Magnetic Nanoparticle-Catalysed One-Pot Multicomponent Reactions (MCRs): A Green Chemistry Approach
Abstract
1. Introduction
2. Magnetic Nanoparticle-Catalysed One-Pot Multicomponent Reactions
2.1. Preparation of Pyrazole and Pyrano Pyrazole Derivatives
2.2. Preparation of Pyrano-Phenazine Derivatives
2.3. Preparation of Pyran Derivatives
2.4. Preparation of Furan Derivatives
2.5. Preparation of Xanthene Derivatives
2.6. Preparation of Imidazole Derivatives
2.7. Preparation of and Indole Derivatives
2.8. Preparation of Pyridine Derivatives
2.9. Preparation of Pyrimidine and Acridine Derivatives
2.10. Preparation of Azole and Propargylamine Derivatives
2.11. Preparation of Propargylamine Derivatives
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tasnim, A.; Roy, A.; Akash, S.R.; Ali, H.; Habib, M.R.; Barasarathi, J.; Muthukumaran, M.; Sayyed, R.Z.; Yeasmin, T. Hibiscus sabdariffa L. petal biomass: A green source of nanoparticles of multifarious potential. Open Agric. 2024, 9, 20220332. [Google Scholar] [CrossRef]
- Leong, L.M.; Ong, G.H.; Loh, K.E. Green synthesis of Chrysanthemum morifolium silver nanoparticles and evaluation of its antibacterial activity. Malays. Appl. Biol. 2024, 53, 1–6. [Google Scholar] [CrossRef]
- Safaei, M.; Imani, M.M.; Sharifi, R.; Mobarakeh, M.S.; Mozaffari, H.R.; Hashim, M.; Wong, L.S.; Nhlapo, A.; Rezaei, R. Optimization of green synthesis of nickel nanoparticles by Halomonas elongata as antifungal agent. Asian J. Green Chem. 2024, 8, 779–793. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, G.; Bi, X.; Chen, X. Facile assembly of a hierarchical core@shell Fe3O4@CuMgAl-LDH magnetic nanocatalyst for the hydroxylation of phenol. J. Mater. Chem. A 2013, 1, 5934–5942. [Google Scholar] [CrossRef]
- Lim, C.W.; Lee, I.S. Magnetically recyclable nanocatalyst systems for the organic reactions. Nano Today 2010, 5, 412–434. [Google Scholar] [CrossRef]
- Minakata, S.; Komatsu, M. Organic reactions on silica in water. Chem. Rev. 2009, 109, 711–724. [Google Scholar] [CrossRef] [PubMed]
- Firouzabadi, H.; Iranpoor, N.; Gholinejad, M.; Akbari, S.; Jeddi, N. Palladium nanoparticles supported on agarose-functionalized magnetic nanoparticles of Fe3O4 as a recyclable catalyst for C–C bond formation via Suzuki–Miyaura, Heck–Mizoroki and Sonogashira–Hagihara coupling reactions. RSC Adv. 2014, 4, 17060. [Google Scholar] [CrossRef]
- Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.M. Magnetically recoverable nanocatalysts. Chem. Rev. 2011, 111, 3036–3075. [Google Scholar] [CrossRef] [PubMed]
- Sardarian, A.R.; Eslahi, H.; Esmaeilpour, M. Copper(II) complex supported on Fe3O4@SiO2 coated by polyvinyl alcohol as reusable nanocatalyst in N-arylation of amines and N(H)-heterocycles and green synthesis of 1H-tetrazoles. ChemistrySelect 2018, 3, 1499–1511. [Google Scholar] [CrossRef]
- Yi, D.K.; Lee, S.S.; Ying, J.Y. Synthesis and applications of magnetic nanocomposite catalysts. Chem. Mater. 2006, 18, 2459–2461. [Google Scholar] [CrossRef]
- Esmaeilpour, M.; Sardarian, A.R.; Firouzabadi, H. Theophylline supported on modified silica-coated magnetite nanoparticles as a novel, efficient, reusable catalyst in green one-pot synthesis of spirooxindoles and phenazines. ChemistrySelect 2018, 3, 9236–9248. [Google Scholar] [CrossRef]
- Kalidindi, S.B.; Jagirdar, B.R. Nanocatalysis and prospects of green chemistry. ChemSusChem 2012, 5, 65–75. [Google Scholar] [CrossRef]
- Wang, J.; Lee, S.A.; Jang, H.W.; Shokouhimehr, M. Emerging two-dimensional-based nanostructured catalysts: Applications in sustainable organic transformations. Langmuir 2022, 38, 9064–9072. [Google Scholar] [CrossRef]
- Zhang, K.; Kim, J.; Kirlikovali, K.O.; Wang, J.; Lee, T.H.; Kim, S.Y.; Varma, R.S.; Jang, H.W.; Farha, O.K.; Shokouhimehr, M. Magnetically recyclable nanocomposites via lanthanide-based MOFs grown on natural sea sponge: Screening hydrogenation of nitrophenol to amino phenol. Mol. Catal. 2022, 528, 112459. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Motahharifar, N.; Sajjadi, M.; Naserimanesh, A.; Shokouhimehr, M. Functionalization of chitosan by grafting Cu(II)-5-amino-1H-tetrazole complex as a magnetically recyclable catalyst for CN coupling reaction. Inorg. Chem. Commun. 2022, 136, 109135. [Google Scholar] [CrossRef]
- Alamgholiloo, H.; Pesyan, N.N.; Mohammadi, R.; Rostamnia, S.; Shokouhimehr, M. Synergistic advanced oxidation process for the fast degradation of ciprofloxacin antibiotics using a GO/CuMOF-magnetic ternary nanocomposite. J. Environ. Chem. Eng. 2021, 9, 105486. [Google Scholar] [CrossRef]
- Shokouhimehr, M.; Hong, K.; Lee, T.H.; Moon, C.W.; Hong, S.P.; Zhang, K.; Suh, J.M.; Choi, K.S.; Varma, R.S.; Jang, H.W. Magnetically retrievable nanocomposite adorned with Pd nano catalysts: Efficient reduction of nitroaromatics in aqueous media. Green Chem. 2018, 20, 3809–3817. [Google Scholar] [CrossRef]
- Wang, J.; Cheon, W.S.; Lee, J.Y.; Yan, W.; Jung, S.; Jang, H.W.; Shokouhimehr, M. Magnetic boron nitride adorned with Pd nanoparticles: An efficient catalyst for the reduction of nitroarenes in aqueous media. Dalton Trans. 2023, 52, 3567–3574. [Google Scholar] [CrossRef]
- Astruc, D. Nanoparticles and Catalysis; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Somorjai, G.A.; Frei, H.; Park, J.Y. Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J. Am. Chem. Soc. 2009, 131, 16589–16605. [Google Scholar] [CrossRef]
- Veisi, H.; Pirhayati, M.; Mohammadi, P.; Tamoradi, T.; Hemmati, S.; Karmakar, B. Recent advances in the application of magnetic nano catalysts in multicomponent reactions. RSC Adv. 2023, 13, 20530–20556. [Google Scholar] [CrossRef]
- Shylesh, S.; Schweizer, J.; Demeshko, S.; Schünemann, V.; Ernst, S.; Thiel, W.R. Nanoparticle supported, magnetically recoverable oxodiperoxo molybdenum complexes: Efficient catalysts for selective epoxidation reactions. Adv. Synth. Catal. 2009, 351, 1789–1795. [Google Scholar] [CrossRef]
- Sharma, R.K.; Dutta, S.; Sharma, S.; Zboril, R.; Varma, R.S.; Gawande, M.B. Fe3O4 (iron oxide)-supported nano catalysts: Synthesis, characterization and applications in coupling reactions. Green Chem. 2016, 18, 3184–3209. [Google Scholar] [CrossRef]
- Zeng, T.; Yang, L.; Hudson, R.; Song, G.; Moores, A.R.; Li, C.J. Fe3O4 nanoparticle-supported copper(I) pybox catalyst: Magnetically recoverable catalyst for enantioselective direct-addition of terminal alkynes to imines. Org. Lett. 2011, 13, 442–445. [Google Scholar] [CrossRef]
- Sun, J.; Yu, G.; Liu, L.; Li, Z.; Kan, Q.; Huo, Q.; Guan, J. Core–shell structured Fe3O4@SiO2 supported cobalt(II) or copper(II) acetylacetonate complexes: Magnetically recoverable nano catalysts for aerobic epoxidation of styrene. Catal. Sci. Technol. 2014, 4, 1246–1252. [Google Scholar] [CrossRef]
- Aghajani, M.; Monadi, N. Cu(II) Schiff Base Complex Supported on Fe3O4 Nanoparticles as an Efficient Nanocatalyst for the Selective Aerobic Oxidation of Alcohols. Appl. Organomet. Chem. 2018, 32, e4433. [Google Scholar] [CrossRef]
- Saranya, S.; Rohit, K.R.; Radhika, S.; Anilkumar, G. Palladium-Catalyzed Multicomponent Reactions: An Overview. Org. Biomol. Chem. 2019, 17, 8048–8061. [Google Scholar] [CrossRef] [PubMed]
- Ramos, L.M.; Rodrigues, M.O.; Neto, B.A. Mechanistic Knowledge and Noncovalent Interactions as the Key Features for Enantioselective Catalysed Multicomponent Reactions: A Critical Review. Org. Biomol. Chem. 2019, 17, 7260–7269. [Google Scholar] [CrossRef]
- Das, K.K.; Manna, S.; Panda, S. Transition Metal Catalyzed Asymmetric Multicomponent Reactions of Unsaturated Compounds Using Organoboron Reagents. Chem. Commun. 2021, 57, 441–459. [Google Scholar] [CrossRef]
- Biesen, L.; Müller, T.J.J. Multicomponent and One-Pot Syntheses of Quinoxalines. Adv. Synth. Catal. 2021, 363, 980–1006. [Google Scholar] [CrossRef]
- Insuasty, D.; Castillo, J.; Becerra, D.; Rojas, H.; Abonia, R. Synthesis of Biologically Active Molecules through Multicomponent Reactions. Molecules 2020, 25, 505. [Google Scholar] [CrossRef]
- Mohlala, R.L.; Rashamuse, T.J.; Coyanis, E.M. Highlighting Multicomponent Reactions as an Efficient and Facile Alternative Route in the Chemical Synthesis of Organic-Based Molecules: A Tremendous Growth in the Past 5 Years. Front. Chem. 2024, 12, 1469677. [Google Scholar] [CrossRef]
- Wang, Z.; Dömling, A. Multicomponent Reactions in Medicinal Chemistry. In Multicomponent Reactions Towards Heterocycles: Concepts and Applications; Wiley-VCH: Weinheim, Germany, 2022; pp. 91–137. [Google Scholar] [CrossRef]
- Allochio Filho, J.F.; Lemos, B.C.; de Souza, A.S.; Pinheiro, S.; Greco, S.J. Multicomponent Mannich Reactions: General Aspects, Methodologies and Applications. Tetrahedron 2017, 73, 6977–7004. [Google Scholar] [CrossRef]
- Eisavi, R.; Naseri, K. Preparation, Characterization and Application of MgFe2O4/Cu Nanocomposite as a New Magnetic Catalyst for One-Pot Regioselective Synthesis of β-Thiol-1,4-Disubstituted-1,2,3-Triazoles. RSC Adv. 2021, 11, 13061–13076. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-J. Organic Reactions in Aqueous Media with a Focus on Carbon–Carbon Bond Formations: A Decade Update. Chem. Rev. 2005, 105, 3095–3166. [Google Scholar] [CrossRef]
- Potewar, T.M.; Ingale, S.A.; Srinivasan, K.V. Catalyst-Free Efficient Synthesis of 2-Aminothiazoles in Water at Ambient Temperature. Tetrahedron 2008, 64, 5019–5022. [Google Scholar] [CrossRef]
- Horváth, I.T. Introduction: Sustainable Chemistry. Chem. Rev. 2018, 118, 369–371. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Anastas, P.T.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Kappe, O.C. Microwave Dielectric Heating in Synthetic Organic Chemistry. Chem. Rev. 2008, 108, 1127–1150. [Google Scholar] [CrossRef]
- Astruc, D. Introduction: Nanoparticles in Catalysis. Chem. Rev. 2020, 120, 461–463. [Google Scholar] [CrossRef]
- Chanda, A.; Fokin, V.V. Organic Synthesis “on Water”. Chem. Rev. 2009, 109, 725–748. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, K.; Kumar, K.M.; Sivakumar, A. Synthesis, Characterization and Anticancer Molecular Docking Studies of Phenothiazine Derivatives—A Green Chemical Approach. ChemistrySelect 2023, 8, e202302613. [Google Scholar] [CrossRef]
- Venkatesan, K.; Basha, N.H.; Jagadish, T.; Reddy, P.V.; Shaik, H.; Pasupathi, M. Ultrasound Assisted Synthesis of Phenothiazine Based Chalcone Derivatives, Their Antibacterial Studies and Molecular Docking against COVID-19 Virus Spike Protein Inhibitor. Russ. J. Bioorg. Chem. 2024, 50, 1133–1140. [Google Scholar] [CrossRef]
- Chen, M.N.; Mo, L.P.; Cui, Z.S.; Zhang, Z.H. Magnetic Nanocatalysts: Synthesis and Application in Multicomponent Reactions. Curr. Opin. Green Sustain. Chem. 2019, 15, 27–37. [Google Scholar] [CrossRef]
- Nandi, S.; Jamatia, R.; Sarkar, R.; Sarkar, F.K.; Alam, S.; Pal, A.K. One-Pot Multicomponent Reaction: A Highly Versatile Strategy for the Construction of Valuable Nitrogen-Containing Heterocycles. ChemistrySelect 2022, 7, e202201901. [Google Scholar] [CrossRef]
- Das, D. Multicomponent Reactions in Organic Synthesis Using Copper-Based Nanocatalysts. ChemistrySelect 2016, 1, 1959–1980. [Google Scholar] [CrossRef]
- Yadav, M.; Dutta, M.; Tanwar, P.; Jain, R.; Srivastava, A.; Sharma, R.K. Microwave-Assisted C–C, C–O, C–N, C–S Bond Formation and Multicomponent Reactions Using Magnetic Retrievable Nanocatalysts. Curr. Microw. Chem. 2021, 8, 96–116. [Google Scholar] [CrossRef]
- Bennani, F.E.; Doudach, L.; Cherrah, Y.; Ramli, Y.; Karrouchi, K.; Ansar, M.H.; Faouzi, M.E.A. Overview of Recent Developments of Pyrazole Derivatives as an Anticancer Agent in Different Cell Line. Bioorg. Chem. 2020, 97, 103470. [Google Scholar] [CrossRef] [PubMed]
- Karrouchi, K.; Brandán, S.A.; Sert, Y.; El-Marzouqi, H.; Radi, S.; Ferbinteanu, M.; Faouzi, M.E.A.; Garcia, Y.; Ansar, M.H. Synthesis, X-ray Structure, Vibrational Spectroscopy, DFT, Biological Evaluation and Molecular Docking Studies of (E)-N′-(4-(Dimethylamino)benzylidene)-5-methyl-1H-pyrazole-3-carbohydrazide. J. Mol. Struct. 2020, 1219, 128541. [Google Scholar] [CrossRef]
- Vashisht, K.; Sethi, P.; Ramasamy, S.K.; Bansal, A.; Dar, M.O.; Singh, M.; Alkhanjaf, A.A.A.; Ibrahim, A.A.; Umar, A.; Kumar, R.; et al. Synthesis, Characterization, and Antibacterial Activity of Novel Pyrazole Derivatives. J. Mol. Struct. 2025, 1332, 141706. [Google Scholar] [CrossRef]
- Karrouchi, K.; Fettach, S.; Radi, S.; Yousfi, E.B.; Taoufik, J.; Mabkhot, Y.N.; Alterary, S.; Faouzi, M.E.; Ansar, M. Synthesis, Characterization, Free-Radical Scavenging Capacity and Antioxidant Activity of Novel Series of Hydrazone, 1,3,4-Oxadiazole and 1,2,4-Triazole Derived from 3,5-Dimethyl-1H-pyrazole. Lett. Drug Des. Discov. 2019, 16, 712–720. [Google Scholar] [CrossRef]
- Chaudhary, M.; Kumar, N.; Baldi, A.; Chandra, R.; Babu, M.A.; Madan, J. Chloro and Bromo-Pyrazole Curcumin Knoevenagel Condensates Augmented Anticancer Activity against Human Cervical Cancer Cells: Design, Synthesis, In Silico Docking and In Vitro Cytotoxicity Analysis. J. Biomol. Struct. Dyn. 2020, 38, 200–218. [Google Scholar] [CrossRef]
- Abu-Melha, S.; Edrees, M.M.; Riyadh, S.M.; Abdelaziz, M.R.; Elfiky, A.A.; Gomha, S.M. Clean Grinding Technique: A Facile Synthesis and In Silico Antiviral Activity of Hydrazones, Pyrazoles, and Pyrazines Bearing Thiazole Moiety against SARS-CoV-2 Main Protease (Mpro). Molecules 2020, 25, 4565. [Google Scholar] [CrossRef] [PubMed]
- Pogaku, V.; Krishna, V.S.; Sriram, D.; Rangan, K.; Basavoju, S. Ultrasonication-Ionic Liquid Synergy for the Synthesis of New Potent Anti-Tuberculosis 1,2,4-Triazol-1-yl-Pyrazole Based Spirooxindolopyrrolizidines. Bioorg. Med. Chem. Lett. 2019, 29, 1682–1687. [Google Scholar] [CrossRef] [PubMed]
- Amirnejat, S.; Nosrati, A.; Javanshir, S. Superparamagnetic Fe3O4@Alginate Supported L-Arginine as a Powerful Hybrid Inorganic–Organic Nanocatalyst for the One-Pot Synthesis of Pyrazole Derivatives. Appl. Organomet. Chem. 2020, 34, e5888. [Google Scholar] [CrossRef]
- Nikpassand, M.; Farshami, M.J. One-Pot Synthesis of Novel 3-Pyrazolyl-4H-1,2,4-Triazoles Using Aminoglucose-Functionalized Silica-Coated NiFe2O4 Nanoparticles as a Magnetically Separable Catalyst. J. Clust. Sci. 2021, 32, 975–982. [Google Scholar] [CrossRef]
- Ramezaninejad, Z.; Shiri, L. MgFe2O4@Tris Magnetic Nanoparticles: An Effective and Powerful Catalyst for One-Pot Synthesis of Pyrazolopyranopyrimidine and Tetrahydro Dipyrazolopyridine Derivatives. RSC Adv. 2024, 14, 6006–6015. [Google Scholar] [CrossRef]
- Ghasemzadeh, M.A.; Mirhosseini-Eshkevari, B.; Abdollahi-Basir, M.H. Green Synthesis of Spiro[indoline-3,4′-pyrano[2,3-c]pyrazoles] Using Fe3O4@L-Arginine as a Robust and Reusable Catalyst. BMC Chem. 2019, 13, 119. [Google Scholar] [CrossRef]
- Hosseini Mohtasham, N.; Gholizadeh, M. Nano Silica Extracted from Horsetail Plant as a Natural Silica Support for the Synthesis of H3PW12O40 Immobilized on Aminated Magnetic Nanoparticles (Fe3O4@SiO2-EP-NH-HPA): A Novel and Efficient Heterogeneous Nano Catalyst for the Green One-Pot Synthesis of Pyrano[2,3-c]pyrazole Derivatives. Res. Chem. Intermed. 2020, 46, 3037–3066. [Google Scholar] [CrossRef]
- Laursen, J.B.; Nielsen, J. Phenazine Natural Products: Biosynthesis, Synthetic Analogues, and Biological Activity. Chem. Rev. 2004, 104, 1663–1686. [Google Scholar] [CrossRef]
- Bonsignore, L.; Loy, G.; Secci, D.; Calignano, A. Synthesis and Pharmacological Activity of 2-Oxo-(2H)-1-benzopyran-3-carboxamide Derivatives. Eur. J. Med. Chem. 1993, 28, 517–520. [Google Scholar] [CrossRef]
- Ferreira, S.B.; de Carvalho da Silva, F.; Bezerra, F.A.; Lourenço, M.C.; Kaiser, C.R.; Pinto, A.C.; Ferreira, V.F. Synthesis of α- and β-Pyran Naphthoquinones as a New Class of Antitubercular Agents. Arch. Pharm. 2010, 343, 81–90. [Google Scholar] [CrossRef]
- Gamage, S.A.; Spicer, J.A.; Rewcastle, G.W.; Milton, J.; Sohal, S.; Dangerfield, W.; Mistry, P.; Vicker, N.; Charlton, P.A.; Denny, W.A. Structure−Activity Relationships for Pyrido-, Imidazo-, Pyrazolo-, Pyrazino-, and Pyrrolophenazinecarboxamides as Topoisomerase-Targeted Anticancer Agents. J. Med. Chem. 2002, 45, 740–743. [Google Scholar] [CrossRef]
- Ligon, J.M.; Hill, D.S.; Hammer, P.E.; Torkewitz, N.R.; Hofmann, D.; Kempf, H.J.; van Pée, K.H. Natural Products with Antifungal Activity from Pseudomonas Biocontrol Bacteria. Pest Manag. Sci. 2000, 56, 688–695. [Google Scholar] [CrossRef]
- Muller, M.; Sorrell, T.C. Inhibition of the Human Platelet Cyclooxygenase Response by the Naturally Occurring Phenazine Derivative, 1-Hydroxyphenazine. Prostaglandins 1995, 50, 301–311. [Google Scholar] [CrossRef]
- Gao, J.; Chen, M.; Tong, X.; Zhu, H.; Yan, H.; Liu, D.; Li, W.; Qi, S.; Xiao, D.; Wang, Y.; et al. Synthesis, Antitumor Activity, and Structure–Activity Relationship of Some Benzo[a]pyrano[2,3-c]phenazine Derivatives. Comb. Chem. High Throughput Screen. 2015, 18, 960–974. [Google Scholar] [CrossRef]
- Taheri, M.; Mohebat, R. Synthesis of One-Pot Pyrazolo[4′,3′:5,6]pyrano[2,3-c]phenazin-15-yl) Methanone Derivatives via a Multi-Component Using Fe3O4@TiO2–SO3H as a Recoverable Magnetic Catalyst under Microwave Irradiation. Green Chem. Lett. Rev. 2020, 13, 165–178. [Google Scholar] [CrossRef]
- Safari, F.; Hosseini, H.; Bayat, M.; Ranjbar, A. Synthesis and Evaluation of Antimicrobial Activity, Cytotoxic and Pro-Apoptotic Effects of Novel Spiro-4H-Pyran Derivatives. RSC Adv. 2019, 9, 24843–24851. [Google Scholar] [CrossRef]
- Venkatesan, K.; Rao, T.S.; Sridhar, V. Ultrasound Assisted Synthesis of Pyran Derivatives Catalysed by Uranyl Nitrate and Their Molecular Docking against Glycogen Synthase Kinase-3 Beta Receptor. Russ. J. Bioorg. Chem. 2024, 50, 2580–2588. [Google Scholar] [CrossRef]
- Bedair, A.H.; Emam, H.A.; El-Hady, N.A.; Ahmed, K.A.; El-Agrody, A.M. Synthesis and Antimicrobial Activities of Novel Naphtho[2, -b]pyran, Pyrano[2,3-d]pyrimidine and Pyrano[3,2-e][1,2,4]triazolo[2,3-c]pyrimidine Derivatives. Il Farmaco 2001, 56, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Shahrisa, A.; Zirak, M.; Mehdipour, A.R. Synthesis and Calcium Channel Antagonist Activity of New Symmetrical and Asymmetrical 4-[2-Chloro-2-(4-Chloro-6-methyl-2-oxo-2H-pyran-3-yl)vinyl]-Substituted 1,4-Dihydropyridines. Chem. Heterocycl. Compd. 2011, 46, 1354–1363. [Google Scholar] [CrossRef]
- da Rocha, D.R.; de Souza, A.C.; Resende, J.A.; Santos, W.C.; dos Santos, E.A.; Pessoa, C.; de Moraes, M.O.; Costa-Lotufo, L.V.; Montenegro, R.C.; Ferreira, V.F. Synthesis of New 9-Hydroxy-α- and 7-Hydroxy-β-Pyran Naphthoquinones and Cytotoxicity against Cancer Cell Lines. Org. Biomol. Chem. 2011, 9, 4315–4322. [Google Scholar] [CrossRef]
- Sirous, H.; Chemi, G.; Gemma, S.; Butini, S.; Debyser, Z.; Christ, F.; Saghaie, L.; Brogi, S.; Fassihi, A.; Campiani, G.; et al. Identification of Novel 3-Hydroxy-Pyran-4-one Derivatives as Potent HIV-1 Integrase Inhibitors Using In Silico Structure-Based Combinatorial Library Design Approach. Front. Chem. 2019, 7, 574. [Google Scholar] [CrossRef]
- Verhoest, P.R.; Fonseca, K.R.; Hou, X.; Proulx-LaFrance, C.; Corman, M.; Helal, C.J.; Claffey, M.M.; Tuttle, J.B.; Coffman, K.J.; Liu, S.; et al. Design and Discovery of 6-[(3S,4S)-4-Methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2H-pyran-4-yl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one (PF-04447943), a Selective Brain Penetrant PDE9A Inhibitor for the Treatment of Cognitive Disorders. J. Med. Chem. 2012, 55, 9045–9054. [Google Scholar] [CrossRef] [PubMed]
- Bisht, S.S.; Jaiswal, N.; Sharma, A.; Fatima, S.; Sharma, R.; Rahuja, N.; Srivastava, A.K.; Bajpai, V.; Kumar, B.; Tripathi, R.P. A Convenient Synthesis of Novel Pyranosyl Homo-C-Nucleosides and Their Antidiabetic Activities. Carbohydr. Res. 2011, 346, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- Ahankar, H.; Fardood, S.T.; Ramazani, A. One-Pot Three-Component Synthesis of Tetrahydrobenzo[b]pyrans in the Presence of Ni0.5Cu0.5Fe2O4 Magnetic Nanoparticles under Microwave Irradiation in Solvent-Free Conditions. Iran. J. Catal. 2020, 10, 3561. [Google Scholar]
- Maleki, A.; Ghassemi, M.; Firouzi-Haji, R. Green Multicomponent Synthesis of Four Different Classes of Six-Membered N-Containing and O-Containing Heterocycles Catalyzed by an Efficient Chitosan-Based Magnetic Bionano Composite. Pure Appl. Chem. 2018, 90, 387–394. [Google Scholar] [CrossRef]
- Aghajani, M.; Monadi, N. A One-Pot Green Synthesis of 2-Amino-4H-benzo[h]chromenes Catalyzed by a Dioxomolybdenum Schiff Base Complex Supported on Magnetic Nanoparticles as an Efficient and Recyclable Nanocatalyst. J. Chin. Chem. Soc. 2019, 66, 775–784. [Google Scholar] [CrossRef]
- Nikpassand, M.; Kasmaei, S.A. Tannic Acid-Functionalized Silica-Coated Fe3O4 Nanoparticles as a Novel and Magnetically Separable Catalyst for Green Synthesis of Aryl Naphtho[1,3]oxazine-2-thiones. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4917–4926. [Google Scholar] [CrossRef]
- Shill, M.C.; Das, A.K.; Itou, T.; Karmakar, S.; Mukherjee, P.K.; Mizuguchi, H.; Kashiwada, Y.; Fukui, H.; Nemoto, H. The Isolation and Synthesis of a Novel Benzofuran Compound from Tephrosia purpurea, and the Synthesis of Several Related Derivatives, Which Suppress Histamine H1 Receptor Gene Expression. Bioorg. Med. Chem. 2015, 23, 6869–6874. [Google Scholar] [CrossRef]
- Kucuksayan, E.; Ozben, T. Hybrid Compounds as Multitarget Directed Anticancer Agents. Curr. Top. Med. Chem. 2017, 17, 907–918. [Google Scholar] [CrossRef]
- Tang, H.J.; Zhang, X.W.; Yang, L.; Li, W.; Li, J.H.; Wang, J.X.; Chen, J. Synthesis and Evaluation of Xanthine Oxidase Inhibitory and Antioxidant Activities of 2-Arylbenzo[b]furan Derivatives Based on Salvianolic Acid C. Eur. J. Med. Chem. 2016, 124, 637–648. [Google Scholar] [CrossRef]
- Zaher, A.F.; Abuel-Maaty, S.M.; El-Nassan, H.B.; Amer, S.A.; Abdelghany, T.M. Synthesis, Antitumor Screening and Cell Cycle Analysis of Novel Benzothieno[3,2-b]pyran Derivatives. J. Enzyme Inhib. Med. Chem. 2016, 31, 145–153. [Google Scholar] [CrossRef]
- Hiremathad, A.; Patil, M.R.; Chand, K.; Santos, M.A.; Keri, R.S. Benzofuran: An Emerging Scaffold for Antimicrobial Agents. RSC Adv. 2015, 5, 96809–96828. [Google Scholar] [CrossRef]
- Bowyer, P.W.; Tate, E.W.; Leatherbarrow, R.J.; Holder, A.A.; Smith, D.F.; Brown, K.A. N-Myristoyltransferase: A Prospective Drug Target for Protozoan Parasites. ChemMedChem 2008, 3, 402–408. [Google Scholar] [CrossRef]
- Hwang, J.W.; Choi, D.H.; Jeon, J.H.; Kim, J.K.; Jun, J.G. Facile Preparation of 2-Arylbenzo[b]furan Molecules and Their Anti-Inflammatory Effects. Bull. Korean Chem. Soc. 2010, 31, 965–970. [Google Scholar] [CrossRef]
- Halabalaki, M.; Alexi, X.; Aligiannis, N.; Alexis, M.N.; Skaltsounis, A.L. Ebenfurans IV−VIII from Onobrychis ebenoides: Evidence That C-Prenylation Is the Key Determinant of the Cytotoxicity of 3-Formyl-2-arylbenzofurans. J. Nat. Prod. 2008, 71, 1934–1937. [Google Scholar] [CrossRef] [PubMed]
- Shirzaei, M.; Mollashahi, E.; Maghsoodlou, M.T.; Lashkari, M. Novel Synthesis of Silica-Coated Magnetic Nanoparticles Based on Acidic Ionic Liquid, as a Highly Efficient Catalyst for Three-Component System Leads to Furans Derivatives. J. Saudi Chem. Soc. 2020, 24, 216–222. [Google Scholar] [CrossRef]
- Ahankar, H.; Ramazani, A.; Fattahi, N.; Ślepokura, K.; Lis, T.; Asiabi, P.A.; Kinzhybalo, V.; Hanifehpour, Y.; Joo, S.W. Tetramethylguanidine-Functionalized Silica-Coated Iron Oxide Magnetic Nanoparticles Catalyzed One-Pot Three-Component Synthesis of Furanone Derivatives. J. Chem. Sci. 2018, 130, 1–13. [Google Scholar] [CrossRef]
- Khurana, J.M.; Magoo, D.; Aggarwal, K.; Aggarwal, N.; Kumar, R.; Srivastava, C. Synthesis of Novel 12-Aryl-8,9,10,12-Tetrahydrobenzo[a]xanthene-11-thiones and Evaluation of Their Biocidal Effects. Eur. J. Med. Chem. 2012, 58, 470–477. [Google Scholar] [CrossRef]
- El-Sabbagh, O.I.; El-Sadek, M.E.; El-Kalyoubi, S.; Ismail, I. Synthesis, DNA Binding and Antiviral Activity of New Uracil, Xanthine, and Pteridine Derivatives. Arch. Pharm. 2007, 340, 26–31. [Google Scholar] [CrossRef]
- Zygmunt, M.; Sapa, J.; Drabczyńska, A.; Karcz, T.; Müller, C.; Köse, M.; Latacz, G.; Schabikowski, J.; Bednarski, M.; Kieć-Kononowicz, K. Synthesis and Analgesic Activity of Annelated Xanthine Derivatives in Experimental Models in Rodents. Arch. Pharm. 2015, 348, 704–714. [Google Scholar] [CrossRef]
- Dianov, V.M.; Bulgakov, A.K. Synthesis and Antimicrobial Activity of 3-Methyl-Substituted 6,8-Dimethylthiazolo-[2,3-f]xanthines. Pharm. Chem. J. 2006, 40, 551–553. [Google Scholar] [CrossRef]
- Hafez, H.N.; Hegab, M.I.; Ahmed-Farag, I.S.; El-Gazzar, A.B.A.A. Facile Regioselective Synthesis of Novel Spiro-Thioxanthene and Spiro-Xanthene-9′,2-[1,3,4]Thiadiazole Derivatives as Potential Analgesic and Anti-Inflammatory Agents. Bioorg. Med. Chem. Lett. 2008, 18, 4538–4543. [Google Scholar] [CrossRef] [PubMed]
- Majhi, S. Recent Developments in the Synthesis and Anti-Cancer Activity of Acridine and Xanthine-Based Molecules. Phys. Sci. Rev. 2023, 8, 2405–2439. [Google Scholar] [CrossRef]
- Arzehgar, Z.; Aydi, A.; Mirzaei Heydari, M. Silver Functionalized on Hydroxyapatite-Core-Shell Magnetic γ-Fe2O3: An Environmentally and Readily Recyclable Nanocatalyst for the One-Pot Synthesis of 14H-Dibenzo[a,j]xanthenes Derivatives. Asian J. Green Chem. 2018, 2, 281–298. [Google Scholar] [CrossRef]
- Sonei, S.; Gholizadeh, M.; Taghavi, F. Cu(II) Anchored on Modified Magnetic Nanoparticles: As a Green and Efficient Recyclable Nano Catalyst for One Pot Synthesis of 12-Aryl-8,9,10,12-Tetrahydrobenzo[a]xanthene-11-One. Polycycl. Aromat. Compd. 2020, 40, 1127–1142. [Google Scholar] [CrossRef]
- Lee, C.F.; Holownia, A.; Bennett, J.M.; Elkins, J.M.; Denis, J.D.S.; Adachi, S.; Yudin, A.K. Oxalyl Boronates Enable Modular Synthesis of Bioactive Imidazoles. Angew. Chem. Int. Ed. 2017, 56, 6264–6267. [Google Scholar] [CrossRef]
- Gaba, M.; Mohan, C. Development of Drugs Based on Imidazole and Benzimidazole Bioactive Heterocycles: Recent Advances and Future Directions. Med. Chem. Res. 2016, 25, 173–210. [Google Scholar] [CrossRef]
- Zhang, M.; Ding, Y.; Qin, H.X.; Xu, Z.G.; Lan, H.T.; Yang, D.L.; Yi, C. One-Pot Synthesis of Substituted Pyrrole–Imidazole Derivatives with Anticancer Activity. Mol. Divers. 2020, 24, 1177–1184. [Google Scholar] [CrossRef]
- Gurevich, K.G.; Urakov, A.L.; Basantsev, A.V.; Samorodov, A.V.; Danilin, A.A.; Purygin, P.P.; Klenova, N.A.; Bashirov, I.I.; Bashirova, L.I.; Golovanov, A.A.; et al. Synthesis of New N-Mono- and N,N-Dialkylated Imidazole Derivatives and Their Antiplatelet and Anticoagulation Activity. Pharm. Chem. J. 2021, 55, 119–122. [Google Scholar] [CrossRef]
- Nascimento, M.V.P.; Munhoz, A.C.; Theindl, L.C.; Mohr, E.T.B.; Saleh, N.; Parisotto, E.B.; Rossa, T.A.; Zamoner, A.; Creczynski-Pasa, T.B.; Filippin-Monteiro, F.B.; et al. A Novel Tetrasubstituted Imidazole as a Prototype for the Development of Anti-Inflammatory Drugs. Inflammation 2018, 41, 1334–1348. [Google Scholar] [CrossRef] [PubMed]
- Parwani, D.; Bhattacharya, S.; Rathore, A.; Mallick, C.; Asati, V.; Agarwal, S.; Rajoriya, V.; Das, R.; Kashaw, S.K. Current Insights into the Chemistry and Antitubercular Potential of Benzimidazole and Imidazole Derivatives. Mini-Rev. Med. Chem. 2021, 21, 643–657. [Google Scholar] [CrossRef] [PubMed]
- Verma, B.K.; Kapoor, S.; Kumar, U.; Pandey, S.; Arya, P. Synthesis of New Imidazole Derivatives as Effective Antimicrobial Agents. Indian J. Pharm. Biol. Res. 2017, 5, 1–9. [Google Scholar] [CrossRef]
- Roy, D.; Anas, M.; Manhas, A.; Saha, S.; Kumar, N.; Panda, G. Synthesis, Biological Evaluation, Structure−Activity Relationship Studies of Quinoline-Imidazole Derivatives as Potent Antimalarial Agents. Bioorg. Chem. 2022, 121, 105671. [Google Scholar] [CrossRef] [PubMed]
- Gunaseeli, P.I.; Ruban, Y.J.V.; Venkatesan, K. Microwave-Assisted Synthesis and Biological Studies of Phenothiazine-Based Imidazole Derivatives. Russ. J. Gen. Chem. 2025, 95, 1068–1074. [Google Scholar] [CrossRef]
- Sakhdari, M.; Amoozadeh, A.; Kolvari, E. Magnetic Nanoparticle-Supported Sulfonic Acid as a Green Catalyst for the One-Pot Synthesis of 2,4,5-Trisubstituted Imidazoles and 1,2,4,5-Tetrasubstituted Imidazoles under Solvent-Free Conditions. Heterocycl. Commun. 2021, 27, 71–78. [Google Scholar] [CrossRef]
- Khalifeh, R.; Naseri, V.; Rajabzadeh, M. Synthesis of Imidazolium-Based Ionic Liquid on Modified Magnetic Nanoparticles for Application in One-Pot Synthesis of Trisubstituted Imidazoles. ChemistrySelect 2020, 5, 11453–11462. [Google Scholar] [CrossRef]
- Abele, E.; Abele, R.; Dzenitis, O.; Lukevics, E. Indole and Isatin Oximes: Synthesis, Reactions, and Biological Activity. Chem. Heterocycl. Compd. 2003, 39, 3–35. [Google Scholar] [CrossRef]
- Al-Hiari, Y.; Qaisi, A.; El-Abadelah, M. Synthesis and Antibacterial Activity of Some Substituted 3-(Aryl)- and 3-(Heteroaryl)indoles. Monatsh. Chem. 2006, 137, 243–248. [Google Scholar] [CrossRef]
- Li, Y.Y.; Wu, H.S.; Tang, L.; Feng, C.R.; Yu, J.H.; Li, Y.; Yang, Y.S.; Yang, B.; He, Q.J. The Potential Insulin Sensitizing and Glucose Lowering Effects of a Novel Indole Derivative in Vitro and in Vivo. Pharmacol. Res. 2007, 56, 335–343. [Google Scholar] [CrossRef]
- Barraja, P.; Sciabica, L.; Diana, P.; Lauria, A.; Montalbano, A.; Almerico, A.M.; Dattolo, G.; Cirrincione, G.; Disarò, S.; Basso, G.; et al. Synthesis and Photochemotherapeutic Activity of Thiopyrano[2,3-e]indol-2-ones. Bioorg. Med. Chem. Lett. 2005, 15, 2291–2294. [Google Scholar] [CrossRef]
- Safari, J.; Hosseini Nasab, N. Fe3O4 Magnetic Nanoparticles in the Layers of Montmorillonite as a Valuable Heterogeneous Nano Catalyst for the One-Pot Synthesis of Indeno[1,2-b]indolone Derivatives in Aqueous Media. Res. Chem. Intermed. 2019, 45, 1025–1038. [Google Scholar] [CrossRef]
- Nongthombam, G.S.; Kathing, C.; Nongrum, R.; Kharmawlong, G.K.; Nongkhlaw, R. Fe3O4 Supported Acidic Ionic Liquid: An Efficient and Recyclable Magnetic Nanoparticles Catalyst for One-Pot Synthesis of Bis(indolyl)methanes. Indian J. Chem. 2023, 62, 16–23. [Google Scholar] [CrossRef]
- Min, L.; Pan, B.; Gu, Y. Synthesis of Quinoline-Fused 1-Benzazepines through a Mannich-Type Reaction of a C,N-Bisnucleophile Generated from 2-Aminobenzaldehyde and 2-Methylindole. Org. Lett. 2016, 18, 364–367. [Google Scholar] [CrossRef]
- Carreño, A.; Zúñiga, C.; Páez-Hernández, D.; Gacitúa, M.; Polanco, R.; Otero, C.; Arratia-Pérez, R.; Fuentes, J.A. Study of the Structure–Bioactivity Relationship of Three New Pyridine Schiff Bases: Synthesis, Spectral Characterization, DFT Calculations and Biological Assays. New J. Chem. 2018, 42, 8851–8863. [Google Scholar] [CrossRef]
- Chen, Z.; Li, P.; Hu, D.; Dong, L.; Pan, J.; Luo, L.; Zhang, W.; Xue, W.; Jin, L.; Song, B. Synthesis, Antiviral Activity, and 3D-QSAR Study of Novel Chalcone Derivatives Containing Malonate and Pyridine Moieties. Arab. J. Chem. 2019, 12, 2685–2696. [Google Scholar] [CrossRef]
- Worachartcheewan, A.; Prachayasittikul, S.; Pingaew, R.; Nantasenamat, C.; Tantimongcolwat, T.; Ruchirawat, S.; Prachayasittikul, V. Antioxidant, Cytotoxicity, and QSAR Study of 1-Adamantylthio Derivatives of 3-Picoline and Phenylpyridines. Med. Chem. Res. 2012, 21, 3514–3522. [Google Scholar] [CrossRef]
- Riaz, S.; Khan, I.U.; Bajda, M.; Ashraf, M.; Shaukat, A.; Rehman, T.U.; Mutahir, S.; Hussain, S.; Mustafa, G.; Yar, M. Pyridine Sulfonamide as a Small Key Organic Molecule for the Potential Treatment of Type-II Diabetes Mellitus and Alzheimer’s Disease: In Vitro Studies against Yeast α-Glucosidase, Acetylcholinesterase and Butyrylcholinesterase. Bioorg. Chem. 2015, 63, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Masaret, G.S. Convenient Synthesis and Anticancer Evaluation of Novel Pyrazolyl-Thiophene, Thieno[3,2-b]pyridine, Pyrazolo[3,4-d]thieno[3,2-b]pyridine and Pyrano[2,3-d]thieno[3,2-b]pyridine Derivatives. J. Heterocycl. Chem. 2021, 58, 1344–1358. [Google Scholar] [CrossRef]
- Elkanzi, N.A.; Bakr, R.B.; Ghoneim, A.A. Design, Synthesis, Molecular Modeling Study, and Antimicrobial Activity of Some Novel Pyrano[2,3-b]pyridine and Pyrrolo[2,3-b]pyrano[2,3-d]pyridine Derivatives. J. Heterocycl. Chem. 2019, 56, 406–416. [Google Scholar] [CrossRef]
- Ali, E.M.; Abdel-Maksoud, M.S.; Hassan, R.M.; Mersal, K.I.; Ammar, U.M.; Se-In, C.; He-Soo, H.; Kim, H.K.; Lee, A.; Lee, K.T.; et al. Design, Synthesis and Anti-Inflammatory Activity of Imidazol-5-yl Pyridine Derivatives as p38α/MAPK14 Inhibitor. Bioorg. Med. Chem. 2021, 31, 115969. [Google Scholar] [CrossRef]
- Maleki, A.; Firouzi-Haji, R. L-Proline Functionalized Magnetic Nanoparticles: A Novel Magnetically Reusable Nano Catalyst for One-Pot Synthesis of 2,4,6-Triarylpyridines. Sci. Rep. 2018, 8, 17303. [Google Scholar] [CrossRef]
- Thrilokraj, R.; Ghosh, A.; Limaye, A.S.; Małecki, J.G.; Budagumpi, S.; Deokar, R.C.; Dateer, R.B. Fe3O4NPs: A Heterogeneous and Reusable Magnetic Nano Catalyst for Base and Solvent Free One-Pot Multicomponent Synthesis of Pyridine Derivatives and Their Photophysical Study. Mol. Catal. 2024, 557, 113978. [Google Scholar] [CrossRef]
- Maleki, B.; Natheghi, H.; Tayebee, R.; Alinezhad, H.; Amiri, A.; Hossieni, S.A.; Nouri, S.M.M. Synthesis and Characterization of Nanorod Magnetic Co–Fe Mixed Oxides and Its Catalytic Behavior Towards One-Pot Synthesis of Polysubstituted Pyridine Derivatives. Polycycl. Aromat. Compd. 2020, 40, 633–643. [Google Scholar] [CrossRef]
- Rakhtshah, J.; Yaghoobi, F. Catalytic Application of New Manganese Schiff-Base Complex Immobilized on Chitosan-Coated Magnetic Nanoparticles for One-Pot Synthesis of 3-Iminoaryl-imidazo[1,2-a]pyridines. Int. J. Biol. Macromol. 2019, 139, 904–916. [Google Scholar] [CrossRef]
- Ahadi, N.; Mobinikhaledi, A.; Bodaghifard, M.A. One-Pot Synthesis of 1,4-Dihydropyridines and N-Arylquinolines in the Presence of Copper Complex Stabilized on MnFe2O4 (MFO) as a Novel Organic–Inorganic Hybrid Material and Magnetically Retrievable Catalyst. Appl. Organomet. Chem. 2020, 34, e5822. [Google Scholar] [CrossRef]
- Maleki, B.; Atharifar, H.; Reiser, O.; Sabbaghzadeh, R. Glutathione-Coated Magnetic Nanoparticles for One-Pot Synthesis of 1,4-Dihydropyridine Derivatives. Polycycl. Aromat. Compd. 2021, 41, 721–734. [Google Scholar] [CrossRef]
- Bodaghifard, M.A. Organic Base Grafted on Magnetic Nanoparticles as a Recoverable Catalyst for the Green Synthesis of Hydropyridine Rings. J. Iran. Chem. Soc. 2020, 17, 483–492. [Google Scholar] [CrossRef]
- Bodaghifard, M.A. Bis Sulfamic Acid Functionalized Magnetic Nanoparticles as a Retrievable Nano Catalyst for the Green Synthesis of Polyhydroquinolines and Tetrahydrobenzopyrans. J. Nanostruct. 2019, 9, 29–40. [Google Scholar] [CrossRef]
- Brown, R.C. Recent Developments in Solid-Phase Organic Synthesis. J. Chem. Soc., Perkin Trans. 1 1998, 19, 3293–3320. [Google Scholar] [CrossRef]
- Pershin, G.N.; Shcherbakova, L.I.; Zykova, T.N.; Sokolova, V.N. Antibacterial Activity of Pyrimidine and Pyrrolo-(3,2-d)-Pyrimidine Derivatives. Farmakol. Toksikol. 1972, 35, 466–471. [Google Scholar]
- Amr, A.E.G.E.; Sayed, H.H.; Abdulla, M.M. Synthesis and Reactions of Some New Substituted Pyridine and Pyrimidine Derivatives as Analgesic, Anticonvulsant and Antiparkinsonian Agents. Arch. Pharm. 2005, 338, 433–440. [Google Scholar] [CrossRef]
- Keshk, R.M.; Salama, Z.A.; Elsaedany, S.K. Synthesis, Antimicrobial, Anti-inflammatory, Antioxidant and Cytotoxicity of New Pyrimidine and Pyrimidopyrimidine Derivatives. Sci. Rep. 2025, 15, 9328. [Google Scholar] [CrossRef]
- Kostova, I.; Atanasov, P.Y. Antioxidant Properties of Pyrimidine and Uracil Derivatives. Curr. Org. Chem. 2017, 21, 2096–2108. [Google Scholar] [CrossRef]
- Sondhi, S.M.; Singh, N.; Johar, M.; Kumar, A. Synthesis, Anti-inflammatory and Analgesic Activities Evaluation of Some Mono, Bi and Tricyclic Pyrimidine Derivatives. Bioorg. Med. Chem. 2005, 13, 6158–6166. [Google Scholar] [CrossRef]
- Huang, B.; Kang, D.; Tian, Y.; Daelemans, D.; De Clercq, E.; Pannecouque, C.; Zhan, P.; Liu, X. Design, Synthesis, and Biological Evaluation of Piperidinyl-Substituted [1,2,4]Triazolo[1,5-a]Pyrimidine Derivatives as Potential Anti-HIV-1 Agents with Reduced Cytotoxicity. Chem. Biol. Drug Des. 2021, 97, 67–76. [Google Scholar] [CrossRef]
- Spivey, A.C.; Srikaran, R.; Diaper, C.M.; Turner, D.J. Traceless Solid Phase Synthesis of 2-Substituted Pyrimidines Using an ‘Off-the-Shelf’ Chlorogermane-Functionalised Resin. Org. Biomol. Chem. 2003, 1, 1638–1640. [Google Scholar] [CrossRef] [PubMed]
- Katritzky, A.R.; Soloducho, J.; Belyakov, S. Bis-4-Halophenyl-Pyrimidines and –1,2,4,5-Tetrazines. Arkivoc 2000, 1, 37–42. [Google Scholar] [CrossRef]
- Rostami, H.; Shiri, L. One-Pot Synthesis of Pyrido[2,3-d:5,6-d′]Dipyrimidines Using CoFe2O4@SiO2-PA-CC-Guanidine-SA Magnetic Nanoparticles in Water. Appl. Organomet. Chem. 2021, 35, e6293. [Google Scholar] [CrossRef]
- Sayahi, M.H.; Sepahdar, A.; Bazrafkan, F.; Dehghani, F.; Mahdavi, M.; Bahadorikhalili, S. Ionic Liquid Modified SPION@Chitosan as a Novel and Reusable Superparamagnetic Catalyst for Green One-Pot Synthesis of Pyrido[2,3-d]Pyrimidine-Dione Derivatives in Water. Catalysts 2023, 13, 290. [Google Scholar] [CrossRef]
- Karimi, F.; Tighsazzadeh, B.; Asadi, B.; Mohammadpoor-Baltork, I.; Layeghi, M.; Mirkhani, V.; Tangestaninejad, S.; Moghadam, M. 3-(Propylthio)Propane-1-Sulfonic Acid Immobilized on Functionalized Magnetic Nanoparticles as an Efficient Catalyst for One-Pot Synthesis of Dihydrotetrazolo[1,5-a]Pyrimidine and Tetrahydrotetrazolo[5,1-b]Quinazolinone Derivatives. RSC Adv. 2022, 12, 22180–22187. [Google Scholar] [CrossRef] [PubMed]
- Wenxin, Z.; Mengjun, H.; Shengnan, L.; Yujing, L.; Zhongqiu, L.; An’guo, Y. One-Pot Synthesis of 3,4-Dihydropyrimidine-2-One Derivatives via Biginelli Reactions Catalyzed by SnCl2@MNPs. Chin. J. Org. Chem. 2021, 41, 2743–2749. [Google Scholar] [CrossRef]
- Alishahi, N.; Nasr-Esfahani, M.; Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Mirkhani, V.; Moghadam, M. Nicotine-Based Ionic Liquid Supported on Magnetic Nanoparticles: An Efficient and Recyclable Catalyst for Selective One-Pot Synthesis of Mono- and Bis-4H-Pyrimido[2,1-b]Benzothiazoles. Appl. Organomet. Chem. 2020, 34, e5681. [Google Scholar] [CrossRef]
- Verma, P.; Pal, S.; Chauhan, S.; Mishra, A.; Sinha, I.; Singh, S.; Srivastava, V. Starch Functionalized Magnetite Nanoparticles: A Green, Biocatalyst for One-Pot Multicomponent Synthesis of Imidazopyrimidine Derivatives in Aqueous Medium under Ultrasound Irradiation. J. Mol. Struct. 2020, 1203, 127410. [Google Scholar] [CrossRef]
- Saberikhah, E.; Mamaghani, M.; Mahmoodi, N.O.; Fallah Shojaei, A. Magnetic Fe3O4@TiO2@NH2@PMo12O40 Nanoparticles: A Recyclable and Efficient Catalyst for Convergent One-Pot Synthesis of Pyrido[2,3-d]Pyrimidine Derivatives. Polycycl. Aromat. Compd. 2021, 42, 297–315. [Google Scholar] [CrossRef]
- Taheri Hatkehlouei, S.F.; Mirza, B.; Soleimani-Amiri, S. Solvent-Free One-Pot Synthesis of Diverse Dihydropyrimidinones/Tetrahydropyrimidinones Using Biginelli Reaction Catalyzed by Fe3O4@C@OSO3H. Polycycl. Aromat. Compd. 2022, 42, 1341–1357. [Google Scholar] [CrossRef]
- Ghafuri, H.; Moradi, S.; Ghanbari, N.; Dogari, H.; Ghafori, M. Efficient and Green Synthesis of Acridinedione Derivatives Using Highly Fe3O4@Polyaniline-SO3H as Efficient Heterogeneous Catalyst. Chem. Proc. 2021, 8, 23. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Rashidi Nodeh, H.; Foroumadi, A. Magnetically Recoverable Graphene-Based Nanoparticles for the One-Pot Synthesis of Acridine Derivatives under Solvent-Free Conditions. Polycycl. Aromat. Compd. 2021, 41, 746–760. [Google Scholar] [CrossRef]
- Singh, A.; Singh, K.; Sharma, A.; Kaur, K.; Chadha, R.; Bedi, P.M.S. Recent Advances in Antifungal Drug Development Targeting Lanosterol 14α-Demethylase (CYP51): A Comprehensive Review with Structural and Molecular Insights. Chem. Biol. Drug Des. 2023, 102, 606–639. [Google Scholar] [CrossRef]
- Monk, B.C.; Keniya, M.V. Roles for Structural Biology in the Discovery of Drugs and Agrochemicals Targeting Sterol 14α-Demethylases. J. Fungi 2021, 7, 67. [Google Scholar] [CrossRef]
- Imran, M.; Bawadekji, A.; Alotaibi, N. Synthesis and Evaluation of Antimicrobial Properties of Some Azole Derivatives. Trop. J. Pharm. Res. 2020, 19, 377–382. [Google Scholar] [CrossRef]
- Maertens, J.A. History of the Development of Azole Derivatives. Clin. Microbiol. Infect. 2004, 10, 1–10. [Google Scholar] [CrossRef]
- Mirshafiee, S.; Salamatmanesh, A.; Heydari, A. A Sustainable Approach for Efficient One-Pot Synthesis of 1-Aryl-1,2,3-Triazoles Using Copper Iodide Supported on 3-Thionicotinyl-Urea-Modified Magnetic Nanoparticles in DES. Appl. Organomet. Chem. 2021, 35, e6255. [Google Scholar] [CrossRef]
- Soleimani-Amiri, S.; Shafaei, F.; Varasteh Moradi, A.; Gholami-Orimi, F.; Rostami, Z. A Novel Synthesis and Antioxidant Evaluation of Functionalized [1,3]Oxazoles Using Fe3O4-Magnetic Nanoparticles. J. Heterocycl. Chem. 2019, 56, 2744–2752. [Google Scholar] [CrossRef]
- Naslhajian, H.; Amini, M.; Farnia, S.M.F.; Janczak, J. Synthesis and Characterization of a New Polyoxovanadate for the One-Pot Three-Component (A3) Coupling of Aldehydes, Amines and Alkynes. Mol. Catal. 2020, 483, 110769. [Google Scholar] [CrossRef]
- Mirabedini, M.; Motamedi, E.; Kassaee, M.Z. Magnetic CuO Nanoparticles Supported on Graphene Oxide as an Efficient Catalyst for A3-Coupling Synthesis of Propargylamines. Chin. Chem. Lett. 2015, 26, 1085–1090. [Google Scholar] [CrossRef]
- Kaiba, A.; Geesi, M.H.; Guionneau, P.; Aljohani, T.A.; Bih, L.; Bih, H.; Kassou, S. Synthesis, Structural and Raman Spectroscopic in Organic–Inorganic Halide Perovskites Based on β-Alanine. J. Mol. Struct. 2020, 1204, 127380. [Google Scholar] [CrossRef]
- Ghasemi, K.; Darroudi, M.; Rahimi, M.; Rouh, H.; Gupta, A.R.; Cheng, C.; Amini, A. Magnetic AgNPs/Fe3O4@Chitosan/PVA Nanocatalyst for Fast One-Pot Green Synthesis of Propargylamine and Triazole Derivatives. New J. Chem. 2021, 45, 16119–16130. [Google Scholar] [CrossRef]
- Ahmadi, A.; Sedaghat, T.; Motamedi, H.; Azadi, R. Anchoring of Cu(II)-Schiff Base Complex on Magnetic Mesoporous Silica Nanoparticles: Catalytic Efficacy in One-Pot Synthesis of 5-Substituted-1H-Tetrazoles, Antibacterial Activity Evaluation and Immobilization of α-Amylase. Appl. Organomet. Chem. 2020, 34, e5572. [Google Scholar] [CrossRef]
- Hasan, K.; Joseph, R.G.; Patole, S.P.; Al-Qawasmeh, R.A. Development of Magnetic Fe3O4-Chitosan Immobilized Cu(II) Schiff Base Catalyst: An Efficient and Reusable Catalyst for Microwave Assisted One-Pot Synthesis of Propargylamines via A3 Coupling. Catal. Commun. 2023, 174, 106588. [Google Scholar] [CrossRef]
- Moeini-Eghbali, N.; Eshghi, H. Immobilized Nickel Nanoparticles on Modified Magnetic Titanium Dioxide: A Proficient and Eco-Friendly Nanocatalyst for the Green A3-Coupling Synthesis of Propargylamines. J. Mol. Struct. 2024, 1305, 137727. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasi, V.; EI Sayed Abdelsalam Zaki, M.; Nabisahebgari, H.B.; Shaik, H.; Chang, S.-K.; Wong, L.S.; Parasuraman, K.; Gomha, S.M. Magnetic Nanoparticle-Catalysed One-Pot Multicomponent Reactions (MCRs): A Green Chemistry Approach. Catalysts 2025, 15, 800. https://doi.org/10.3390/catal15090800
Kasi V, EI Sayed Abdelsalam Zaki M, Nabisahebgari HB, Shaik H, Chang S-K, Wong LS, Parasuraman K, Gomha SM. Magnetic Nanoparticle-Catalysed One-Pot Multicomponent Reactions (MCRs): A Green Chemistry Approach. Catalysts. 2025; 15(9):800. https://doi.org/10.3390/catal15090800
Chicago/Turabian StyleKasi, Venkatesan, Magdi EI Sayed Abdelsalam Zaki, Hussain Basha Nabisahebgari, Hussain Shaik, Sook-Keng Chang, Ling Shing Wong, Karthikeyan Parasuraman, and Sobhi Mohamed Gomha. 2025. "Magnetic Nanoparticle-Catalysed One-Pot Multicomponent Reactions (MCRs): A Green Chemistry Approach" Catalysts 15, no. 9: 800. https://doi.org/10.3390/catal15090800
APA StyleKasi, V., EI Sayed Abdelsalam Zaki, M., Nabisahebgari, H. B., Shaik, H., Chang, S.-K., Wong, L. S., Parasuraman, K., & Gomha, S. M. (2025). Magnetic Nanoparticle-Catalysed One-Pot Multicomponent Reactions (MCRs): A Green Chemistry Approach. Catalysts, 15(9), 800. https://doi.org/10.3390/catal15090800