Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = grasslands nitrogen concentration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1421 KiB  
Article
Enzymatic Stoichiometry and Driving Factors Under Different Land-Use Types in the Qinghai–Tibet Plateau Region
by Yonggang Zhu, Feng Xiong, Derong Wu, Baoguo Zhao, Wenwu Wang, Biao Bi, Yihang Liu, Meng Liang and Sha Xue
Land 2025, 14(8), 1550; https://doi.org/10.3390/land14081550 - 28 Jul 2025
Viewed by 156
Abstract
Eco-enzymatic stoichiometry provides a basis for understanding soil ecosystem functions, with implications for land management and ecological protection. Long-term climatic factors and human interferences have caused significant land-use transformations in the Qinghai–Tibet Plateau region, affecting various ecological functions, such as soil nutrient cycling [...] Read more.
Eco-enzymatic stoichiometry provides a basis for understanding soil ecosystem functions, with implications for land management and ecological protection. Long-term climatic factors and human interferences have caused significant land-use transformations in the Qinghai–Tibet Plateau region, affecting various ecological functions, such as soil nutrient cycling and chemical element balance. It is currently unclear how large-scale land-use conversion affects soil ecological stoichiometry. In this study, 763 soil samples were collected across three land-use types: farmland, grassland, and forest land. In addition, changes in soil physicochemical properties and enzyme activity and stoichiometry were determined. The soil available phosphorus (SAP) and total phosphorus (TP) concentrations were the highest in farmland soil. Bulk density, pH, SAP, TP, and NO3-N were lower in forest soil, whereas NH4+-N, available nitrogen, soil organic carbon (SOC), available potassium, and the soil nutrient ratio increased. Land-use conversion promoted soil β-1,4-glucosidase, N-acetyl-β-glucosaminidase, and alkaline phosphatase activities, mostly in forest soil. The eco-enzymatic C:N ratio was higher in farmland soils but grassland soils had a higher enzymatic C:P and N:P. Soil microorganisms were limited by P nutrients in all land-use patterns. C limitation was the highest in farmland soil. The redundancy analysis indicated that the ecological stoichiometry in farmland was influenced by TN, whereas grass and forest soils were influenced by SOC. Overall, the conversion of cropland or grassland to complex land-use types can effectively enhance soil nutrients, enzyme activities, and ecosystem functions, providing valuable insights for ecological restoration and sustainable land management in alpine regions. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

20 pages, 30581 KiB  
Article
Hydrochemical Characteristics, Controlling Factors, and High Nitrate Hazards of Shallow Groundwater in an Urban Area of Southwestern China
by Chang Yang, Si Chen, Jianhui Dong, Yunhui Zhang, Yangshuang Wang, Wulue Kang, Xingjun Zhang, Yuanyi Liang, Dunkai Fu, Yuting Yan and Shiming Yang
Toxics 2025, 13(6), 516; https://doi.org/10.3390/toxics13060516 - 19 Jun 2025
Viewed by 365
Abstract
Groundwater nitrate (NO3) contamination has emerged as a critical global environmental issue, posing serious human health risks. This study systematically investigated the hydrochemical processes, sources of NO3 pollution, the impact of land use on NO3 pollution, [...] Read more.
Groundwater nitrate (NO3) contamination has emerged as a critical global environmental issue, posing serious human health risks. This study systematically investigated the hydrochemical processes, sources of NO3 pollution, the impact of land use on NO3 pollution, and drinking water safety in an urban area of southwestern China. Thirty-one groundwater samples were collected and analyzed for major hydrochemical parameters and dual isotopic composition of NO315N-NO3 and δ18O-NO3). The groundwater samples were characterized by neutral to slightly alkaline nature, and were dominated by the Ca-HCO3 type. Hydrochemical analysis revealed that water–rock interactions, including carbonate dissolution, silicate weathering, and cation exchange, were the primary natural processes controlling hydrochemistry. Additionally, anthropogenic influences have significantly altered NO3 concentration. A total of 19.35% of the samples exceeded the Chinese guideline limit of 20 mg/L for NO3. Isotopic evidence suggested that primary sources of NO3 in groundwater include NH4+-based fertilizer, soil organic nitrogen, sewage, and manure. Spatial distribution maps indicated that the spatial distribution of NO3 concentration correlated strongly with land use types. Elevated NO3 levels were observed in areas dominated by agriculture and artificial surfaces, while lower concentrations were associated with grass-covered ridge areas. The unabsorbed NH4+ from nitrogen fertilizer entered groundwater along with precipitation and irrigation water infiltration. The direct discharge of domestic sewage and improper disposal of livestock manure contributed substantially to NO3 pollution. The nitrogen fixation capacity of the grassland ecosystem led to a relatively low NO3 concentration in the ridge region. Despite elevated NO3 and F concentrations, the entropy weighted water quality index (EWQI) indicated that all groundwater samples were suitable for drinking. This study provides valuable insights into NO3 source identification and hydrochemical processes across varying land-use types. Full article
Show Figures

Figure 1

15 pages, 5545 KiB  
Article
Stable and Mobile (Water-Extractable) Forms of Organic Matter in High-Latitude Volcanic Soils Under Various Land Use Scenarios in Southeastern Iceland
by Aleksandra Kot, Urszula Norton, Grzegorz Kulczycki, Jón Guðmundsson, Agnieszka Medyńska-Juraszek, Chloe M. Mattilio, Szymon Jędrzejewski and Jarosław Waroszewski
Agriculture 2025, 15(12), 1255; https://doi.org/10.3390/agriculture15121255 - 10 Jun 2025
Viewed by 906
Abstract
High-latitude regions store substantial amounts of soil organic matter (SOM). Icelandic volcanic soils have exceptional capabilities for SOM accumulation, but recent changes in land use can significantly impact it. Water-extractable organic matter (WEOM) represents a labile SOM pool and serves as a reliable [...] Read more.
High-latitude regions store substantial amounts of soil organic matter (SOM). Icelandic volcanic soils have exceptional capabilities for SOM accumulation, but recent changes in land use can significantly impact it. Water-extractable organic matter (WEOM) represents a labile SOM pool and serves as a reliable index of SOM dynamics. We assessed the stable carbon (C), stable nitrogen (N), and WEOC (water-extractable organic carbon), as well as WETN (water-extractable total nitrogen), concentrations in soils under different land uses—semi-natural habitats (tundra and wetland) and human-managed areas (intensively and extensively grazed pasturelands and formerly and presently fertilized meadows)—in southeastern Iceland. The results suggest that human-managed sites contain more total C and N but less WEOM per unit of total C or N than semi-natural habitats, except for wetlands. Wetlands exhibited the highest WEOM content. Extensive pasturelands and fertilized meadows are becoming more common in local ecosystems, highlighting the direction of changes in Icelandic grasslands management. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

19 pages, 4269 KiB  
Article
Medicago Pasture Soil C:N:P Stoichiometry Mediated by N Fertilization in Northern China
by Bo Yuan, Lijun Xu, Jiaqiang Wei, Meji Cuo, Hongzhi Zhang, Yingying Nie, Mingying Guo, Jinxia Li and Xinwei Liu
Agronomy 2025, 15(3), 724; https://doi.org/10.3390/agronomy15030724 - 17 Mar 2025
Viewed by 535
Abstract
The degradation of black soil cropland has occurred to varying degrees in the northern agropastoral ecotone. Crop–forage rotation is an effective way to improve soil quality, with Medicago being the preferred perennial legume. The C, N, and P stoichiometric ratios are key indicators [...] Read more.
The degradation of black soil cropland has occurred to varying degrees in the northern agropastoral ecotone. Crop–forage rotation is an effective way to improve soil quality, with Medicago being the preferred perennial legume. The C, N, and P stoichiometric ratios are key indicators of soil quality and organic matter composition, reflecting the status of the internal C, N, and P cycles in soil. This study aims to investigate the ecological stoichiometric ratios of Medicago grassland soils with different planting durations, explore the regulatory effects of nitrogen fertilizer on soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) content, and assess the impacts of these changes on the Medicago grassland ecosystem. This study was conducted on the long-term cultivated grassland core experimental platform of the Hulunber National Field Station. Based on forage yield and soil nutrient measurements, field-based observations and laboratory analyses were carried out. Medicago × varia was the study subject, with different nitrogen fertilizer treatments: CK (0 kg N ha−1), N75 (75 kg N ha−1), and N150 (150 kg N ha−1). A randomized block design was adopted. Variance analysis, boxplot statistics, and scatterplot fitting methods were used to examine soil properties and assess the effects of nitrogen application on the C, N, and P stoichiometry of soils in established perennial Medicago grasslands. The results indicate that, based on the growth characteristics of alfalfa, soil nutrient dynamics, and its effectiveness in improving soil quality, the optimal rotation period for alfalfa in the northern agropastoral ecotone is 4–5 years, but it can also be shortened to 3 years. Soil carbon, nitrogen, and phosphorus contents are significantly influenced by the planting duration. As the planting years increase, soil carbon and nitrogen contents first increase and then decrease, while soil phosphorus content initially decreases followed by a slight increase. Soil pH gradually rises with both planting years and soil depth. Both low and high levels of nitrogen fertilizer application reduce soil organic carbon concentration (by 0.40% and 10.14%, respectively). Low nitrogen fertilizer application increases soil nitrogen concentration (by 1.50%), whereas high nitrogen fertilizer application decreases it (by 7.6%). Both nitrogen levels increase soil phosphorus concentration (by 36.67% and 35.26%, respectively). For soil from an alfalfa grassland planted for 8 years, the carbon-to-nitrogen ratio ranges from 9.08 to 9.76, the carbon-to-phosphorus ratio from 13.00 to 151.32, and the nitrogen-to-phosphorus ratio from 1.65 to 17.14. In summary, alfalfa yield is primarily influenced by the nitrogen fertilizer application rate, planting duration, stoichiometric ratios, and pH. Nitrogen fertilizer application has a positive regulatory effect on soil stoichiometric ratios. The annual yield can reach 8.94 to 10.07 tons per hectare., but phosphorus remains a limiting factor. These findings provide crucial data for understanding the impact of ecological stoichiometry on crop–forage rotation cycles, as well as optimal land use and quality improvement. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

20 pages, 2560 KiB  
Article
Grazing Intensity Accelerates Surface Soil C and N Cycling in Alpine Pastures as Revealed by Soil Genes and δ15N Ratio
by Salvatore Raniolo, Luca Da Ros, Laura Maretto, Damiano Gianelle, Federica Camin, Luana Bontempo, Piergiorgio Stevanato, Enrico Sturaro, Andrea Squartini and Mirco Rodeghiero
Sustainability 2025, 17(5), 2165; https://doi.org/10.3390/su17052165 - 3 Mar 2025
Viewed by 677
Abstract
European grasslands are vital carbon (C) sinks, contributing to climate change mitigation. Grazing intensity significantly influences soil C and nitrogen (N) cycles through effects on soil conditions and microbial communities. While heavy grazing is linked to soil C loss and altered N processes, [...] Read more.
European grasslands are vital carbon (C) sinks, contributing to climate change mitigation. Grazing intensity significantly influences soil C and nitrogen (N) cycles through effects on soil conditions and microbial communities. While heavy grazing is linked to soil C loss and altered N processes, existing studies show conflicting outcomes. This study examines the impact of cattle grazing on soil C and N cycles in a historical alpine pasture in the eastern Italian Alps (1868 m a.s.l.). The following three grazing intensities were analyzed: heavy (8.19 LU ha−1), moderate (0.59 LU ha−1), and light (0.06 LU ha−1). Soil was sampled from two depth layers (0–5 cm, 5–10 cm) and analyzed for bulk density, C and N content, C/N ratio, exchangeable N, δ15N, and microbial genes targeting general abundance (16S), N fixation (nifH), nitrification (amoA), and denitrification (nirK, nosZ) using real-time PCR. The results revealed decreased C and N concentrations with increasing grazing intensity, exclusively in the 0–5 cm soil layer. Higher δ15N and enhanced nitrification and denitrification suggest a more open N cycle under heavy grazing. These findings highlight the potential of microbial gene markers and δ15N isotopic ratios to monitor N cycle dynamics in alpine pastures, informing sustainable grazing management. Full article
Show Figures

Figure 1

16 pages, 662 KiB  
Article
Effectiveness of Voluntary Nutrient Management Measures to Reduce Nitrate Leaching on Dairy Farms Using Soil N Surplus as an Indicator
by J. Verloop, C. van den Brink and J. Gielen
Water 2025, 17(3), 455; https://doi.org/10.3390/w17030455 - 6 Feb 2025
Viewed by 868
Abstract
A pilot study with 18 dairy farms in recharge areas of five vulnerable drinking water abstractions in the Dutch province of Overijssel aimed to reduce nitrate leaching risks to the upper meter of groundwater through improved farm management. The pilot employed a voluntary, [...] Read more.
A pilot study with 18 dairy farms in recharge areas of five vulnerable drinking water abstractions in the Dutch province of Overijssel aimed to reduce nitrate leaching risks to the upper meter of groundwater through improved farm management. The pilot employed a voluntary, mutual gain approach, promoting measures that enhanced both nutrient efficiency and groundwater quality. Over the research period (2011–2017), nitrogen surpluses on the soil balance declined significantly from 153 to 96 kg N per ha per year, achieving the target of 100 kg N per ha per year. Despite this decline, average nitrate concentrations in the upper meter of groundwater fluctuated annually, showing no significant reduction in grassland but a noticeable decrease in maize. Economic evaluation showed that relative fodder profitability (RFP) increased over time, suggesting positive financial effects of implemented measures, as acknowledged by participating farmers. However, the adoption of measures perceived as complex or less financially rewarding remained limited, highlighting the challenges of relying solely on voluntary implementation. The absence of farm-specific feedback on nitrate leaching emerged as a critical limitation, emphasizing the need for additional monitoring tools, such as residual soil nitrogen assessments, to provide actionable insights at the farm or field level. These findings underscore the potential for further reducing nitrate leaching through enhanced feedback systems, precise execution of measures, and collaborative efforts integrating farmer expertise and scientific knowledge. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

19 pages, 3798 KiB  
Article
Biochar and Nitrogen Fertilizer Promote Alfalfa Yield by Regulating Root Development, Osmoregulatory Substances and Improve Soil Physicochemical Properties
by Jinlong Chai, Hang Yang, Zhen Chen, Weifang Li, Dongqing Li and Xiaojun Yu
Agriculture 2025, 15(3), 239; https://doi.org/10.3390/agriculture15030239 - 23 Jan 2025
Cited by 2 | Viewed by 1055
Abstract
In artificial grassland systems, the extensive use of inorganic nitrogen (N) fertilizers has greatly enhanced grassland yields but also caused significant environmental issues. The combined use of biochar and N fertilizer is recognized as an effective and sustainable approach to reducing environmental risks [...] Read more.
In artificial grassland systems, the extensive use of inorganic nitrogen (N) fertilizers has greatly enhanced grassland yields but also caused significant environmental issues. The combined use of biochar and N fertilizer is recognized as an effective and sustainable approach to reducing environmental risks while boosting crop production. However, the specific impacts of biochar and N on alfalfa yield, soil properties, and root morphology remain unclear. This study examined the effects of three biochar application rates (0, 10, 20 t hm−2) and four N application levels (0, 47, 94, 188 kg N hm−2 yr−1) on alfalfa growth and soil characteristics. Results revealed that biochar notably promoted root development and increased osmoregulatory substance content. It enhanced root biomass by improving root nodule count, root neck bud formation, and root neck diameter, while N application reduced root nodule numbers. Biochar and N application reduced soil bulk density by 0.8–10.5%, with biochar further increasing available phosphorus and potassium levels. Additionally, their combined use significantly elevated soil nitrate and ammonium concentrations. Overall, the synergy of biochar and nitrogen application enhances alfalfa yield by fostering better root growth and improving soil fertility. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

26 pages, 9214 KiB  
Article
Evaluation of Agricultural Measures to Safeguard the Vulnerable Karst Groundwater Habitat of the Black Olm (Proteus anguinus parkelj) from Nitrate Pollution
by Matjaž Glavan and Rozalija Cvejić
Sustainability 2024, 16(24), 11309; https://doi.org/10.3390/su162411309 - 23 Dec 2024
Viewed by 994
Abstract
The black olm (Proteus anguinus parkelj Sket & Arntzen) is an endemic species found exclusively in the Dobličica River subterranean water systems of the Dinaric karst in southern Slovenia. These unique habitats are vulnerable to contamination due to rapid water flow, primarily [...] Read more.
The black olm (Proteus anguinus parkelj Sket & Arntzen) is an endemic species found exclusively in the Dobličica River subterranean water systems of the Dinaric karst in southern Slovenia. These unique habitats are vulnerable to contamination due to rapid water flow, primarily from nitrates from agricultural fertilisers and untreated urban wastewater. The safe limit of nitrate concentration for olms is 9.2 mg NO3/L, yet measurements in karst springs have shown levels ranging from 3 mg to over 20 mg NO3/L. The SWAT modelling tool assessed agri-environmental and land use scenarios for their impact on nitrate leaching. Using the model, we identified hotspots with high nitrogen leaching potential that require immediate attention and implementation of better agricultural practices for fertiliser use. For these hotspots, the most effective approach combines scenarios of cover crops (R2), reduced fertilisation (R3), crop rotation (R4), and conversion of cropland to grassland (E2, E4, E5), potentially decreasing nitrate leaching by up to 60%. Implementing the best scenarios is expected to reduce nitrogen levels below the limit value of 9.2 mg NO3/L, essential for maintaining the black olm habitat. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment)
Show Figures

Figure 1

16 pages, 1973 KiB  
Article
Climate Factors Dominate the Spatial Distribution of Soil Nutrients in Desert Grassland
by Chunrong Guo, Ruixu Zhao, Hongtao Jiang and Wenjing Qu
Atmosphere 2024, 15(12), 1524; https://doi.org/10.3390/atmos15121524 - 20 Dec 2024
Cited by 3 | Viewed by 1091
Abstract
Soil nutrient distribution in desert grasslands is predominantly influenced by climatic factors, particularly precipitation and temperature. Siziwang Banner, situated within the desert grassland belt of Inner Mongolia, represents a typical arid zone where soil nutrient dynamics are shaped by the interplay of precipitation, [...] Read more.
Soil nutrient distribution in desert grasslands is predominantly influenced by climatic factors, particularly precipitation and temperature. Siziwang Banner, situated within the desert grassland belt of Inner Mongolia, represents a typical arid zone where soil nutrient dynamics are shaped by the interplay of precipitation, temperature, and topography. This study aims to investigate the spatial distribution of soil nutrients and assess the dominant role of climatic factors in this region, using geostatistical analyses and GIS techniques. The results reveal that soil nutrients exhibit higher concentrations in surface layers, gradually decreasing with depth. Horizontally, a pronounced gradient can be observed, with nutrient levels being higher in the southern regions and lower in the northern regions. Precipitation and temperature emerge as decisive factors driving these patterns; increased precipitation enhances the accumulation of soil organic matter and nitrogen, whereas elevated temperatures accelerate decomposition of organic matter, leading to nutrient losses. These findings underscore the critical role of climatic factors in governing soil nutrient distribution, offering valuable insights for soil management and ecological restoration efforts in arid ecosystems. Full article
Show Figures

Figure 1

17 pages, 3872 KiB  
Article
Impact of Land Use Types on Soil Physico-Chemical Properties, Microbial Communities, and Their Fungistatic Effects
by Giuseppina Iacomino, Mohamed Idbella, Salvatore Gaglione, Ahmed M. Abd-ElGawad and Giuliano Bonanomi
Soil Syst. 2024, 8(4), 131; https://doi.org/10.3390/soilsystems8040131 - 16 Dec 2024
Viewed by 2846
Abstract
Soilborne plant pathogens significantly impact agroecosystem productivity, emphasizing the need for effective control methods to ensure sustainable agriculture. Soil fungistasis, the soil’s ability to inhibit fungal spore germination under optimal conditions, is pivotal for biological control. This study explores soil fungistasis variability across [...] Read more.
Soilborne plant pathogens significantly impact agroecosystem productivity, emphasizing the need for effective control methods to ensure sustainable agriculture. Soil fungistasis, the soil’s ability to inhibit fungal spore germination under optimal conditions, is pivotal for biological control. This study explores soil fungistasis variability across land-use intensities, spanning deciduous and evergreen forests, grasslands, shrublands, and horticultural cultivations in both open fields and greenhouses. Soil characterization encompassed organic matter, pH, total nitrogen, C/N ratio, key cations (Ca2+, Mg2+, K+, Na+), enzymatic activities, microbial biomass, and soil microbiota analyzed through high-throughput sequencing of 16s rRNA genes. Fungistasis was evaluated against the pathogenic fungi Botrytis cinerea and the beneficial microbe Trichoderma harzianum. Fungistasis exhibited similar trends across the two fungi. Specifically, the application of glucose to soil temporarily annulled soil fungistasis for both B. cinerea and T. harzianum. In fact, a substantial fungal growth, i.e., fungistasis relief, was observed immediately (48 h) after the pulse application with glucose. In all cases, the fungistasis relief was proportional to the glucose application rate, i.e., fungal growth was higher when the concentration of glucose was higher. However, the intensity of fungistasis relief largely varied across soil types. Our principal component analysis (PCA) demonstrated that the growth of both Trichoderma and Botrytis fungi was positively and significantly correlated with organic carbon content, total nitrogen, iron, magnesium, calcium, and sodium while negatively correlated with fluorescein diacetate (FDA) hydrolysis. Additionally, bacterial diversity and composition across different ecosystems exhibited a positive correlation with FDA hydrolysis and a negative correlation with phosphoric anhydride and soil pH. Analysis of bacterial microbiomes revealed significant differences along the land use intensity gradient, with higher fungistasis in soils dominated by Pseudoarthrobacter. Soils under intensive horticultural cultivation exhibited a prevalence of Acidobacteria and Cyanobacteria, along with reduced fungistasis. This study sheds light on soil fungistasis variability in diverse ecosystems, underscoring the roles of soil texture rather than soil organic matter and microbial biomass to explain the variability of fungistasis across landscapes. Full article
Show Figures

Figure 1

27 pages, 8160 KiB  
Article
Meta-Study on Sulphur Supply of Various Crop Species in Organic Farming Between 1998 and 2023 in European Countries—Part 2: Effects of S Concentration and N:S Ratio of Different Plant Parts on Dry Biomass, N-Uptake and Legume N2 Fixation
by Hartmut Kolbe
Agronomy 2024, 14(12), 2989; https://doi.org/10.3390/agronomy14122989 - 16 Dec 2024
Viewed by 861
Abstract
The sulphur content of the atmosphere has fallen sharply in recent decades. Due to a reduction in plant nutrition with sulphur, this has also led to a drop in the S concentrations in certain plant species over time. As a result, a lot [...] Read more.
The sulphur content of the atmosphere has fallen sharply in recent decades. Due to a reduction in plant nutrition with sulphur, this has also led to a drop in the S concentrations in certain plant species over time. As a result, a lot of experimental work was carried out to remedy the emerging yield and quality deficiencies on the farms. In this summarised study, data from 98 sites in Germany and other European countries were recorded from 1998 to 2023, received from sulphur fertiliser trials carried out on farms and experimental stations under organic farming conditions. This second part of meta-analysis focuses on establishing relationships between the status of plant nutrient supply with sulphur and biomass yield responses, the nitrogen uptake of crop species and the extent of N2 fixation in legumes. The results of regression analyses based on the effect of the S concentrations and the N:S ratios of the crop species on the relative yield differences between 851 standard variants (=100%) and 1177 sulphur treatment variants. In principle, declining yield increases were determined as a result of increasing S concentrations and decreasing N:S ratios. Except in the case of grain legume young plants, both characteristics were suitable for determining corresponding limit values for yield formation. Different values were determined depending on the plant species and harvest material. In extensive comparative analyses and discussion with literature data, minimum sulphur concentrations and maximum values for N:S ratios for young plants, vegetative harvest material (straw) and grain materials are proposed to ensure optimum biomass yields of permanent grassland, lucerne–clover–grass, grain legumes and cereals for use in practice of agricultural systems of different intensities. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

23 pages, 1240 KiB  
Review
Improving Phosphate Acquisition from Soil via Higher Plants While Approaching Peak Phosphorus Worldwide: A Critical Review of Current Concepts and Misconceptions
by Jörg Gerke
Plants 2024, 13(24), 3478; https://doi.org/10.3390/plants13243478 - 12 Dec 2024
Cited by 7 | Viewed by 1795
Abstract
Phosphate (P) is the plant macronutrient with, by far, the lowest solubility in soil. In soils with low P availability, the soil solution concentrations are low, often below 2 [µmol P/L]. Under these conditions, the diffusive P flux, the dominant P transport mechanism [...] Read more.
Phosphate (P) is the plant macronutrient with, by far, the lowest solubility in soil. In soils with low P availability, the soil solution concentrations are low, often below 2 [µmol P/L]. Under these conditions, the diffusive P flux, the dominant P transport mechanism to plant roots, is severely restricted. Phosphate is sorbed into various soil solids, Fe/Al oxides, clay minerals and, sometimes overlooked, humic Fe/Al surfaces. The immobilization of P in soil is often the result of the diffusion of P into the internal surfaces of oxides or humic substances. This slow reaction between soil and P further reduces the availability of P in soil, leading to P fixation. The solubilization of soil P by root-released carboxylates is a promising way to increase the acquisition and uptake of P from P-fixing soils. Citrate and, sometimes, oxalate are effective with respect to additional P solubilization or P mobilization, which may help increase the diffusive P flux into the roots by increasing the P solution concentrations in the rhizosphere. The mobilization of humic-associated P by carboxylates may be an effective way to improve soil P solubility. Not only orthophosphate anions are mobilized by root-released carboxylates, but also higher phosphorylated inositol phosphates, as the main part of P esters in soil are mobilized by carboxylates. Because of the rather strong bonding of higher phosphorylated inositol phosphates to the soil solid phase, the mobilization step by carboxylates appears to be essential for plants to acquire inositol-P. The ecological relevance of P mobilization by carboxylates and its effect on the uptake of P by crops and grassland species are, at best, partially understood. Plant species which form cluster roots such as white lupin (Lupinus albus L.) or yellow lupin (Lupinus luteus L.) release high rates of carboxylates, mainly citrate from these root clusters. These plant species acquire fixed or low available P which is accessible to plants at rates which do not satisfy their P demand without P mobilization. And white lupin and yellow lupin make soil P available to other plants in mixed cropping systems or for subsequent plant species in crop rotations. The mobilization of P by carboxylates is probably also important for legume/grass mixtures for forage production. Species such as alfalfa, red clover or white clover release carboxylates. The extent of P mobilization and P uptake from mobilized P by legume/grass mixtures deserves further research. In particular, which plant species mostly benefit from P mobilization by legume-released carboxylates is unknown. Organic farming systems require such legume/grass mixtures for the introduction of nitrogen (N) by forage legumes into their farming system. For this agricultural system, the mobilization of soil P by carboxylates and its impact on P uptake of the mixtures are an important research task. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

16 pages, 4027 KiB  
Article
The Characteristics and Traceability Analysis of the Overflow Pollution During the Flood Season in an Urban Area
by Shaofeng Yan, Hongbin Xu, Yingke Fang, Jie Li, Mingzhe Lv, Guoqiang Li, Long Huang, Yuan Li and Gangfu Song
Water 2024, 16(22), 3159; https://doi.org/10.3390/w16223159 - 5 Nov 2024
Cited by 2 | Viewed by 1270
Abstract
The issue of combined sewer overflow (CSO) triggered by rainfall has become a significant obstacle to the improvement of water environment quality. This study conducted a long-term monitoring of three types of rainwater outlets, i.e., combined sewer overflows (Test-CSO), separated sewer outlets (Test-SSO), [...] Read more.
The issue of combined sewer overflow (CSO) triggered by rainfall has become a significant obstacle to the improvement of water environment quality. This study conducted a long-term monitoring of three types of rainwater outlets, i.e., combined sewer overflows (Test-CSO), separated sewer outlets (Test-SSO), and partially separated sewer outlets (Test-PSSO), to reveal the characteristics of overflow pollution and trace its sources by monitoring the pollutants from different underlying surfaces across various urban functional areas. The results showed that the major pollutants in overflow events exhibited the following order: COD ≥ TSS > TN > TAN > TP. Rainwater elevated COD and TSS in the Test-CSO, while reducing nitrogen and phosphorus concentrations by dilution. The Test-PSSO experienced varying degrees of overflow pollution, primarily due to the sewer sediment. A negative relationship between the rainfall and peak time of overflow pollution was observed. The traceability analysis indicated the overall pollution intensity exhibited the following order: residential areas > industrial parks > commercial areas. In addition to commercial areas, the pollution intensity across underlying surfaces generally exhibited the following order: roofs > roads > grasslands. The roof runoff was an important source of pollutants for overflow pollution, and TSS and COD were the major contributors. Notably, grasslands had a buffering effect on pollutants and pH. Full article
(This article belongs to the Special Issue Advances in Biological Technologies for Wastewater Treatment)
Show Figures

Figure 1

15 pages, 3504 KiB  
Article
Environmental Assessment and Restoration of the Hunjiang River Basin Based on the DPSIR Framework
by Shiyu Tang, Hao Yang and Yu Li
Sustainability 2024, 16(19), 8661; https://doi.org/10.3390/su16198661 - 7 Oct 2024
Cited by 1 | Viewed by 1439
Abstract
The Hunjiang River, a vital water system in northeastern China, has suffered severe ecological damage due to overexploitation. This study analyzes the basin’s environmental conditions from 2016 to 2020, identifies key restoration factors, and examines practical restoration projects. Investigating five major pollutants (permanganate [...] Read more.
The Hunjiang River, a vital water system in northeastern China, has suffered severe ecological damage due to overexploitation. This study analyzes the basin’s environmental conditions from 2016 to 2020, identifies key restoration factors, and examines practical restoration projects. Investigating five major pollutants (permanganate index, chemical oxygen demand (COD), biochemical oxygen demand, ammonia nitrogen, total phosphorus) in eight sections, the study finds the Xicun section most polluted, mainly from Baishan City’s industrial and domestic discharges. The ammonia nitrogen concentration at the Zian section also shows deterioration. Using a DPSIR (Driving forces, Pressures, State, Impacts, Responses) framework, the study elucidates the relationship between environmental and socio-economic issues. Results indicate that population changes, industrial development, and water resource management have complex ecological impacts. Evaluating the urban water resource carrying capacity with the entropy weight method and correlation coefficient weighting method, the study finds that increasing forest coverage, improving wastewater treatment efficiency, and reducing COD emissions are crucial. Quantitative assessment of integrated protection and restoration projects involving mountains, rivers, forests, farmlands, lakes, and grasslands demonstrates their positive impact. This research reveals the interplay between the ecological environment and social factors, proposes practical restoration measures, and clarifies project effects, providing reliable decision-making schemes for policymakers. Full article
Show Figures

Figure 1

15 pages, 3734 KiB  
Article
Effects of Different Tillage Years on Soil Composition and Ground-Dwelling Arthropod Diversity in Gravel-Sand Mulching Watermelon Fields
by Haixiang Zhang, Ziyu Cao, Yifan Cui, Changyu Xiong, Wei Sun, Ying Wang, Liping Ban, Rong Zhang and Shuhua Wei
Agronomy 2024, 14(8), 1841; https://doi.org/10.3390/agronomy14081841 - 20 Aug 2024
Cited by 1 | Viewed by 1080
Abstract
Arthropods play a crucial role in ecological processes and agricultural productivity. Soil physicochemical properties, indicators of soil health, are closely linked to arthropod communities. Gravel-sand mulching, commonly employed in arid farming, initially enhances water retention and temperature regulation but may contribute to land [...] Read more.
Arthropods play a crucial role in ecological processes and agricultural productivity. Soil physicochemical properties, indicators of soil health, are closely linked to arthropod communities. Gravel-sand mulching, commonly employed in arid farming, initially enhances water retention and temperature regulation but may contribute to land degradation with prolonged use. This study investigated how varying tillage durations affected soil properties and arthropod diversity under gravel-sand mulching. The analysis employed multiple comparison methods, covariance analysis (ANCOVA), non-metric multidimensional scaling (NMDS), and redundancy analysis (RDA). The results indicated that while soil fertility was better preserved in cultivated fields compared to in the desert grassland, arthropod diversity significantly decreased with longer cultivation periods. A total of 1099 arthropods from 79 species were sampled, by Barber trap. The highest diversity was observed in native grassland (NG), with 305 arthropods from 39 species, while tillage 21 years (GPS-21Y) exhibited the lowest diversity, with only 103 arthropods from 6 species. Dominant species included the carnivores Labidura japonica and Cataglyphis aenes. The analysis revealed low similarity in arthropod communities between GPS-21Y and other fields and high similarity in soil physicochemical properties between NG and the transition zone (STZ). RDA showed available potassium (APP) was negatively correlated with arthropod species diversity and concentration, total Nitrogen (TN) was positively correlated with arthropod species diversity but negatively correlated with species concentration, total phosphorus (TP) was negatively correlated with arthropod species diversity and concentration. This study provides insights into the relationship between maintaining soil fertility and supporting arthropod diversity in grassland agriculture. While soil fertility and arthropod diversity were correlated, continuous cropping practices negatively impacted arthropod diversity, offering valuable information for pest management and sustainable agricultural practices. Full article
(This article belongs to the Special Issue Sustainable Pest Management under Climate Change)
Show Figures

Figure 1

Back to TopTop