Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (369)

Search Parameters:
Keywords = graphene exfoliations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1041 KiB  
Article
Synthesis and FT-IR/Raman Characterization of a Graphene Oxide–Methacrylamide Monomer for Dental Applications
by Gennaro Ruggiero, Davide Di Rosa, Francesco Caso, Roberto Sorrentino, Fernando Zarone and Giuseppe Caso
Materials 2025, 18(15), 3550; https://doi.org/10.3390/ma18153550 - 29 Jul 2025
Viewed by 269
Abstract
Background: Graphene oxide (GO) is widely explored as a functional additive in polymer composites; however, its simple physical dispersion in dental resins often leads to poor interfacial stability and limited long-term performance. Covalent functionalization may overcome these limitations by enabling chemical integration into [...] Read more.
Background: Graphene oxide (GO) is widely explored as a functional additive in polymer composites; however, its simple physical dispersion in dental resins often leads to poor interfacial stability and limited long-term performance. Covalent functionalization may overcome these limitations by enabling chemical integration into the polymer matrix. This study presents the synthesis and FT-IR/Raman characterization of GRAPHYMERE®, a novel graphene oxide-based monomer obtained through exfoliation, amine functionalization with 1,6-hexanediamine, and transamidation with methyl methacrylate. Methods: A novel GO-based monomer, GRAPHYMERE®, was synthesized through a three-step process involving GO exfoliation, amine functionalization with 1,6-hexanediamine, and transamidation with methyl methacrylate to introduce polymerizable acrylic groups. The resulting product was characterized using FT-IR and Raman spectroscopy. Results: Spectroscopic analyses confirmed the presence of aliphatic chains and amine functionalities on the GO surface. Although some expected signals were overlapped, the data suggest successful surface modification and partial insertion of methacrylamide groups. The process is straightforward, uses low-toxicity reagents, and avoids complex reaction steps. Conclusions: GRAPHYMERE® represents a chemically modified GO monomer potentially suitable for copolymerization within dental resin matrices. While its structural features support compatibility with radical polymerization systems, further studies are required to assess its mechanical performance and functional properties in dental resin applications. Full article
(This article belongs to the Special Issue Advanced Biomaterials for Medical Applications (2nd Edition))
Show Figures

Graphical abstract

14 pages, 2553 KiB  
Article
Cathodic Exfoliation of Various Graphite Materials in Potassium Chloride Electrolyte
by Md Habibullah Dalal, Nuwan Hegoda Arachchi, Chong-Yong Lee and Gordon G. Wallace
Molecules 2025, 30(15), 3151; https://doi.org/10.3390/molecules30153151 - 28 Jul 2025
Viewed by 196
Abstract
Cathodic exfoliation of graphite has emerged as an attractive method to synthesize high-quality and lo- defect graphene. Here, it is demonstrated that the type of starting graphite material influences the properties of exfoliated graphene. Graphite foil, natural graphite, and graphite rods were examined [...] Read more.
Cathodic exfoliation of graphite has emerged as an attractive method to synthesize high-quality and lo- defect graphene. Here, it is demonstrated that the type of starting graphite material influences the properties of exfoliated graphene. Graphite foil, natural graphite, and graphite rods were examined in the exfoliation processes performed in 3.0 M KCl at −15 V. The use of a graphite foil facilitates the rapid cathodic exfoliation process in comparison with structurally more compact natural graphite and graphite rods. For the graphite foil, the cathodically exfoliated graphene exhibits a low defect density (ID/IG of 0.09, a C/O ratio of 35) with graphite exfoliation yield of 92.8%. In contrast, the exfoliated graphene from natural graphite exhibits an ID/IG of 0.15, a C/O ratio of 28, and a graphite exfoliation yield of 30.5%, whereas graphene from graphite rod exhibits an ID/IG of 0.86, a C/O ratio of 30, and a graphite exfoliation yield of 19.5%. The dense structure of natural graphite and graphite rods led to longer exfoliation times. Exfoliation of graphite rods produced few-layer graphene with the smallest sheet size, whereas natural graphite and graphite foil yielded multilayer graphene with larger sheets. This study demonstrates the feasibility of using aqueous-based cathodic exfoliation to produce graphene from various graphite sources, leading to variations in sheet thickness, size, defect density, and solvent dispersibility. Full article
Show Figures

Graphical abstract

33 pages, 9099 KiB  
Article
Graphene Recovery in Both Dispersed and Decanted Fractions from Lithium-Ion Battery Graphite via Sonication
by Erasmo Arriola-Villaseñor, Alba Nelly Ardila Arias, Santiago Bedoya Betancour, Luz Marina Ocampo-Carmona, Trino Armano Zepeda Partida, Sergio A. Gómez Torres and Gustavo Ariel Fuentes Zurita
Recycling 2025, 10(3), 119; https://doi.org/10.3390/recycling10030119 - 17 Jun 2025
Viewed by 591
Abstract
In this study, graphene production via liquid-phase exfoliation assisted by sonication was evaluated using deionized water as a solvent and two graphite sources: one recovered from spent lithium-ion batteries (LIBs) and a commercial counterpart. A 750 W, 20 kHz ultrasonic processor was used, [...] Read more.
In this study, graphene production via liquid-phase exfoliation assisted by sonication was evaluated using deionized water as a solvent and two graphite sources: one recovered from spent lithium-ion batteries (LIBs) and a commercial counterpart. A 750 W, 20 kHz ultrasonic processor was used, with sonication amplitudes ranging from 50% to 80% for two hours while maintaining a constant temperature of 45 °C. The resulting dispersions were left undisturbed for 24 h at ambient temperature to allow natural phase separation between decanted and dispersed fractions. These fractions were subsequently dried and weighed to determine exfoliation yield. High-quality graphene was successfully obtained via direct liquid-phase exfoliation of graphite recovered from LIBs, assisted by sonication in deionized water. Graphene formation was confirmed in both suspended and decanted fractions after two hours of sonication at 80% amplitude through complementary characterization techniques, including UV-Vis, Raman spectroscopy, HRTEM, and XRD. Comparative experiments using thermally pretreated battery graphite and commercial graphite revealed that graphene dispersions derived from untreated LIB-derived graphite exhibited greater long-term stability than those obtained from commercial or thermally pretreated battery graphite before sonication. Full article
(This article belongs to the Special Issue Lithium-Ion and Next-Generation Batteries Recycling)
Show Figures

Figure 1

28 pages, 3203 KiB  
Article
From Pollutant Removal to Renewable Energy: MoS2-Enhanced P25-Graphene Photocatalysts for Malathion Degradation and H2 Evolution
by Cristian Martínez-Perales, Abniel Machín, Pedro J. Berríos-Rolón, Paola Sampayo, Enrique Nieves, Loraine Soto-Vázquez, Edgard Resto, Carmen Morant, José Ducongé, María C. Cotto and Francisco Márquez
Materials 2025, 18(11), 2602; https://doi.org/10.3390/ma18112602 - 3 Jun 2025
Viewed by 1077
Abstract
The widespread presence of pesticides—especially malathion—in aquatic environments presents a major obstacle to conventional remediation strategies, while the ongoing global energy crisis underscores the urgency of developing renewable energy sources such as hydrogen. In this context, photocatalytic water splitting emerges as a promising [...] Read more.
The widespread presence of pesticides—especially malathion—in aquatic environments presents a major obstacle to conventional remediation strategies, while the ongoing global energy crisis underscores the urgency of developing renewable energy sources such as hydrogen. In this context, photocatalytic water splitting emerges as a promising approach, though its practical application remains limited by poor charge carrier dynamics and insufficient visible-light utilization. Herein, we report the design and evaluation of a series of TiO2-based ternary nanocomposites comprising commercial P25 TiO2, reduced graphene oxide (rGO), and molybdenum disulfide (MoS2), with MoS2 loadings ranging from 1% to 10% by weight. The photocatalysts were fabricated via a two-step method: hydrothermal integration of rGO into P25 followed by solution-phase self-assembly of exfoliated MoS2 nanosheets. The composites were systematically characterized using X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. Photocatalytic activity was assessed through two key applications: the degradation of malathion (20 mg/L) under simulated solar irradiation and hydrogen evolution from water in the presence of sacrificial agents. Quantification was performed using UV-Vis spectroscopy, gas chromatography–mass spectrometry (GC-MS), and thermal conductivity detection (GC-TCD). Results showed that the integration of rGO significantly enhanced surface area and charge mobility, while MoS2 served as an effective co-catalyst, promoting interfacial charge separation and acting as an active site for hydrogen evolution. Nearly complete malathion degradation (~100%) was achieved within two hours, and hydrogen production reached up to 6000 µmol g−1 h−1 under optimal MoS2 loading. Notably, photocatalytic performance declined with higher MoS2 content due to recombination effects. Overall, this work demonstrates the synergistic enhancement provided by rGO and MoS2 in a stable P25-based system and underscores the viability of such ternary nanocomposites for addressing both environmental remediation and sustainable energy conversion challenges. Full article
(This article belongs to the Special Issue Catalysis: Where We Are and Where We Go)
Show Figures

Graphical abstract

2 pages, 137 KiB  
Editorial
Special Issue: 2D Layered Nanomaterials and Heterostructures for Electronics, Optoelectronics, and Sensing
by Filippo Giannazzo, Federica Bondino, Luca Seravalli and Simonpietro Agnello
Nanomaterials 2025, 15(11), 851; https://doi.org/10.3390/nano15110851 - 2 Jun 2025
Viewed by 360
Abstract
Since the first report in 2004 on the electronic properties of graphene exfoliated from graphite [...] Full article
10 pages, 1787 KiB  
Article
An Approach to the Improvement of Graphene Production by Ultrasonic-Bath Treatment
by Bagila A. Baitimbetova, Danil W. Boukhvalov, Kostya A. Mit’, Tleuzhan S. Turmagambetov, Perizat Baitimbetova and Abay S. Serikkanov
Nanomaterials 2025, 15(11), 817; https://doi.org/10.3390/nano15110817 - 28 May 2025
Viewed by 499
Abstract
In this study, we report the synthesis of few-layer graphene via ultrasonic treatment of a graphite-benzene solution at room temperature. Raman spectroscopy revealed a significant reduction in the intensity ratio of the G and 2D peaks for samples subjected to 20 min of [...] Read more.
In this study, we report the synthesis of few-layer graphene via ultrasonic treatment of a graphite-benzene solution at room temperature. Raman spectroscopy revealed a significant reduction in the intensity ratio of the G and 2D peaks for samples subjected to 20 min of treatment, indicating a decrease in defect density and oxidation. Prolonged treatment times led to fragmentation of the graphene sheets, which facilitated restacking, as evidenced by Raman spectroscopy and microscopy. FTIR analysis confirmed the complete removal of the solvent from the extracted and dried graphene. Additionally, electron paramagnetic resonance (EPR) measurements indicated the presence of carbon-based magnetism in the synthesized samples, suggesting potential applications in spintronic devices. Our findings highlight the effectiveness of ultrasonic treatment for producing high-quality few-layer graphene with desirable structural and magnetic properties. Full article
(This article belongs to the Special Issue Graphene-Based Nanomaterials (2nd Edition))
Show Figures

Graphical abstract

37 pages, 16681 KiB  
Article
Experimental, Simulation and Theoretical Insights into Anisotropic Thermal Behavior of Epoxy Nanocomposites Reinforced with Carbonaceous Nanofillers
by Giovanni Spinelli, Rosella Guarini, Liberata Guadagno, Carlo Naddeo, Luigi Vertuccio and Vittorio Romano
Polymers 2025, 17(9), 1248; https://doi.org/10.3390/polym17091248 - 3 May 2025
Viewed by 542
Abstract
Understanding and optimizing thermal conductivity in epoxy-based composites is crucial for efficient thermal management applications. This study investigates the anisotropic thermal conductivity of a tetra-functional epoxy resin filled with low concentrations (0.25–2.00 wt%) of carbonaceous nanofillers: 1D multiwall carbon nanotubes (MWCNTs) and 2D [...] Read more.
Understanding and optimizing thermal conductivity in epoxy-based composites is crucial for efficient thermal management applications. This study investigates the anisotropic thermal conductivity of a tetra-functional epoxy resin filled with low concentrations (0.25–2.00 wt%) of carbonaceous nanofillers: 1D multiwall carbon nanotubes (MWCNTs) and 2D exfoliated graphite (EG) nanoparticles. Experimental measurements conducted using the Transient Plane Source (TPS) method reveal distinct behaviors depending on the nanofiller’s geometry. Epoxy formulations incorporating MWCNTs exhibit a ~60% increase in in-plane thermal conductivity (λI-p dir.) compared to the unfilled resin, with negligible changes in the through-plane direction (λT-p dir.). Conversely, EG nanoparticles enhance thermal conductivity in both directions, with a preference for the in-plane direction, achieving a ~250% increase at 2 wt%. In light of this, graphene-based fillers establish a predominant thermal transport direction in the resulting nanocomposites due to their layered structure, whereas MWCNTs create unidirectional thermal pathways. The TPS results were complemented by multiphysics simulations in COMSOL and theoretical studies based on the theory of thermal circuits to explain the observed phenomena and justify the experimental findings. This integrated approach, combining experiments, theoretical analyses, and simulations, demonstrates the potential for tailoring the thermal properties of epoxy nanocomposites. These insights provide a foundation for developing advanced materials optimized for efficient thermal management in high-performance systems. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Composites: 2nd Edition)
Show Figures

Figure 1

14 pages, 11859 KiB  
Article
Mechanically Exfoliated Multilayer Graphene-Supported Ni-MOF Parallelogram Nanosheets for Enhanced Supercapacitor Performance
by Zhiheng Li, Junming Xu, Xinqi Ding, Haoran Zhu and Jianfeng Wu
Nanomaterials 2025, 15(9), 643; https://doi.org/10.3390/nano15090643 - 23 Apr 2025
Viewed by 466
Abstract
Metal–organic frameworks (MOFs) are regarded as advanced supercapacitor materials owing to their high surface area, redox-active sites, and porosity. However, their insufficient charge carrier mobility remains a critical limitation for practical application. Integrating MOFs with conductive carbon substrates is an effective strategy to [...] Read more.
Metal–organic frameworks (MOFs) are regarded as advanced supercapacitor materials owing to their high surface area, redox-active sites, and porosity. However, their insufficient charge carrier mobility remains a critical limitation for practical application. Integrating MOFs with conductive carbon substrates is an effective strategy to break through this limitation. However, conventional carbon materials often require complex preparation methods and pre-activation steps for use in MOF composites. Herein, multilayer graphene (MLG) mechanically exfoliated from expandable graphite is employed as a substrate, and a van der Waals force-assisted chemical deposition method is developed to directly anchor Ni-MOF onto its surface without requiring pre-activation treatment. To optimize the composite, Ni-MOFs with various mass loadings are synthesized on MLG surface. The morphological characteristics and energy storage performance of these composites are thoroughly characterized. Ni-MOF/MLG-0.30 (with a 70.8% Ni-MOF loading on MLG) features a porous stacking structure of well-crystalline Ni-MOF parallelogram nanosheets on MLG, exhibiting optimal electrochemical performance. The composite achieves 1071.4 F·g−1 at 1 A·g−1, and a capacitance retention of 64.9% at the elevated current density of 10 A·g−1. Meanwhile, the composite maintains 63.2% of its initial capacitance after 5000 charge/discharge cycles at 4 A·g−1. A hybrid supercapacitor is fabricated using Ni-MOF/MLG-0.30 cathode and activated carbon anode, delivering 27.9 Wh·kg−1 energy density at 102.5 W·kg−1 power output. Full article
Show Figures

Graphical abstract

18 pages, 8277 KiB  
Article
Synthesis and Characterization of Ni-Doped Iron Oxide/GO Nanoparticles by Co-Precipitation Method for Electrocatalytic Oxygen Reduction Reaction in Microbial Fuel Cells
by Sandra E. Benito-Santiago, Brigitte Vigolo, Jaafar Ghanbaja, Dominique Bégin, Sathish-Kumar Kamaraj and Felipe Caballero-Briones
Ceramics 2025, 8(2), 40; https://doi.org/10.3390/ceramics8020040 - 21 Apr 2025
Viewed by 1103
Abstract
Nickel-doped iron oxide/graphene oxide powders were synthesized by the co-precipitation method varying the Ni/Fe ratio, and the activity of the materials towards the oxygen reduction reaction in a microbial fuel cell (MFC) was studied. The samples presented X-ray diffraction peaks associated with magnetite, [...] Read more.
Nickel-doped iron oxide/graphene oxide powders were synthesized by the co-precipitation method varying the Ni/Fe ratio, and the activity of the materials towards the oxygen reduction reaction in a microbial fuel cell (MFC) was studied. The samples presented X-ray diffraction peaks associated with magnetite, maghemite and Ni ferrite, as well as evidence of hematite. Raman spectra confirmed the presence of maghemite (γ-Fe2O3) and NiFe2O4. Scanning electron micrographs showed exfoliated sheets decorated with nanoparticles, and transmission electron micrographs showed spherical nanoparticles about 10 nm in diameter well distributed on the individual graphene sheet. The electrocatalytic activity for the oxygen reduction reaction (ORR) was studied by cyclic voltammetry in an air-saturated electrolyte, finding that the best catalyst was the sample with a 1:2 Ni/Fe ratio, using a catalyst concentration of 15 mg·cm−2 on graphite felt. The 1:2 Ni/Fe catalyst provided an oxygen reduction potential of 397 mV and a maximum oxygen reduction current of −0.13 mA; for comparison, an electrode prepared with GO/γ-Fe2O3 showed a maximum ORR of 369 mV and a maximum current of −0.03 mA. Microbial fuel cells with a vertical proton membrane were prepared with Ni-doped Fe3O4 and Fe3O4/graphene oxide and tested for 24 h; they reached a stable OCV of +400 mV and +300 mV OCV, and an efficiency of 508 mW·m−2 and 139 mW·m−2, respectively. The better performance of Ni-doped material was attributed to the combined presence of catalytic activity between γ-Fe2O3 and NiFe2O4, coupled with lower wettability, which led to better dispersion onto the electrode. Full article
Show Figures

Figure 1

18 pages, 8199 KiB  
Article
Microfluidization Preparation of Hybrid Graphene for Enhanced Wear Resistance of Coatings
by Qi Chen, Na Wang, Dhandapani Kuzhandaivel, Yingxian Chen, Lixin Wu and Longhui Zheng
Polymers 2025, 17(6), 824; https://doi.org/10.3390/polym17060824 - 20 Mar 2025
Viewed by 534
Abstract
Wear resistance is the key factor that affects the long-term use of leather. Graphene has excellent wear resistance properties, but ensuring the effective dispersion of graphene in resin is crucial for determining the performance of the material. In this work, silica modified with [...] Read more.
Wear resistance is the key factor that affects the long-term use of leather. Graphene has excellent wear resistance properties, but ensuring the effective dispersion of graphene in resin is crucial for determining the performance of the material. In this work, silica modified with polydopamine (SiO2@PDA) was used as an exfoliation agent. Using the microfluidization process and water as the medium, silica-graphene hybrid nanoparticles (SiO2@PDA-G) were prepared from expanded graphite. These nanoparticles were further compounded with waterborne polyurethane (WPU), and a superfine fiber-based fabric was used as the substrate to prepare composite coating. The results showed that the high shear force of the microfluidization process easily broke up the lamellar structure of graphite, resulting in few-layer graphene. Nano-silica was adsorbed on the surface of graphene, preventing re-aggregation between the graphene sheets. Compared to the WPU coating, the presence of SiO2@PDA-G improved the wear resistance and mechanical properties of the coating. The wear rate and the average friction coefficient of the composite coating decreased by 48% and 69%, respectively, and the tensile strength increased by 83%. Therefore, this study provides a new strategy for improving the dispersion of graphene in polymer materials and enhancing the abrasion resistance of the coatings. Full article
(This article belongs to the Special Issue Graphene-Based Polymer Composites and Their Applications II)
Show Figures

Graphical abstract

29 pages, 10108 KiB  
Article
Unveiling the Role of Fractionated Graphene Oxide in Nitric Oxide Scavenging
by Grigoriy R. Chermashentsev, Ivan V. Mikheev, Daria-Mariia V. Ratova, Elena V. Proskurnina and Mikhail A. Proskurnin
Molecules 2025, 30(5), 1069; https://doi.org/10.3390/molecules30051069 - 26 Feb 2025
Cited by 1 | Viewed by 757
Abstract
The feasibility of saturating aqueous anoxic solutions with in situ-generated high-purity nitric oxide (NO) is shown herein. A methemoglobin assay estimated the average nitric oxide concentration to be ca. 20 ± 3 µM. Graphene oxide aqueous dispersions were prepared by ultrasound-assisted extra exfoliation. [...] Read more.
The feasibility of saturating aqueous anoxic solutions with in situ-generated high-purity nitric oxide (NO) is shown herein. A methemoglobin assay estimated the average nitric oxide concentration to be ca. 20 ± 3 µM. Graphene oxide aqueous dispersions were prepared by ultrasound-assisted extra exfoliation. These dispersions, including unpurified (pristine) samples and samples purified from transition metal impurities (bulk) fractions (bulkGO) and (nano) separated fractions (nanoGO) in a range of 0.5 to 14 kDa were prepared with ppm level concentrations. A robust and reproducible chemiluminescence (CL) assay validated the interaction between graphene oxide and NO in a luminol-based system. The results showed a significant increase in NO scavenging activity within the bulkGO fractions to nanofractions ranging from 14 to 3.5 kDa. The different reaction pathways underlying the transformation of nitric oxide are being evaluated, focusing on understanding how its presence or absence affects these processes. Our kinetic model suggests a significant difference in nitric oxide regulation; nanoGO demonstrates an interception rate seventy-times higher than that achieved through CL quenching. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Graphical abstract

20 pages, 4604 KiB  
Article
Graphene-Modified Electrode for Linear Sweep Voltammetric Sensing of Catechol
by Florina Pogăcean, Lidia Măgeruşan, Alexandru Turza and Stela Pruneanu
Chemosensors 2025, 13(2), 43; https://doi.org/10.3390/chemosensors13020043 - 1 Feb 2025
Cited by 1 | Viewed by 1270
Abstract
A graphene sample (EGr) was obtained in a single-step synthesis by electrochemical exfoliation of graphite rods. A combination of 0.05 M ammonium sulfate and 0.05 M ammonium thiocyanate was employed, leading to a graphene sample composed of few-layer, multi-layer and graphene oxide flakes. [...] Read more.
A graphene sample (EGr) was obtained in a single-step synthesis by electrochemical exfoliation of graphite rods. A combination of 0.05 M ammonium sulfate and 0.05 M ammonium thiocyanate was employed, leading to a graphene sample composed of few-layer, multi-layer and graphene oxide flakes. Due to the mild exfoliation conditions, large sheets with linear sizes in the range of tens to hundreds of micrometers were produced. The LSV technique gave information about the effect of catechol concentration on the electrochemical signal of bare and graphene-modified electrodes. Based on the resulting calibration plots, the corresponding analytical parameters (linear range, sensitivity, limit of quantification and limit of detection) were calculated for each electrode. In the case of the EGr/GC electrode the linear range was from 6 × 10−7 to 1 × 10−4 M catechol. The detection limit was low (1.82 × 10−7 M) while the quantification limit was 6 × 10−7 M. The sensitivity was five times higher than that corresponding to bare GC, proving the excellent electro-catalytic properties of the graphene-modified electrode. The practical applicability of the graphene-modified electrode was tested in tap water, obtaining an excellent recovery of 102%. Full article
(This article belongs to the Special Issue Electrochemical Biosensors: Advances and Prospects)
Show Figures

Figure 1

11 pages, 2256 KiB  
Article
Accessible and Inexpensive Parameter Testing Platform for Adhesive Removal in Mechanical Exfoliation Procedures
by Anthony Gasbarro, Yong-Sung D. Masuda, Richard C. Ordonez, Jeffrey A. Weldon and Victor M. Lubecke
Electronics 2025, 14(3), 533; https://doi.org/10.3390/electronics14030533 - 28 Jan 2025
Viewed by 1370
Abstract
Mechanical exfoliation of two-dimensional (2D) materials using adhesive tape is a widely used method for producing high-quality single-layer graphene flakes. However, this technique is time-consuming, with low yields and inconsistent results due to process variations and human error. This paper introduces a modular [...] Read more.
Mechanical exfoliation of two-dimensional (2D) materials using adhesive tape is a widely used method for producing high-quality single-layer graphene flakes. However, this technique is time-consuming, with low yields and inconsistent results due to process variations and human error. This paper introduces a modular system designed to rigorously test and optimize the conditions for 2D material deposition, with a focus on graphene. The system is adaptable to a range of inexpensive, commercially available linear stages and stepper motors, providing precise, independent control over key parameters such as peel speed and angle—both of which are critical in deposition yields. Tests confirmed the system’s accuracy within ±0.7% relative speed error across a range of speeds (1 μm/s to 5000 μm/s) and peel angle control from 0 to 120. Additionally, the system automates control of the key factors at the most demanding step of the exfoliation process while being affordable and easily assembled, making it accessible for laboratories and educational institutions to explore the optimal conditions for scaling 2D material production. This system offers the capability to gain critical insights into the exfoliation process, driving improved yields and scalability, which are essential for fabricating highly specialized devices that rely on 2D materials. Full article
(This article belongs to the Special Issue Sensor Technologies for Intelligent Transportation Systems)
Show Figures

Graphical abstract

23 pages, 4816 KiB  
Article
Eco-Friendly Alternatives to Toluene-Based 2D Inks for Inkjet and Electrohydrodynamic Jet Printing Processes: A Rheological Study
by Pedro C. Rijo, Ilaria Tocci and Francisco J. Galindo-Rosales
Micromachines 2025, 16(2), 130; https://doi.org/10.3390/mi16020130 - 23 Jan 2025
Viewed by 1013
Abstract
Green sustainable solvents have emerged as promising alternatives to petroleum-derived options, such as toluene. This study demonstrates the use of cyrene as an effective exfoliation medium for graphene nanoplatelets (GNPs) and hexagonal boron nitride (hBN) and molybdenum disulfide (MoS2) particles. The [...] Read more.
Green sustainable solvents have emerged as promising alternatives to petroleum-derived options, such as toluene. This study demonstrates the use of cyrene as an effective exfoliation medium for graphene nanoplatelets (GNPs) and hexagonal boron nitride (hBN) and molybdenum disulfide (MoS2) particles. The incorporation of polyvinylpyrrolidone (PVP) attenuates the shear-thinning behavior of GNP and hBN suspensions, maintaining a constant shear viscosity over a wide range of shear rates regardless of PVP molecular weight. Despite the presence of polymer, elasticity is hindered by inertia effects, making it impossible to accurately measure the extensional relaxation time in the capillary breakup extensional rheometer (CaBER). Assuming the weak elasticity of the formulations has a negligible impact on the breakup mechanism, we estimated droplet sizes for drop-on-demand (DoD) inkjet printing and electrohydrodynamic (EHD) jet printing based on fluid properties, i.e., viscosity, surface tension and density, and nozzle inner diameter (Dnozzle). Results indicate that the droplet size ratio (Ddrop/Dnozzle) in DoD printing can be up to two orders of magnitude higher than the one predicted for EHD jet printing at the same flow rate. This work highlights the potential of cyrene-based 2D inks as eco-friendly alternatives for advanced printing technologies. Full article
(This article belongs to the Special Issue Two-Dimensional Materials for Emerging Applications)
Show Figures

Figure 1

20 pages, 38994 KiB  
Article
On the Stability of Graphene-Based Aqueous Dispersions and Their Performance in Cement Mortar
by Teresa Gerace, Sebastiano Candamano, Simone Bartucci, Carlo Poselle Bonaventura, Alfonso Policicchio, Raffaele Giuseppe Agostino, Milena Marroccoli, Antonio Telesca, Mariano Davoli, Andrea Scarcello, Lorenzo S. Caputi and Daniela Pacilè
Appl. Sci. 2025, 15(2), 835; https://doi.org/10.3390/app15020835 - 16 Jan 2025
Viewed by 1031
Abstract
Cement composites containing different carbon nanomaterials, namely graphene technical grade, graphene super grade, and graphene oxide, up to 1.0% by weight of cement, were prepared. Ultrasonic, chemical, and thermochemical treatments were applied to improve the stability of the dispersions containing the graphene-based nanomaterials. [...] Read more.
Cement composites containing different carbon nanomaterials, namely graphene technical grade, graphene super grade, and graphene oxide, up to 1.0% by weight of cement, were prepared. Ultrasonic, chemical, and thermochemical treatments were applied to improve the stability of the dispersions containing the graphene-based nanomaterials. Their exfoliation was analyzed using Raman spectroscopy, and the stability of the dispersions was quantitatively investigated by means of the static multiple light scattering (SMLS) technique. The sonication process enhanced the intensity of the 2D band of graphene technical grade, suggesting a partial degree of exfoliation, while the hydrothermal treatment with sodium cholate significantly promoted the stability of its dispersion. The effect of the addition of selected graphene-based nanomaterials in mortars was evaluated in terms of fresh state properties, mechanical strength, capillary water absorption, and pore size distribution. Workability decreased with the increase in the amount of carbon nanomaterials. Field emission scanning electron microscopy (FESEM) was also employed to characterize the microstructure of pristine graphene-based nanomaterials and their inclusion within the cement matrix. Our results suggest that mechanical properties are only moderately affected by the inclusion of all additives, whereas the introduction of graphene significantly influences the coefficient of capillary water absorption. Specifically, a reduction of about 20% in the capillary water absorption coefficient was observed at the concentration of 1.0 wt% of graphene technical grade, which is ascribed to a refinement of the porosity. Full article
Show Figures

Figure 1

Back to TopTop