Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (678)

Search Parameters:
Keywords = green earth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3267 KiB  
Article
Monitoring and Analyzing Aquatic Vegetation Using Sentinel-2 Imagery Time Series: A Case Study in Chimaditida Shallow Lake in Greece
by Maria Kofidou and Vasilios Ampas
Limnol. Rev. 2025, 25(3), 35; https://doi.org/10.3390/limnolrev25030035 - 1 Aug 2025
Viewed by 143
Abstract
Aquatic vegetation plays a crucial role in freshwater ecosystems by providing habitats, regulating water quality, and supporting biodiversity. This study aims to monitor and analyze the dynamics of aquatic vegetation in Chimaditida Shallow Lake, Greece, using Sentinel-2 satellite imagery, with validation from field [...] Read more.
Aquatic vegetation plays a crucial role in freshwater ecosystems by providing habitats, regulating water quality, and supporting biodiversity. This study aims to monitor and analyze the dynamics of aquatic vegetation in Chimaditida Shallow Lake, Greece, using Sentinel-2 satellite imagery, with validation from field measurements. Data processing was performed using Google Earth Engine and QGIS. The study focuses on discriminating and mapping two classes of aquatic surface conditions: areas covered with Floating and Emergent Aquatic Vegetation and open water, covering all seasons from 1 March 2024, to 28 February 2025. Spectral bands such as B04 (red), B08 (near infrared), B03 (green), and B11 (shortwave infrared) were used, along with indices like the Modified Normalized Difference Water Index and Normalized Difference Vegetation Index. The classification was enhanced using Otsu’s thresholding technique to distinguish accurately between Floating and Emergent Aquatic Vegetation and open water. Seasonal fluctuations were observed, with significant peaks in vegetation growth during the summer and autumn months, including a peak coverage of 2.08 km2 on 9 September 2024 and a low of 0.00068 km2 on 28 December 2024. These variations correspond to the seasonal growth patterns of Floating and Emergent Aquatic Vegetation, driven by temperature and nutrient availability. The study achieved a high overall classification accuracy of 89.31%, with producer accuracy for Floating and Emergent Aquatic Vegetation at 97.42% and user accuracy at 95.38%. Validation with Unmanned Aerial Vehicle-based aerial surveys showed a strong correlation (R2 = 0.88) between satellite-derived and field data, underscoring the reliability of Sentinel-2 for aquatic vegetation monitoring. Findings highlight the potential of satellite-based remote sensing to monitor vegetation health and dynamics, offering valuable insights for the management and conservation of freshwater ecosystems. The results are particularly useful for governmental authorities and natural park administrations, enabling near-real-time monitoring to mitigate the impacts of overgrowth on water quality, biodiversity, and ecosystem services. This methodology provides a cost-effective alternative for long-term environmental monitoring, especially in regions where traditional methods are impractical or costly. Full article
Show Figures

Figure 1

17 pages, 494 KiB  
Article
From Values to Action: The Roles of Green Self-Identity, Self-Efficacy, and Eco-Anxiety in Predicting Pro-Environmental Behaviours in the Italian Context
by Raffaele Pasquariello, Anna Rosa Donizzetti, Cristina Curcio, Miriam Capasso and Daniela Caso
Sustainability 2025, 17(15), 6838; https://doi.org/10.3390/su17156838 - 28 Jul 2025
Viewed by 370
Abstract
Background: Human activity is recognised as a major contributor to changes in Earth’s climate, land surface, oceans, ecosystems, and biodiversity. These alterations are largely due to greenhouse gas emissions, deforestation, mass pollution, and land degradation. In light of these environmental challenges, examining [...] Read more.
Background: Human activity is recognised as a major contributor to changes in Earth’s climate, land surface, oceans, ecosystems, and biodiversity. These alterations are largely due to greenhouse gas emissions, deforestation, mass pollution, and land degradation. In light of these environmental challenges, examining the psychological determinants of pro-environmental behaviour has become increasingly important. Study’s Aim: To provide a comprehensive model evaluating the structural relationships among biospheric values, green self-identity, green self-efficacy, and eco-anxiety to investigate the underlying mechanisms relating to the adoption of various pro-environmental behaviours (PEBs). Methods: An online self-report questionnaire was completed by 510 Italian participants (aged 18–55, M = 35.18, SD = 12.58) between November and December 2023. Data analysis was performed using R statistical software, employing Structural Equation Modelling. Results: The results indicate that eco-anxiety, green self-efficacy, and green self-identity are significant positive predictors of PEBs. Furthermore, green self-identity significantly influences eco-anxiety and green self-efficacy, while biospheric values are a major trigger for both green self-efficacy and green self-identity, but not for eco-anxiety. Conclusions: These findings suggest that while eco-anxiety can be an adaptive motivator for PEBs, biospheric values foster a green self-identity and self-efficacy, which in turn drive pro-environmental actions. The study concludes that encouraging biospheric values and strong green self-identity is crucial for promoting sustainable behaviours. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

17 pages, 2022 KiB  
Article
Determination of the Mechanisms of Terbium(III) Biosorption by Bacillus Strains with Adsorption Selectivity for Heavy Rare Earth Elements
by Huihong Huang, Kang Pan, Wenchao Jian, Yuwen She, Comfort O. Esumeh and Wei Dong
Microorganisms 2025, 13(8), 1753; https://doi.org/10.3390/microorganisms13081753 - 27 Jul 2025
Viewed by 303
Abstract
Bacillus species have shown the potential to recover rare earth elements (REEs), but strains with adsorption selectivity for terbium(III) remain understudied. In this study, six Bacillus strains with the capability for efficient adsorption of Tb(III) were screened from an ionic rare earth mine [...] Read more.
Bacillus species have shown the potential to recover rare earth elements (REEs), but strains with adsorption selectivity for terbium(III) remain understudied. In this study, six Bacillus strains with the capability for efficient adsorption of Tb(III) were screened from an ionic rare earth mine and were identified based on 16S rRNA gene sequencing. Adsorption experiments showed that Bacillus sp. DW011 exhibited exceptional Tb(III) adsorption efficiency, with an adsorption rate of 90.45% and adsorption selectivity for heavy rare earth elements. Notably, strain DW011 was also found to be tolerant against Tb(III) with the 24 h 50% lethal concentration (LC50) of 2.62 mM. The biosorption mechanisms of DW011 were investigated using adsorption kinetics, SEM-EDS, and FTIR. The results indicated that the adsorption of strain DW011 conforms to the second-order kinetic model, and the teichoic acid–peptidoglycan network (phosphate-dominated) serves as the primary site for heavy REE adsorption, while carboxyl/amino groups in the biomembrane matrix provide secondary sites for LREEs. This study provides new information that Bacillus strains isolated from ionic rare earth mine deposits have potential as green adsorbents and have high selectivity for the adsorption of heavy REEs, providing a sustainable strategy for REE recovery from wastewaters. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

23 pages, 1784 KiB  
Article
Study on the Adsorption Characteristics of Spirulina Dry Powder Biomass for Rare Earth Element Praseodymium(III): Adsorption Isotherms, Kinetics, and Thermodynamics Analysis
by Zhenxiang Hu, Caixia Zhang and Qing Shu
Separations 2025, 12(8), 195; https://doi.org/10.3390/separations12080195 - 25 Jul 2025
Viewed by 344
Abstract
Aimed at developing an economical and efficient biosorbent for the adsorption and separation of rare earth ions, this study employed Spirulina dry powder biomass as a biosorbent to investigate its removal performance for Pr3+ in aqueous solutions. Experimental results demonstrated that under [...] Read more.
Aimed at developing an economical and efficient biosorbent for the adsorption and separation of rare earth ions, this study employed Spirulina dry powder biomass as a biosorbent to investigate its removal performance for Pr3+ in aqueous solutions. Experimental results demonstrated that under optimized conditions (pH = 5, adsorbent dosage = 2.0 g/L, initial Pr3+ concentration = 100 mg/L, and adsorption time = 60 min), the removal efficiency of Pr3+ reached 79.0%. FT-IR and XPS characterization confirmed the participation of various functional groups on the Spirulina surface in the adsorption process. When 0.1 mol/L HNO3 was used as the desorption agent, the desorption rate of Pr3+ from Spirulina reached 91.7%, demonstrating excellent regeneration performance. At different temperatures (298–318 K), the adsorption data were fitted using Langmuir, Freundlich, Dubinin–Radushkevich, and Redlich–Peterson models. Among them, the Langmuir model (R2 ranged from 0.993 to 0.999) provided the best fit, and the adsorption capacity of Spirulina for Pr3+ was in the range of 51.10 to 55.31 mg/g. Kinetic studies revealed that the pseudo-second-order model (R2 = 0.999) best described the adsorption process, with a rate constant of 0.054 g/(mg·min) (R2 was 0.999) at an initial Pr3+ concentration of 300 mg/L, indicating chemisorption-controlled behavior. Thermodynamic parameter analysis showed that within the experimental temperature range, ΔG0 < 0 and ΔS0 > 0, confirming that the adsorption process was spontaneous and endothermic. This study provides a novel technical approach for the green recovery of rare earth elements and highlights the potential of Spirulina biomass in rare earth resource recycling. Full article
Show Figures

Graphical abstract

13 pages, 2793 KiB  
Article
Upconversion and Color Tunability in Er3+–Tm3+–Yb3+ Tri-Doped Fluorophosphate Glasses
by Fernando Rivera-López, Palamandala Babu, Vemula Venkatramu and Víctor Lavín
Photonics 2025, 12(8), 745; https://doi.org/10.3390/photonics12080745 - 24 Jul 2025
Viewed by 251
Abstract
A series of Er3+–Tm3+–Yb3+ tri-doped fluorophosphate glasses with different molar compositions were synthesized using the conventional melt-quenching technique, and their optical properties were measured and analyzed. Under laser excitation at 980 nm, blue, green and red upconverted emissions [...] Read more.
A series of Er3+–Tm3+–Yb3+ tri-doped fluorophosphate glasses with different molar compositions were synthesized using the conventional melt-quenching technique, and their optical properties were measured and analyzed. Under laser excitation at 980 nm, blue, green and red upconverted emissions were observed at around 475, 545 and 660 nm, respectively. Based on the results and the energy level diagrams, energy transfer processes were proposed to explain the population mechanisms of the emitting levels. A final characterization was developed within the framework of the CIE 1931 chromaticity coordinate diagram. Varying the doping concentrations of the optically active rare-earth ions, as well as the laser pumping power, enabled modulation of the three primary colors, resulting in blue, green and relatively close to white light emissions. This tunability of the upconverted emissions highlights the potential of these fluorophosphate glasses as tunable optical devices, laser systems and visual show effects. Full article
Show Figures

Figure 1

18 pages, 7598 KiB  
Article
Recovery of Fine Rare Earth Minerals from Simulated Tin Tailings by Carrier Magnetic Separation: Selective Heterogeneous Agglomeration with Coarse Magnetite Particles
by Ilhwan Park, Topan Satria Gumilang, Rinaldi Yudha Pratama, Sanghee Jeon, Carlito Baltazar Tabelin, Theerayut Phengsaart, Muhammad Bilal, Youhei Kawamura and Mayumi Ito
Minerals 2025, 15(7), 757; https://doi.org/10.3390/min15070757 - 19 Jul 2025
Viewed by 336
Abstract
The demand for rare earth elements (REEs) is continuously increasing due to the important roles they play in low-carbon and green energy technologies. Unfortunately, the global REE reserves are limited and concentrated in only a few countries, so the reprocessing of alternative resources [...] Read more.
The demand for rare earth elements (REEs) is continuously increasing due to the important roles they play in low-carbon and green energy technologies. Unfortunately, the global REE reserves are limited and concentrated in only a few countries, so the reprocessing of alternative resources like tailings is of critical importance. This study investigated carrier magnetic separation using coarse magnetite particles as a carrier to recover finely ground monazite from tailings. The monazite and carrier surfaces were modified by sodium oleate (NaOL) to improve the hydrophobic interactions between them. The results of zeta potential and contact angle measurements implied the selective adsorption of NaOL onto the surfaces of the monazite and magnetite particles. Although their hydrophobicity increased, heterogenous agglomeration between them was not substantial. To improve heterogenous agglomeration, emulsified kerosene was utilized as a bridging liquid, resulting in more extensive attachment of fine monazite particles onto the surfaces of carrier particles and a dramatic improvement in monazite recovery by magnetic separation—from 0% (without carrier) to 70% (with carrier). A rougher–scavenger–cleaner carrier magnetic separation can produce REE concentrates with a total rare earth oxide (TREO) recovery of 80% and a grade of 9%, increased from 3.4%, which can be further increased to 23.2% after separating REEs and the carrier. Full article
Show Figures

Figure 1

21 pages, 1816 KiB  
Review
Lignin Waste Valorization in the Bioeconomy Era: Toward Sustainable Innovation and Climate Resilience
by Alfonso Trezza, Linta Mahboob, Anna Visibelli, Michela Geminiani and Annalisa Santucci
Appl. Sci. 2025, 15(14), 8038; https://doi.org/10.3390/app15148038 - 18 Jul 2025
Viewed by 460
Abstract
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived [...] Read more.
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived carbon materials are offering scalable, low-cost alternatives to critical raw materials in batteries and supercapacitors. In agriculture, lignin-based biostimulants and controlled-release fertilizers support resilient, low-impact food systems. Cosmetic and pharmaceutical industries are leveraging lignin’s antioxidant, UV-protective, and antimicrobial properties to create bio-based, clean-label products. In water purification, lignin-based adsorbents are enabling efficient and biodegradable solutions for persistent pollutants. These technological leaps are not merely incremental, they represent a paradigm shift toward a materials economy powered by renewable carbon. Backed by global sustainability roadmaps like the European Green Deal and China’s 14th Five-Year Plan, lignin is moving from industrial residue to strategic asset, driven by unprecedented investment and cross-sector collaboration. Breakthroughs in lignin upgrading, smart formulation, and application-driven design are dismantling long-standing barriers to scale, performance, and standardization. As showcased in this review, lignin is no longer just a promising biopolymer, it is a catalytic force accelerating the global transition toward circularity, climate resilience, and green industrial transformation. The future of sustainable innovation is lignin-enabled. Full article
(This article belongs to the Special Issue Biosynthesis and Applications of Natural Products)
Show Figures

Figure 1

18 pages, 5293 KiB  
Article
Fluorescent Moieties Through Alkaline Treatment of Graphene Oxide: A Potential Substitute to Replace CRM in wLEDS
by Maria Lucia Protopapa, Emiliano Burresi, Martino Palmisano and Emanuela Pesce
ChemEngineering 2025, 9(4), 73; https://doi.org/10.3390/chemengineering9040073 - 18 Jul 2025
Viewed by 208
Abstract
White-light-emitting diodes (wLEDs) are central to next-generation lighting technologies, yet their reliance on critical raw materials (CRMs), such as rare-earth elements, raises concerns regarding sustainability and supply security. In this work, we present a simple, low-cost method to produce photoluminescent carbon-based nanostructures—known as [...] Read more.
White-light-emitting diodes (wLEDs) are central to next-generation lighting technologies, yet their reliance on critical raw materials (CRMs), such as rare-earth elements, raises concerns regarding sustainability and supply security. In this work, we present a simple, low-cost method to produce photoluminescent carbon-based nanostructures—known as oxidative debris (OD)—via alkaline treatment of graphene oxide (GO) using KOH solutions ranging from 0.04 M to 1.78 M. The resulting OD, isolated from the supernatant after acid precipitation, exhibits strong and tunable photoluminescence (PL) across the visible spectrum. Emission peaks shift from blue (~440 nm) to green (~500 nm) and yellow (~565 nm) as a function of treatment conditions, with excitation wavelengths between 300 and 390 nm. Optical, morphological. and compositional analyses were performed using UV-Vis, AFM, FTIR, and Raman spectroscopy, confirming the presence of highly oxidized aromatic domains. The blue-emitting (S2) and green/yellow-emitting (R2) fractions were successfully separated and characterized, demonstrating potential color tuning by adjusting KOH concentration and treatment time. This study highlights the feasibility of reusing GO-derived byproducts as sustainable phosphor alternatives in wLEDs, reducing reliance on CRMs and aligning with green chemistry principles. Full article
Show Figures

Graphical abstract

19 pages, 2911 KiB  
Article
Investigation of Implantable Capsule Grouting Technology and Its Bearing Characteristics in Soft Soil Areas
by Xinran Li, Yuebao Deng, Wenxi Zheng and Rihong Zhang
J. Mar. Sci. Eng. 2025, 13(7), 1362; https://doi.org/10.3390/jmse13071362 - 17 Jul 2025
Viewed by 184
Abstract
The implantable capsule grouting pile is a novel pile foundation technology in which a capsule is affixed to the side of the implanted pile to facilitate grouting and achieve extrusion-based reinforcement. This technique is designed to improve the bearing capacity of implanted piles [...] Read more.
The implantable capsule grouting pile is a novel pile foundation technology in which a capsule is affixed to the side of the implanted pile to facilitate grouting and achieve extrusion-based reinforcement. This technique is designed to improve the bearing capacity of implanted piles in coastal areas with deep, soft soil. This study conducted model tests involving multiple grouting positions across different foundation types to refine the construction process and validate the enhancement of bearing capacity. Systematic measurements and quantitative analyses were performed to evaluate the earth pressure distribution around the pile, the resistance characteristics of the pile end, the evolution of side friction resistance, and the overall bearing performance. Special attention was given to variations in the lateral friction resistance adjustment coefficient under different working conditions. Furthermore, an actual case analysis was conducted based on typical soft soil geological conditions. The results indicated that the post-grouting process formed a dense soil ring through the expansion and extrusion of the capsule, resulting in increased soil strength around the pile due to increased lateral earth pressure. Compared to conventional piles, the grouted piles exhibited a synergistic improvement characterized by reduced pile end resistance, enhanced side friction resistance, and improved overall bearing capacity. The ultimate bearing capacity of model piles at different grouting depths across different foundation types increased by 6.8–22.3% compared with that of ordinary piles. In silty clay and clayey silt foundations, the adjustment coefficient ηs of lateral friction resistance of post-grouting piles ranged from 1.097 to 1.318 and increased with grouting depth. The findings contribute to the development of green pile foundation technology in coastal areas. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

13 pages, 462 KiB  
Article
Electron and Hole Doping Effects on the Magnetic Properties and Band Gap Energy of Ba2FeMoO6 and Sr2FeMoO6
by Angel T. Apostolov, Iliana N. Apostolova and Julia M. Wesselinowa
Molecules 2025, 30(14), 2987; https://doi.org/10.3390/molecules30142987 - 16 Jul 2025
Viewed by 330
Abstract
Using the s-d model and Green’s function theory, we investigated for the first time the electron and hole doping effects on the magnetic and optical properties of the double perovskites Ba2FeMoO6 (BFMO) and Sr2FeMoO6 (SFMO). Our aim [...] Read more.
Using the s-d model and Green’s function theory, we investigated for the first time the electron and hole doping effects on the magnetic and optical properties of the double perovskites Ba2FeMoO6 (BFMO) and Sr2FeMoO6 (SFMO). Our aim was to find the doping ions that lead to an increase in Curie temperature TC. On the basis of a competition mechanism between spin exchange and s-d interactions, we explain at a microscopic level the decrease in magnetization M and band gap energy Eg, as well as the increase in TC of BFMO and SFMO through substitution with rare earth ions at the Ba(Sr) sites. The influence of doping with K at the Ba(Sr) and Co at the Fe sites on the magnetic properties and the band gap is also discussed. A very good qualitative coincidence with the existing experimental data was observed. Moreover, we found that both M and TC decrease with decreasing the size of BFMO and SFMO nanoparticles. Full article
Show Figures

Figure 1

20 pages, 19341 KiB  
Article
Human Activities Dominantly Driven the Greening of China During 2001 to 2020
by Xueli Chang, Zhangzhi Tian, Yepei Chen, Ting Bai, Zhina Song and Kaimin Sun
Remote Sens. 2025, 17(14), 2446; https://doi.org/10.3390/rs17142446 - 15 Jul 2025
Viewed by 319
Abstract
Vegetation is a fundamental component of terrestrial ecosystems. Understanding how vegetation changes and what drives these evolutions is crucial for developing a high-quality ecological environment and addressing global climate change. Extensive evidence has shown that China has undergone substantial vegetation changes, characterized primarily [...] Read more.
Vegetation is a fundamental component of terrestrial ecosystems. Understanding how vegetation changes and what drives these evolutions is crucial for developing a high-quality ecological environment and addressing global climate change. Extensive evidence has shown that China has undergone substantial vegetation changes, characterized primarily by greening. To quantify vegetation dynamics in China and assess the contributions of various drivers, we explored the spatiotemporal variations in the kernel Normalized Difference Vegetation Index (kNDVI) from 2001 to 2020, and quantitatively separated the influences of climate and human factors. The kNDVI time series were generated from the MCD19A1 v061 dataset based on the Google Earth Engine (GEE) platform. We employed the Theil-Sen trend analysis, the Mann-Kendall test, and the Hurst index to analyze the historical patterns and future trajectories of kNDVI. Residual analysis was then applied to determine the relative contributions of climate change and human activities to vegetation dynamics across China. The results show that from 2001 to 2020, vegetation in China showed a fluctuating but predominantly increasing trend, with a significant annual kNDVI growth rate of 0.002. The significant greening pattern was observed in over 48% of vegetated areas, exhibiting a clear spatial gradient with lower increases in the northwest and higher amplitudes in the southeast. Moreover, more than 60% of vegetation areas are projected to experience a sustained increase in the future. Residual analysis reveals that climate change contributed 21.89% to vegetation changes, while human activities accounted for 78.11%, being the dominant drivers of vegetation variation. This finding is further supported by partial correlation analysis between kNDVI and temperature, precipitation, and the human footprint. Vegetation dynamics were found to respond more strongly to human influences than to climate drivers, underscoring the leading role of human activities. Further analysis of tree cover fraction and cropping intensity data indicates that the greening in forests and croplands is primarily attributable to large-scale afforestation efforts and improved agricultural management. Full article
Show Figures

Graphical abstract

40 pages, 1029 KiB  
Review
Biotechnological Potential of Extremophiles: Environmental Solutions, Challenges, and Advancements
by Fabrizia Sepe, Ezia Costanzo, Elena Ionata and Loredana Marcolongo
Biology 2025, 14(7), 847; https://doi.org/10.3390/biology14070847 - 11 Jul 2025
Viewed by 672
Abstract
Extremophiles are microorganisms capable of living on Earth in ecological niches characterized by peculiar conditions, including extreme temperatures and/or pH, high salt concentrations, and the presence of heavy metals. The development of unique structural and functional adaptation strategies has stimulated an increasing scientific [...] Read more.
Extremophiles are microorganisms capable of living on Earth in ecological niches characterized by peculiar conditions, including extreme temperatures and/or pH, high salt concentrations, and the presence of heavy metals. The development of unique structural and functional adaptation strategies has stimulated an increasing scientific interest since their discovery. The importance of extremophiles lies in their exploitability in significant bioprocesses with several biotechnological applications and their role as a fundamental source of numerous high-value-added biomolecules. This review aims to examine the diversity and specificities of extremophilic archaea and bacteria, with particular emphasis on their potential applications and development in biotechnology and biomedicine. The use of extremophiles and their extremozymes has allowed applications in several fields, such as bioremediation, sustainable agriculture, the recovery of bioactive molecules for use in bioenergy, biomedicine, and nanoparticle production. The comprehension and exploitation of the complex molecular mechanisms that enable life in extreme environments represent a challenge to mitigate current climate change problems and to invest in sustainable development towards a green transition. Full article
(This article belongs to the Special Issue Adaptation of Living Species to Environmental Stress)
Show Figures

Figure 1

21 pages, 2440 KiB  
Article
Dual-Purpose Utilization of Sri Lankan Apatite for Rare Earth Recovery Integrated into Sustainable Nitrophosphate Fertilizer Manufacturing
by D. B. Hashini Indrachapa Bandara, Avantha Prasad, K. D. Anushka Dulanjana and Pradeep Wishwanath Samarasekere
Sustainability 2025, 17(14), 6353; https://doi.org/10.3390/su17146353 - 11 Jul 2025
Viewed by 1188
Abstract
Rare earth elements (REEs) have garnered significant global attention due to their essential role in advanced technologies. Sri Lanka is endowed with various REE-bearing minerals, including the apatite-rich deposit in the Eppawala area, commonly known as Eppawala rock phosphate (ERP). However, direct extraction [...] Read more.
Rare earth elements (REEs) have garnered significant global attention due to their essential role in advanced technologies. Sri Lanka is endowed with various REE-bearing minerals, including the apatite-rich deposit in the Eppawala area, commonly known as Eppawala rock phosphate (ERP). However, direct extraction of REEs from ERP is technically challenging and economically unfeasible. This study introduces a novel, integrated approach for recovering REEs from ERP as a by-product of nitrophosphate fertilizer production. The process involves nitric acid-based acidolysis of apatite, optimized at 10 M nitric acid for 2 h at 70 °C with a pulp density of 2.4 mL/g. During cooling crystallization, 42 wt% of calcium was removed as Ca(NO3)2.4H2O while REEs remained in the solution. REEs were then selectively precipitated as REE phosphates via pH-controlled addition of ammonium hydroxide, minimizing the co-precipitation with calcium. Further separation was achieved through selective dissolution in a sulfuric–phosphoric acid mixture, followed by precipitation as sodium rare earth double sulfates. The process achieved over 90% total REE recovery with extraction efficiencies in the order of Pr > Nd > Ce > Gd > Sm > Y > Dy. Samples were characterized for their phase composition, elemental content, and morphology. The fertilizer results confirmed the successful production of a nutrient-rich nitrophosphate (NP) with 18.2% nitrogen and 13.9% phosphorus (as P2O5) with a low moisture content (0.6%) and minimal free acid (0.1%), indicating strong agronomic value and storage stability. This study represents one of the pioneering efforts to valorize Sri Lanka’s apatite through a novel, dual-purpose, and circular approach, recovering REEs while simultaneously producing high-quality fertilizer. Full article
(This article belongs to the Special Issue Technologies for Green and Sustainable Mining)
Show Figures

Figure 1

19 pages, 20060 KiB  
Article
Relationship Between Urban Forest Structure and Seasonal Variation in Vegetation Cover in Jinhua City, China
by Hao Yang, Shaowei Chu, Hao Zeng and Youbing Zhao
Forests 2025, 16(7), 1129; https://doi.org/10.3390/f16071129 - 9 Jul 2025
Viewed by 312
Abstract
Urban forests play a crucial role in enhancing vegetation cover and bolstering the ecological functions of cities by expanding green space, improving ecological connectivity, and reducing landscape fragmentation. This study examines these dynamics in Jinhua City, China, utilizing Landsat 8 satellite imagery for [...] Read more.
Urban forests play a crucial role in enhancing vegetation cover and bolstering the ecological functions of cities by expanding green space, improving ecological connectivity, and reducing landscape fragmentation. This study examines these dynamics in Jinhua City, China, utilizing Landsat 8 satellite imagery for all four seasons of 2023, accessed through the Google Earth Engine (GEE) platform. Fractional vegetation cover (FVC) was calculated using the pixel binary model, followed by the classification of FVC levels. To understand the influence of landscape structure, nine representative landscape metrics were selected to construct a landscape index system. Pearson correlation analysis was employed to explore the relationships between these indices and seasonal FVC variations. Furthermore, the contribution of each index to seasonal FVC was quantified using a random forest (RF) regression model. The results indicate that (1) Jinhua exhibits the highest average FVC during the summer, reaching 0.67, while the lowest value is observed in winter, at 0.49. The proportion of areas with very high coverage peaks in summer, accounting for 50.6% of the total area; (2) all landscape metrics exhibited significant correlations with seasonal FVC. Among them, the class area (CA), percentage of landscape (PLAND), largest patch index (LPI), and patch cohesion index (COHESION) showed strong positive correlations with FVC, whereas the total edge length (TE), landscape shape index (LSI), patch density (PD), edge density (ED), and area-weighted mean shape index (AWMSI) were negatively correlated with FVC; (3) RF regression analysis revealed that CA and PLAND contributed most substantially to FVC, followed by COHESION and LPI, while PD, AWMSI, LSI, TE, and ED demonstrated relatively lower contributions. These findings provide valuable insights for optimizing urban forest landscape design and enhancing urban vegetation cover, underscoring that increasing large, interconnected forest patches represents an effective strategy for improving FVC in urban environments. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

22 pages, 3020 KiB  
Article
Research on the Spatiotemporal Changes and Driving Forces of Ecological Quality in Inner Mongolia Based on Long-Term Time Series
by Gang Ji, Zilong Liao, Kaixuan Li, Tiejun Liu, Yaru Feng and Zhenhua Han
Sustainability 2025, 17(13), 6213; https://doi.org/10.3390/su17136213 - 7 Jul 2025
Viewed by 361
Abstract
The ecological environment of Inner Mongolia constitutes a critical component of China’s ecological civilization construction. To comprehensively assess and monitor ecological quality dynamics in this region, this study employed MODIS remote sensing data products (2000–2020) and derived four key indicators, —vegetation index (NDVI), [...] Read more.
The ecological environment of Inner Mongolia constitutes a critical component of China’s ecological civilization construction. To comprehensively assess and monitor ecological quality dynamics in this region, this study employed MODIS remote sensing data products (2000–2020) and derived four key indicators, —vegetation index (NDVI), wetness index (WET), build-up and soil index (NDBSI), and land surface temperature (LST)—via the Google Earth Engine (GEE) platform. A Remote Sensing-based Ecological Index (RSEI) was constructed using principal component analysis (PCA) to establish an annual long-term time series, thereby eliminating subjective bias from artificial weight assignment. Integrated methodologies—including Theil–Sen Median and Mann–Kendall trend analysis, Hurst exponent, and geographical detector—were applied to investigate the spatiotemporal evolution of ecological quality in Inner Mongolia and its responses to climatic and anthropogenic drivers. This study proposes a novel framework for large-scale ecological quality assessment using remote sensing. Key findings include the following: The mean RSEI value of 0.41 (2000–2020) indicates an overall improving trend in ecological quality. Areas with ecological improvement and degradation accounted for 76.06% and 23.84% of the region, respectively, exhibiting a spatial pattern of “northwestern improvement versus southeastern degradation.” Pronounced regional disparities were observed: optimal ecological conditions prevailed in the Greater Khingan Range (northeast), while the Alxa League (southwest) exhibited the poorest conditions. Northwestern improvement was primarily driven by increased precipitation, rising temperatures, and conservation policies, whereas southeastern degradation correlated with rapid urbanization and intensified socioeconomic activities. Our results demonstrate that MODIS-derived RSEI effectively enables large-scale ecological monitoring, providing a scientific basis for regional green development strategies. Full article
Show Figures

Figure 1

Back to TopTop