | (1.152) | (3.603) | (0.200) | (0.382) | (0.619) | (0.096) | (0.245) | (0.377) | (0.073) | (0.460) | (0.587) | ||
Network structure | Geometrically weighted degree distribution | 4.124 *** | 8.793 *** | 3.899 *** | 7.657 *** | 2.882 *** | 1.860 *** | 2.965 *** | 2.081 *** | ||||
(0.944) | (1.727) | (0.365) | (0.770) | (0.070) | (0.102) | (0.054) | (0.070) | ||||||
Geometrically weighted edge-sharing partners | 1.586 *** | 1.165 *** | 2.631 *** | 1.987 *** | 1.778 *** | 6.354 *** | 1.692 *** | 5.057 *** | |||||
(0.26) | (0.348) | (0.116) | (0.160) | (0.144) | (0.308) | (0.112) | (0.187) | ||||||
State-owned attributes | −0.180 | 0.671 | 0.440 * | 0.438 * | 0.413 *** | 0.537 *** | 0.574 *** | 0.615 *** | |||||
(0.378) | (0.736) | (0.175) | (0.192) | (0.117) | (0.126) | (0.094) | (0.096) | ||||||
Regional location attribute | 0.534 | 0.673 | 0.074 | 0.057 | −0.049 | −0.048 | 0.280 *** | 0.235 *** | |||||
(0.528) | (0.539) | (0.160) | (0.166) | (0.095) | (0.104) | (0.071) | (0.071) | ||||||
Network entity attributes | Green innovation capability | −1.165 *** | −0.869 | 0.272 *** | 0.672 *** | 0.446 *** | 0.655 *** | −0.663 *** | −0.431 *** | ||||
(0.309) | (0.559) | (0.060) | (0.082) | (0.033) | (0.042) | (0.079) | (0.093) | ||||||
Green technology diversity | 0.496 | 0.926 | −0.039 | −0.097 | −0.236 *** | −0.161 ** | −0.059 | 0.223 *** | |||||
(0.303) | (0.524) | (0.081) | (0.111) | (0.048) | (0.060) | (0.033) | (0.042) | ||||||
Binary proximity relationships | Geographic proximity | 0.141 * | 0.161 * | 0.031 | 0.043 * | 0.027 * | 0.035 ** | 0.031 *** | 0.029 *** | ||||
(0.067) | (0.071) | (0.018) | (0.019) | (0.011) | (0.012) | (0.008) | (0.008) | ||||||
Technical proximity | 0.964 *** | 1.111 *** | 5.308 *** | 5.830 *** | 4.225 *** | 5.188 *** | 4.668 *** | 5.279 *** | |||||
(0.154) | (0.212) | (0.269) | (0.321) | (0.147) | (0.183) | (0.110) | (0.137) | ||||||
Social proximity | 0.058 *** | 0.063 *** | 0.118 *** | 0.092 *** | 0.142 *** | 0.113 *** | 0.112 *** | 0.090 *** | |||||
(0.013) | (0.019) | (0.012) | (0.011) | (0.006) | (0.006) | (0.004) | (0.004) | ||||||
Organizational proximity | −1.615 ** | −1.201 | 0.284 | 0.135 | −0.079 | 0.039 | −0.184 * | −0.210 ** | |||||
(0.544) | (0.661) | (0.170) | (0.200) | (0.135) | (0.151) | (0.080) | (0.080) | ||||||
Institutional proximity | 0.488 | 0.515 | 1.683 *** | 1.364 *** | 1.750 *** | 1.595 *** | 2.196 *** | 1.697 *** | |||||
(0.666) | (0.714) | (0.215) | (0.219) | (0.134) | (0.140) | (0.098) | (0.095) | ||||||
Goodness of fit | AIC | 324.083 | 214.628 | 165.5 | 2963.803 | 2970.245 | 1915.868 | 9494.018 | 5834.354 | 4619.826 | 16253.002 | 10152.419 | 8172.076 |
BIC | 339.881 | 267.289 | 228.693 | 2990.491 | 2996.932 | 2004.827 | 9525.266 | 5938.515 | 4744.82 | 16287.094 | 10266.06 | 8308.445 | |
Log Likelihood | −159.042 | −97.314 | −70.75 | −1478.902 | −1482.122 | −947.934 | −4744.009 | −2907.177 | −2297.913 | −8123.501 | −5066.209 | −4074.038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Wu, L.; Hu, J. Dynamic Evolution and Driving Mechanism of a Multi-Agent Green Technology Cooperation Innovation Network: Empirical Evidence Based on Exponential Random Graph Model. Systems 2025, 13, 706. https://doi.org/10.3390/systems13080706
Ma J, Wu L, Hu J. Dynamic Evolution and Driving Mechanism of a Multi-Agent Green Technology Cooperation Innovation Network: Empirical Evidence Based on Exponential Random Graph Model. Systems. 2025; 13(8):706. https://doi.org/10.3390/systems13080706
Chicago/Turabian StyleMa, Jing, Lihua Wu, and Jingxuan Hu. 2025. "Dynamic Evolution and Driving Mechanism of a Multi-Agent Green Technology Cooperation Innovation Network: Empirical Evidence Based on Exponential Random Graph Model" Systems 13, no. 8: 706. https://doi.org/10.3390/systems13080706
APA StyleMa, J., Wu, L., & Hu, J. (2025). Dynamic Evolution and Driving Mechanism of a Multi-Agent Green Technology Cooperation Innovation Network: Empirical Evidence Based on Exponential Random Graph Model. Systems, 13(8), 706. https://doi.org/10.3390/systems13080706