Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = granitic lithology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 167102 KiB  
Article
Influence of Mineralogical and Petrographic Properties on the Mechanical Behavior of Granitic and Mafic Rocks
by Muhammad Faisal Waqar, Songfeng Guo, Shengwen Qi, Malik Aoun Murtaza Karim, Khan Zada, Izhar Ahmed and Yanjun Shang
Minerals 2025, 15(7), 747; https://doi.org/10.3390/min15070747 - 17 Jul 2025
Viewed by 368
Abstract
This study investigates the impact of mineralogical and petrographic characteristics on the mechanical behavior of granitic and mafic rocks from the Shuangjiangkou (Sichuan Province) and Damiao complexes (Hebei Province) in China. The research methodology combined petrographic investigation, comprising optical microscopy and Scanning Electron [...] Read more.
This study investigates the impact of mineralogical and petrographic characteristics on the mechanical behavior of granitic and mafic rocks from the Shuangjiangkou (Sichuan Province) and Damiao complexes (Hebei Province) in China. The research methodology combined petrographic investigation, comprising optical microscopy and Scanning Electron Microscopy–Energy-Dispersive X-ray Spectroscopy (SEM-EDS) methods, with methodical geotechnical characterization to establish quantitative relationships between mineralogical composition and engineering properties. The petrographic studies revealed three lithologic groups: fine-to-medium-grained Shuangjiangkou granite (45%–60% feldspar, 27%–35% quartz, 10%–15% mica), plagioclase-rich anorthosite (more than 90% of plagioclase), and intermediate mangerite (40%–50% of plagioclase, 25%–35% of perthite). The uniaxial compressive strength tests showed great variations: granite (127.53 ± 15.07 MPa), anorthosite (167.81 ± 23.45 MPa), and mangerite (205.12 ± 23.87 MPa). Physical properties demonstrated inverse correlations between mechanical strength and both water absorption (granite: 0.25%–0.42%; anorthosite: 0.07%–0.44%; mangerite: 0.10%–0.25%) and apparent porosity (granite: 0.75%–0.92%; anorthosite: 0.20%–1.20%; mangerite: 0.29%–0.69%), with positive correlations to specific gravity (granite: 1.88–3.03; anorthosite: 2.67–2.90; mangerite: 2.43–2.99). Critical petrographic features controlling mechanical behavior include the following: (1) mica content in granite creating anisotropic properties, (2) extensive feldspar alteration through sericitization increasing microporosity and reducing intergranular cohesion, (3) plagioclase micro-fracturing and alteration to clinozoisite–sericite assemblages in anorthosite creating weakness networks, and (4) mangerite’s superior composition of >95% hard minerals with minimal sheet mineral content and limited alteration. Failure mode analysis indicated distinct patterns: granite experiencing shear-dominated failure (30–45° diagonal planes), anorthosite demonstrated tensile fracturing with vertical splitting, and mangerite showed catastrophic brittle failure with extensive fracture networks. These findings provide quantitative frameworks that relate petrographic features to engineering behavior, offering valuable insights for rock mass assessment and engineering design in similar crystalline rock terrains. Full article
(This article belongs to the Special Issue Characterization of Geological Material at Nano- and Micro-scales)
Show Figures

Figure 1

28 pages, 5040 KiB  
Article
Formation and Evolution Mechanisms of Geothermal Waters Influenced by Fault Zones and Ancient Lithology in the Yunkai Uplift, Southern China
by Xianxing Huang, Yongjun Zeng, Shan Lu, Guoping Lu, Hao Ou and Beibei Wang
Water 2025, 17(13), 1885; https://doi.org/10.3390/w17131885 - 25 Jun 2025
Viewed by 470
Abstract
Geothermal systems play a crucial role in understanding Earth’s heat dynamics. The Yunkai Uplift in southern China exemplifies a geothermally rich region characterized by ancient lithologies and high heat flow. This study investigates the geochemical characteristics of geothermal waters in the Yunkai Uplift. [...] Read more.
Geothermal systems play a crucial role in understanding Earth’s heat dynamics. The Yunkai Uplift in southern China exemplifies a geothermally rich region characterized by ancient lithologies and high heat flow. This study investigates the geochemical characteristics of geothermal waters in the Yunkai Uplift. Both geothermal and non-thermal water samples were collected along the Xinyi–Lianjiang (XL) Fault Zone and the Cenxi–Luchuan (CL) Fault Zone flanking the core of the Yunkai Mountains. Analytical techniques were applied to examine major ions, trace elements, and dissolved CO2 and H2, as well as isotopic characteristics of O, H, Sr, C, and He in water samples, allowing for an investigation of geothermal reservoir temperatures, circulation depths, and mixing processes. The findings indicate that most geothermal waters are influenced by water–rock interactions primarily dominated by granites. The region’s diverse lithologies, change from ancient Caledonian granites and medium–high-grade metamorphic rocks in the central hinterland (XL Fault Zone) to low-grade metamorphic rocks and sedimentary rocks in the western margin (CL Fault Zone). The chemical compositions of geothermal waters are influenced through mixing contacts between diverse rocks of varying ages, leading to distinct geochemical characteristics. Notably, δ13CCO2 values reveal that while some samples exhibit significant contributions from metamorphic CO2 sources, others are characterized by organic CO2 origins. Regional heat flow results from the upwelling of mantle magma, supplemented by radioactive heat generated from crustal granites. Isotopic evidence from δ2H and δ18O indicates that the geothermal waters originate from atmospheric sources, recharged by precipitation in the northern Yunkai Mountains. After infiltrating to specific depths, meteoric waters are heated to temperatures ranging from about 76.4 °C to 178.5 °C before ascending through the XL and CL Fault Zones under buoyancy forces. During their upward migration, geothermal waters undergo significant mixing with cold groundwater (54–92%) in shallow strata. As part of the western boundary of the Yunkai Uplift, the CL Fault Zone may extend deeper into the crust or even interact with the upper mantle but exhibits weaker hydrothermal activities than the XL Fault Zone. The XL Fault Zone, however, is enriched with highly heat-generating granites, is subjected more to both the thermal and mechanical influences of upwelling mantle magma, resulting in a higher heat flow and tension effect, and is more conducive to the formation of geothermal waters. Our findings underscore the role of geotectonic processes, lithological variation, and fault zone activity in shaping the genesis and evolution of geothermal waters in the Yunkai Uplift. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

33 pages, 57582 KiB  
Article
Integrating Remote Sensing and Aeromagnetic Data for Enhanced Geological Mapping at Wadi Sibrit-Urf Abu Hamam District, Southern Part of Nubian Shield
by Hatem M. El-Desoky, Waheed H. Mohamed, Ali Shebl, Wael Fahmy, Anas M. El-Sherif, Ahmed M. Abdel-Rahman, Hamed I. Mira, Mahmoud M. El-Rahmany, Fahad Alshehri, Sattam Almadani and Hamada El-Awny
Minerals 2025, 15(6), 657; https://doi.org/10.3390/min15060657 - 18 Jun 2025
Viewed by 410
Abstract
The present study aims to characterize complex geological structures and significant mineralization using remote sensing and aeromagnetic studies. Structural lineaments play a crucial role in the localization and concentration of mineral deposits. For the first time over the study district, a combination of [...] Read more.
The present study aims to characterize complex geological structures and significant mineralization using remote sensing and aeromagnetic studies. Structural lineaments play a crucial role in the localization and concentration of mineral deposits. For the first time over the study district, a combination of aeromagnetic data, Landsat 9, ASTER, and PRISMA hyperspectral data was utilized to enhance the characterization of both lithological units and structural features. Advanced image processing techniques, including false color composites, principal component analysis (PCA), independent component analysis (ICA), and SMACC, were applied to the remote sensing datasets. These methods enabled effective discrimination between Phanerozoic rock formations and the complex basement units, which comprise the island arc assemblage, Dokhan volcanics, and late-orogenic granites. The local and deep magnetic sources were separated using Gaussian filters. The Neoproterozoic basement rocks were estimated using the radial average power spectrum technique and the Euler deconvolution technique (ED). According to the RAPS technique, the average depths to shallow and deep magnetic sources are approximately 0.4 km and 1.6 km, respectively. The obtained ED contacts range in depth from 0.081 to 1.5 km. The research area revealed massive structural lineaments, particularly in the northeast and northwest sides, where a dense concentration of these lineaments was identified. The locations with the highest densities are thought to signify more fracturization in the rocks that are thought to be connected to mineralization. According to the automatic lineament extraction methods and rose diagram, NW-SE, NNE-SSW, and N-S are the major structural directions. These trends were confirmed and visually represented through textural analysis and drainage pattern control. The lithological mapping results were validated through field observations and petrographic analysis. This integrated approach has proven highly effective, showcasing significant potential for both detailed structural analysis and accurate lithological discrimination, which may be related to further mineralization exploration. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

18 pages, 6276 KiB  
Article
Geochemical Survey of Stream Sediments and Stream Water for Ion-Adsorption Type Rare Earth Deposits (IAREDs): A Pilot Study in Jiaping IARED, Guangxi, South China
by Junhong Liu, Zhixuan Han, Chunfang Dong, Xiaocheng Wei and Yingnan Chen
Minerals 2025, 15(6), 642; https://doi.org/10.3390/min15060642 - 13 Jun 2025
Viewed by 431
Abstract
Rare earth elements (REEs) are critical mineral resources that play a pivotal role in modern technology and industry. Currently, the global supply of light rare earth elements (LREEs) remains adequate. However, the supply of heavy rare earth elements (HREEs) is associated with substantial [...] Read more.
Rare earth elements (REEs) are critical mineral resources that play a pivotal role in modern technology and industry. Currently, the global supply of light rare earth elements (LREEs) remains adequate. However, the supply of heavy rare earth elements (HREEs) is associated with substantial risks due to their limited availability. Ion-adsorption type rare earth deposits (IAREDs), which represent the predominant source of HREEs, have become a focal point for exploration activities, with a notable increase in global interest in recent years. This study systematically collected stream sediments and stream water samples from the Jiaping IARED in Guangxi, as well as from adjacent granitic and carbonate background areas, to investigate the exploration significance of geochemical surveys for IAREDs. Additionally, mineralized soil layers, non-mineralized soil layers, and bedrock samples from the weathering crust of the Jiaping deposit were analyzed. The results indicate that stream sediments originating from the Jiaping IARED and granite-hosted background regions display substantially elevated REE concentrations relative to those from carbonate-hosted background areas. Moreover, δEu values in stream sediments can serve as an effective indicator for differentiating weathering products derived from granitic and carbonate lithologies. Within the mining area, three coarse-grained fractions of stream sediments (i.e., +20 mesh, 20–60 mesh, and 60–150 mesh) exhibit REE concentrations comparable to those observed in both granite-hosted and carbonate-hosted background regions. However, the HREEs content in the finer -150-mesh stream sediments from Jiaping IARED is markedly higher than that in the two background regions. The (La/Sm)N versus (La/Yb)N ratios of -150-mesh stream sediments in the Jiaping IARED may reflect the mixing processes involving HREE-enriched ore layer, non-mineralized layer, and LREE-enriched ore layer. This observation implies that fine-grained (-150-mesh) stream sediments can partially inherit the REE characteristics of mineralized layers within IAREDs. Scanning electron microscopy (SEM) observations indicate that the enrichment of REEs in fine-grained stream sediments primarily originates from REE-rich accessory minerals derived from parent rocks and mineralized weathering crusts. A comparative analysis reveals that the concentrations of REEs in stream water collected during the rainy season are significantly higher than those collected during the dry season. Moreover, the levels of REEs, especially HREE, in stream water from the Jiaping IARED substantially exceed those in background areas. Collectively, these findings suggest that the geochemical signatures of REEs in rainy season stream water possess diagnostic potential for identifying IAREDs. In conclusion, the integrated application of geochemical surveys of stream water and -150-mesh stream sediments can effectively delineate exploration targets for IAREDs. Full article
(This article belongs to the Special Issue Novel Methods and Applications for Mineral Exploration, Volume III)
Show Figures

Figure 1

24 pages, 40890 KiB  
Article
Contrasts in Two-Stage Superimposed Magmatism of the Shizhuzi Magmatic Complex-Mo-Cu-Au System, Liaodong Peninsula, North China Craton
by Jinjian Wu, Jinzhong Yang, Jinhui Yang and Qingdong Zeng
Minerals 2025, 15(6), 631; https://doi.org/10.3390/min15060631 - 10 Jun 2025
Viewed by 417
Abstract
The North China Craton (NCC) experienced extensive destruction and modification of its subcontinental lithospheric mantle during the Mesozoic, a period marked by intensive tectonism, magmatism, and mineralization. Among the key manifestations of this event are the Shizhuzi magmatic complex (SMC) and related Mo-Cu-Au [...] Read more.
The North China Craton (NCC) experienced extensive destruction and modification of its subcontinental lithospheric mantle during the Mesozoic, a period marked by intensive tectonism, magmatism, and mineralization. Among the key manifestations of this event are the Shizhuzi magmatic complex (SMC) and related Mo-Cu-Au deposits in the Liaodong Peninsula. This study presents new zircon U-Pb ages and Hf isotope data, along with whole-rock major and trace element geochemical data. Meanwhile, by incorporating published datasets, the magmatism and mineralization of the SMC are discussed. Two-stage magmatic activity is identified in the SMC as follows: (1) Stage I (130–126 Ma) associated with mineralization, and (2) Stage II (121–117 Ma), both corresponding to the peak destruction of the NCC. The mineralized granitoids exhibit I-type affinities and formed in an extension setting. Quartz diorites within this suite were derived from the partial melting of an enriched mantle source, and the high-temperature thermal underplating associated with this process subsequently triggered partial melting of the basaltic lower crust, leading to the generation of granodiorites and monzonitic granites. These rocks experienced limited fractional crystallization (dominated by plagioclase + biotite) and are linked to Mo-Cu-Au mineralization. In contrast, the non-mineralized granitoids are high-K calc-alkaline, peraluminous A-type granites, which developed in an extremely extensional tectonic setting. They were derived from partial melting of ancient lower crust and display characteristics of highly fractionated granites, having undergone extensive crystallization differentiation involving plagioclase + K-feldspar during magmatic evolution. The mineralized and non-mineralized granitoids exhibit distinct differences in lithology, major/trace element characteristics, Hf isotopes, and degree of fractional crystallization. Our proposed two-stage magmatic model—coupled with a mineralization phase—provides significant insights into both magmatic processes and metallogenesis in the Liaodong Peninsula. It further offers key perspectives into the Early Cretaceous decratonization of the NCC in terms of its tectonic–magmatic–mineralization evolution. Full article
Show Figures

Figure 1

38 pages, 34614 KiB  
Article
Improvement of Lithological Identification Under the Impact of Sparse Vegetation Cover with 1D Discrete Wavelet Transform for Gaofen-5 Hyperspectral Data
by Senmiao Guo and Qigang Jiang
Remote Sens. 2025, 17(12), 1974; https://doi.org/10.3390/rs17121974 - 6 Jun 2025
Viewed by 432
Abstract
Vegetation is a critical factor influencing the identification of rock outcrops using hyperspectral remote sensing data. When mixed pixels containing both vegetation and rock are formed, the spectral signatures of vegetation can partially or fully obscure the diagnostic absorption features of rocks. Based [...] Read more.
Vegetation is a critical factor influencing the identification of rock outcrops using hyperspectral remote sensing data. When mixed pixels containing both vegetation and rock are formed, the spectral signatures of vegetation can partially or fully obscure the diagnostic absorption features of rocks. Based on GaoFen-5 (GF-5) Advanced Hyperspectral Imager (AHSI) data, this study employs a linear spectral mixture model to simulate sparse vegetation–rock mixed pixels. The potential of high-frequency components derived from discrete wavelet transform (DWT) to enhance lithological discrimination within sparse vegetation–rock mixed spectra was analyzed, and the findings were validated using image spectra. The results show that andesite spectra are the most susceptible to vegetation interference. Absorption features in the 2.0–2.4 μm wavelength range were identified as critical indicators for distinguishing lithologies from mixed spectra. High-frequency components extracted through the DWT of the simulated mixed spectra using the Daubechies 8 wavelet function were found to significantly improve classification performance. As vegetation content (including green grass, golden grass, bushes, and lichens) increased from 5% to 60%, the average overall accuracy improved by 15% (from 0.51 to 0.66) after using high-frequency features. The average F1-scores for granite and sandstone increased by 0.12 (from 0.68 to 0.80) and 0.20 (from 0.48 to 0.68), respectively. For AHSI image spectra, the use of high-frequency features resulted in F1-score improvements of 0.48, 0.11, and 0.09 for tuff, granite, and limestone, respectively. Although the identification of andesite remains challenging, this study provides a promising approach for improving lithological mapping accuracy using GF-5 hyperspectral data, particularly in humid and semi-humid regions. Full article
Show Figures

Figure 1

25 pages, 6679 KiB  
Article
Study on the Influence of Temperature Distribution in Thermite Plugging Abandoned Well Technology
by Hao Liu, Jie Zhang, Ruitao Sun, Xiang Li, Jiajun Yao and Jiazheng Zhou
Energies 2025, 18(11), 2941; https://doi.org/10.3390/en18112941 - 3 Jun 2025
Viewed by 382
Abstract
With the intensive development of oil and gas resources leading to a rapid increase in abandoned wells, sealing failures may cause oil and gas leakage and environmental pollution. Systematically investigating the temperature distribution patterns of thermite melting in open-hole abandoned wells under various [...] Read more.
With the intensive development of oil and gas resources leading to a rapid increase in abandoned wells, sealing failures may cause oil and gas leakage and environmental pollution. Systematically investigating the temperature distribution patterns of thermite melting in open-hole abandoned wells under various factors is critical for effective plugging. This study overcomes the limitations of traditional single heat conduction models by integrating thermite reaction kinetics, phase change latent heat, and thermal–fluid–solid multi-field coupling effects, establishing a thermal–fluid–solid coupling model for thermite melting in open-hole abandoned wells. This model provides theoretical guidance for the effectiveness of plugging operations and temperature control during operations. The model was validated through thermite melting experiments: the simulated expansion of the sandstone borehole diameter was 9.8 mm, with a 5.5% error compared to the experimental value of 9.29 mm; and the simulated axial extension at the well bottom was 18.9 mm, with a 4.7% error compared to the experimental value of 17.19 mm, confirming the model’s accuracy. The influence of different lithologies and initial downhole temperatures on the temperature distribution in the open-hole section of abandoned wells under identical conditions was analyzed. The results show that the ultimate melting thicknesses of dolomite, limestone, and granite are 0.0354 m, 0.0350 m, and 0.0234 m, respectively, indicating superior plugging effects in dolomite and limestone. In the initial reaction stage (stage a), the phase change thickness of limestone exceeded that of dolomite by 59.78%, demonstrating better thermite melting and sealing efficacy in limestone. Additionally, model analysis reveals that the initial downhole temperature has a minimal impact on the temperature distribution of thermite melting in open-hole abandoned wells. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

21 pages, 5864 KiB  
Article
Study on Abrasion Resistance of Granite Manufactured Sand Concrete Based on Indoor Abrasion Tester
by Zhitang Li, Yuankuo Wang, Xiaolong Yang, Junlin Liang, Yuanfeng Chen and Minqiang Pan
Coatings 2025, 15(6), 659; https://doi.org/10.3390/coatings15060659 - 30 May 2025
Viewed by 460
Abstract
The long-term wear resistance of granite manufactured sand (HGY) concrete has not been sufficiently investigated. This deficiency makes it difficult to accurately predict and evaluate the service life and durability of such concrete pavements in practical engineering applications. Consequently, this study employed a [...] Read more.
The long-term wear resistance of granite manufactured sand (HGY) concrete has not been sufficiently investigated. This deficiency makes it difficult to accurately predict and evaluate the service life and durability of such concrete pavements in practical engineering applications. Consequently, this study employed a self-developed indoor abrasion test device and combined it with scanning electron microscope (SEM) and X-ray diffraction (XRD) technologies. From the two dimensions of macroscopic performance and microscopic structure, the mechanisms’ influence of the effective sand ratio, stone powder content, and fine aggregate lithology on the wear resistance of HGY concrete were systematically investigated. The optimal content of the effective sand and stone powder content were determined, and the long-term evolution law of the wear resistance of HGY concrete was revealed. The results demonstrate that increasing the effective sand content will reduce the mass loss of concrete. When the stone powder content is 9%, the wear resistance of the concrete is optimal. The order of mass loss of different fine aggregate lithologies is river sand (HS) > limestone mechanism sand (SHY) > HGY, and the wear resistance of HGY is better than that of other fine aggregates. Increasing the effective sand content can enhance the bonding strength between the aggregate and the cement matrix and reduce the porosity, which is conducive to improving the wear resistance of the concrete. Under a relatively small stone powder content, as the amount of stone powder added increases, the pore structure becomes tighter, and the wear resistance of the concrete becomes better. Compared to HS, the manufactured sand (MS) containing stone powder can optimize the pore structure and hydration products of concrete, improve the pore structure of concrete, and improve the wear resistance. Full article
(This article belongs to the Special Issue Synthesis and Application of Functional Polymer Coatings)
Show Figures

Figure 1

17 pages, 6045 KiB  
Article
Formation Mechanism of Granitic Basement Reservoir Linked to Felsic Minerals and Tectonic Stress in the Qiongdongnan Basin, South China Sea
by Qianwei Hu, Tengfei Zhou, Xiaohu He, Zhihong Chen, Youyuan Que, Anqing Chen and Wenbo Wang
Minerals 2025, 15(5), 457; https://doi.org/10.3390/min15050457 - 28 Apr 2025
Viewed by 464
Abstract
Recent exploration efforts in the Qiongdongnan Basin have revealed hydrocarbon resources within granitic basement rocks in buried hill traps. However, the formation mechanisms and primary controlling factors of these reservoirs remain poorly understood. In this study, we utilized data from six wells in [...] Read more.
Recent exploration efforts in the Qiongdongnan Basin have revealed hydrocarbon resources within granitic basement rocks in buried hill traps. However, the formation mechanisms and primary controlling factors of these reservoirs remain poorly understood. In this study, we utilized data from six wells in the Qiongdongnan Basin, including sidewall cores, thin sections, imaging logging, and seismic reflection profiles, to analyze the petrological characteristics, pore systems, and fracture networks of the deep basement reservoir. The aim of our study was to elucidate the reservoir formation mechanisms and identify the key controlling factors. The results indicate that the basement lithology is predominantly granitoid, intruded during the late Permian to Triassic. These rocks are characterized by high felsic mineral content (exceeding 90% on average), with them possessing favorable brittleness and solubility properties. Fractures identified from sidewall cores and interpreted from image logging can be categorized into two main groups: (1) NE-SW trending conjugate shear fractures with sharp dip angles and (2) NW-SE trending conjugate shear fractures with sharp angles. An integrated analysis of regional tectonic stress fields suggests that the NE-trending fractures and associated faults were formed by compressional stresses related to the Indosinian closure of the ancient Tethys Ocean. In contrast, the NW-trending fractures and related faults resulted from southeast-directed compressional stresses during the Yanshanian subduction event. During the subsequent Cenozoic extensional phase, these fractures were reactivated, creating effective storage spaces for hydrocarbons. The presence of calcite and siliceous veins within the reservoir indicates the influence of meteoric water and magmatic–hydrothermal fluid activities. Meteoric water weathering exerted a depth-dependent dissolution effect on feldspathoid minerals, leading to the formation of fracture-related pores near the top of the buried hill trap during the Mesozoic exposure period. Consequently, the combination of high-density fractures and dissolution pores forms a vertically layered reservoir within the buried hill trap. The distribution of potential hydrocarbon targets in the granitic basement is closely linked to the surrounding tectonic framework. Full article
Show Figures

Figure 1

26 pages, 13999 KiB  
Article
Development Characteristics of Natural Fractures in Metamorphic Basement Reservoirs and Their Impacts on Reservoir Performance: A Case Study from the Bozhong Depression, Bohai Sea Area, Eastern China
by Guanjie Zhang, Jingshou Liu, Lei Zhang, Elsheikh Ahmed, Qi Cheng, Ning Shi and Yang Luo
J. Mar. Sci. Eng. 2025, 13(4), 816; https://doi.org/10.3390/jmse13040816 - 19 Apr 2025
Viewed by 556
Abstract
Archaean metamorphic basement reservoirs, characterized by the development of natural fractures, constitute the primary target for oil and gas exploration in the Bozhong Depression, Bohai Bay Basin, Eastern China. Based on analyses of geophysical image logs, cores, scanning electron microscopy (SEM), and laboratory [...] Read more.
Archaean metamorphic basement reservoirs, characterized by the development of natural fractures, constitute the primary target for oil and gas exploration in the Bozhong Depression, Bohai Bay Basin, Eastern China. Based on analyses of geophysical image logs, cores, scanning electron microscopy (SEM), and laboratory measurements, tectonic fractures are identified as the dominant type of natural fracture. Their development is primarily controlled by lithology, weathering intensity, and faulting. Fractures preferentially develop in metamorphic rocks with low plastic mineral content and are positively correlated with weathering intensity. Fracture orientations are predominantly parallel or subparallel to fault strikes, while localized stress perturbations induced by faulting significantly increase fracture density. Open fractures, constituting more than 60% of the total reservoir porosity, serve as both primary storage spaces and dominant fluid flow conduits, fundamentally governing reservoir quality. Consequently, spatial heterogeneity in fracture distribution drives distinct vertical zonation within the reservoir. The lithological units are ranked by fracture development potential (in descending order): leptynite, migmatitic granite, gneiss, cataclasite, diorite-porphyrite, and diabase. Diabase represents the lower threshold for effective reservoir formation, whereas overlying lithologies may function as reservoirs under favorable conditions. The large-scale compressional orogeny during the Indosinian period marked the primary phase of tectonic fracture formation. Subsequent uplift and inversion during the Yanshanian period further modified and overlaid the Indosinian structures. These structures are characterized by strong strike-slip strain, resulting in a series of conjugate shear fractures. During the Himalayan period, preexisting fractures were primarily reactivated, significantly influencing fracture effectiveness. The development model of the fracture network system in the metamorphic basement reservoirs of the study area is determined by a coupling mechanism of dominant lithology and multiphase fracturing. The spatial network reservoir system, under the control of multistage structure and weathering, is key to the formation of large-scale effective reservoirs in the metamorphic basement. Full article
(This article belongs to the Special Issue Advances in Offshore Oil and Gas Exploration and Development)
Show Figures

Figure 1

16 pages, 9783 KiB  
Article
Mineralogical and Chemical Characteristics of Sediments in the Lhasa River Basin: Implications for Weathering and Sediment Transport
by Heyulu Zhang, Tianning Li, Changping Mao, Zhengjin Song and Wenbo Rao
Water 2025, 17(4), 581; https://doi.org/10.3390/w17040581 - 18 Feb 2025
Viewed by 674
Abstract
The Lhasa River, as one of the major rivers on the Tibetan Plateau, is of great value for the study of climate and environmental changes on the Tibetan Plateau. In this paper, the grain size and the mineralogical and geochemical characteristics of the [...] Read more.
The Lhasa River, as one of the major rivers on the Tibetan Plateau, is of great value for the study of climate and environmental changes on the Tibetan Plateau. In this paper, the grain size and the mineralogical and geochemical characteristics of the sediments from the Lhasa River were investigated. The results show the following: (1) The average grain size of the Lhasa River sediments is coarse (65.5% sand, 23.6% silt), and the sorting is overall poor; the skewness is mostly positive, and the kurtosis is wide, which reflects the obvious characteristics of river sand deposition. (2) The mineral composition of the Lhasa River sediments is dominated by quartz (38.4%), feldspar, and plagioclase feldspar, followed by clay minerals, and the content of carbonate minerals is relatively low; the content of clay minerals in the illite content is as high as 83.3%, while the chlorite content is slightly higher than kaolinite, and smectite content is very low. The chemical index of illite is less than 0.4, indicating that illite is mainly iron-rich magnesium illite. (3) The value of the chemical weathering index (CIA) of the sediments is low, implying that the sediments are in a weak–moderate chemical weathering state and dominated by physical weathering. Comprehensive analyses further revealed that the weathering process of the sediments in the Lhasa River was influenced by both climate and lithology, i.e., sediment composition is influenced not only by chemical weathering in a dry, cold climate but also by physical weathering of granites exposed over large areas. The results of this study can provide scientific references for further in-depth research on the environmental and climatic effects of the Tibetan Plateau. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

35 pages, 18372 KiB  
Article
The Initial Subduction Time of the Proto-Tethys Ocean in the Eastern Section of the East Kunlun Orogen: The Constraints from the Zircon U-Pb Ages and the Geochemistry of the Kekesha Intrusion
by Jian Song, Xianzhi Pei, Zuochen Li, Ruibao Li, Lei Pei, Youxin Chen and Chengjun Liu
Minerals 2025, 15(2), 127; https://doi.org/10.3390/min15020127 - 27 Jan 2025
Cited by 1 | Viewed by 883
Abstract
The Cambrian period marks a crucial phase in the initial subduction of the Proto-Tethys Ocean beneath the East Kunlun Orogen. Studying the I-type granites and mafic–ultramafic rocks formed during this period can provide valuable insights into the early Paleozoic tectonic evolution of the [...] Read more.
The Cambrian period marks a crucial phase in the initial subduction of the Proto-Tethys Ocean beneath the East Kunlun Orogen. Studying the I-type granites and mafic–ultramafic rocks formed during this period can provide valuable insights into the early Paleozoic tectonic evolution of the region. This paper incorporates petrology, LA-ICP-MS zircon U-Pb geochronology, and whole-rock major and trace element data obtained from the Kekesha intrusion in the eastern section of the East Kunlun Orogen. The formation age, petrogenesis, and magmatic source region of the intrusion are revealed, and the early tectonic evolution process of the subduction of the Proto-Tethys Ocean is discussed. The Kekesha intrusion includes four main rock types: gabbro, gabbro diorite, quartz diorite, and granodiorite. The zircon U-Pb ages are 515.7 ± 7.4 Ma for gabbro, 508.9 ± 9.8 Ma for gabbro diorite, 499.6 ± 4.0 Ma for quartz diorite, and 502.3 ± 9.3 Ma and 501.6 ± 6.2 Ma for granodiorite, respectively, indicating that they were formed in the Middle Cambrian. The geochemical results indicate that the gabbro belongs to the high-Al calc-alkaline basalt series, the gabbro diorite belongs to the medium-high-K calc-alkaline basalt series, the quartz diorite belongs to the quasi-aluminous medium-high-K calc-alkaline I-type granite series, and the granodiorite belongs to the weakly peraluminous calc-alkaline I-type granite series, all of which belong to the medium-high-K calc-alkaline series that have undergone varying degrees of differentiation and contamination. Gabbro and gabbro diorite exhibit significant enrichment in light rare earth elements (LREEs), depletion in heavy rare earth elements (HREEs), and an enhanced negative anomaly in Eu (Europium). Compared to gabbro and gabbro diorite, quartz diorite and granodiorite exhibit more pronounced enrichment in LREEs, more significant depletion in HREEs, and an enhanced negative anomaly in Eu. All four rock types are enriched in large-ion lithophile elements (LILEs) such as Cs, Rb, Th, Ba, and U, and are depleted in high-field-strength elements (HFSEs) such as Nb, Ta, and Ti. This indicates that these rocks originated from the same or similar mixed mantle source regions, and that they are formed in the island-arc tectonic environment. This paper suggests that the gabbro and gabbro diorite are mainly derived from the basic magma formed by partial melting of the lithospheric mantle metasomatized by subducted slab melt in the oceanic crust subduction zone and mixed with a small amount of asthenosphere mantle material. Quartz diorite results from the crystal fractionation of basic magma and experiences crustal contamination during magmatic evolution. Granodiorite forms through the crystal fractionation of basic magma, mixed with partial melting products from quartz diorite. While the lithology of the intrusions differs, their geochemical characteristics suggest they share the same tectonic environment. Together, they record the geological processes associated with island-arc formation in the East Kunlun region, driven by the northward subduction of the Proto-Tethys Ocean during the Early Paleozoic. Based on regional tectonic evolution, it is proposed that the Proto-Tethys Ocean began subducting northward beneath the East Kunlun block from the Middle Cambrian. The Kekesha intrusion formed between 516 and 500 Ma, marking the early stages of Proto-Tethys Ocean crust subduction. Full article
Show Figures

Figure 1

22 pages, 29178 KiB  
Article
Molybdenite Re–Os and Zircon U–Pb Isotopic Constraints on Gold Mineralization Associated with Fine-Grained Granite in the Xiawolong Deposit, Jiaodong Peninsula, East China
by Mingchao Wu, Zhongliang Wang and Pengyu Liu
Appl. Sci. 2025, 15(3), 1199; https://doi.org/10.3390/app15031199 - 24 Jan 2025
Viewed by 737
Abstract
Molybdenite Re–Os and zircon U–Pb isotopic data are first obtained from the stockwork and disseminated-style gold-bearing ores and the fine-grained granite hosting these ores in the Xiawolong gold mine, respectively, which is located within the Muping–Rushan gold metallogenic belt, eastern Jiaodong Peninsula, so [...] Read more.
Molybdenite Re–Os and zircon U–Pb isotopic data are first obtained from the stockwork and disseminated-style gold-bearing ores and the fine-grained granite hosting these ores in the Xiawolong gold mine, respectively, which is located within the Muping–Rushan gold metallogenic belt, eastern Jiaodong Peninsula, so as to illustrate the genesis of gold mineralization and its implication for exploration. Four molybdenite samples yield a well-defined Re–Os isochron age of 118.4 ± 2.5 Ma (2σ), which is identical to the weighted average Re–Os model age of 118 ± 1.7 Ma (2σ). Integration of the new geochronologic data with those reported recently from the other gold mines in the Muping–Rushan gold metallogenic belt suggests that a discrete gold event occurred in Xiawolong ca. 4 m.y. older than that for the other gold mineralization at ca. 114 Ma in eastern Jiaodong. In addition, two fine-grained granite samples, measured using the LA-ICP-MS zircon U–Pb method, produce the first precise ages of 118 ± 2 to 117 ± 2 Ma (2σ), identical to the molybdenite Re–Os ages, within the margin of error and obtained in this study. The fine-grained granite has a similar lithology and emplacement age as those of the medium-grained monzogranite consisting of the marginal facies of the Sanfoshan batholith, and is considered to be the crystallization products of Sanfoshan granitic magma in the late stage. Combined with the previous S-Pb-D-O isotope, fluid inclusion and geological studies, which suggest that the ore-forming fluid of Xiawolong gold mineralization is from magmatic water, and the identification that the magnetite coexists with the gold-bearing pyrite and molybdenite in the gold ores, which indicates a high oxygen fugacity (fO2) of both the magma and resultant hydrothermal fluids, it is logical to infer that the Xiawolong gold deposit is genetically in relation to the Sanfoshan granitic magmatism, which is high in fO2 and rich in Au at the magmatic–hydrothermal transition stage, and the change in fO2 mostly likely makes a significant contribution to the precipitation of Au. This result reveals that the late-stage granitic magma with high fO2, which is crystallized into the fine-grained granite, probably is also rich in Au, except the W–Mo–Cu–Zn–U–Be–Li–Nb–Ta–Sn–Bi-elements. Therefore, based on the extensional tectonic regime for the early Cretaceous Jiaodong gold deposits, we propose that gold exploration in the Jiaodong should not only focus on the fault-hosted Au but also on the fine-grained granite-hosted Au around the apical portions of the late Early Cretaceous small-granitic intrusions with high fO2. This model could also be important for prospecting in other gold ore districts, which have a similar tectonic setting. Full article
(This article belongs to the Special Issue Technologies and Methods for Exploitation of Geological Resources)
Show Figures

Figure 1

20 pages, 10156 KiB  
Article
Granitoid Mapping with Convolutional Neural Network from ASTER and Landsat 8 OLI Data: A Case Study in the Western Junggar Orogen
by Shuo Zheng, Yarong Zhou, Yanfei An, Xiangyu Cui and Pilong Shi
Remote Sens. 2025, 17(3), 384; https://doi.org/10.3390/rs17030384 - 23 Jan 2025
Cited by 1 | Viewed by 805
Abstract
The Western Junggar Orogen (Xinjiang) is featured by widespread granite intrusions and substantial Au-Cu-Mo resources, making it an ideal site to study granitoids and their metallogenic link. Here, we first conducted geological surveys and analyses with ASD spectrometry, polarized light microscopy (PLM), and [...] Read more.
The Western Junggar Orogen (Xinjiang) is featured by widespread granite intrusions and substantial Au-Cu-Mo resources, making it an ideal site to study granitoids and their metallogenic link. Here, we first conducted geological surveys and analyses with ASD spectrometry, polarized light microscopy (PLM), and X-Ray diffraction (XRD) to determine the granitoid lithology. Then, we used spectral and remote sensing data statistics and rock textural features to select band combinations from ASTER and Landsat 8 OLI VNIR-SWIR data. Three band combinations, i.e., spectral absorption bands + T1, SWIR + T1, and VNIR-SWIR + T1, serve as the input layers for convolutional neural networks (AlexNet, VGG16, and GoogLeNet). They are used for remote sensing identification of granitoid lithology and the assessment of its accuracy. The results highlight the AlexNet model’s superior performance, as evidenced by the highest weighted F1 score (91.98%) and kappa coefficient (0.84) with ASTER VNIR-SWIR + T1 as the input layers. We suggest that the AlexNet model can best identify the granitoid subtypes (with ASTER images) in the Western Junggar. In contrast, Landsat 8 OLI images performed poorly, possibly because they have only two SWIR bands. We offer detailed spatial distribution characteristics of granite subtypes and provide remote sensing exploration methods for studying polymetallic ore belts in the Central Asian Orogenic Belt (CAOB). Full article
Show Figures

Figure 1

42 pages, 21453 KiB  
Article
Clay Mineralogy and Major and Trace Element Geochemistry of Recent Sediments in Rivers Along the West Coast of India: Implications for Provenance and Chemical Weathering
by Shaik Sai Babu, Venigalla Purnachandra Rao and Mekala Ram Mohan
Minerals 2025, 15(1), 43; https://doi.org/10.3390/min15010043 - 31 Dec 2024
Cited by 1 | Viewed by 1664
Abstract
The clay mineralogy and major and trace element geochemistry of the sediments deposited at the lower reaches of 90 medium and minor rivers from five states along the west coast of India indicate distinct clay mineral assemblages in the Archean–Proterozoic (A-P) terrain and [...] Read more.
The clay mineralogy and major and trace element geochemistry of the sediments deposited at the lower reaches of 90 medium and minor rivers from five states along the west coast of India indicate distinct clay mineral assemblages in the Archean–Proterozoic (A-P) terrain and Deccan Trap (DT) terrain. The sediments from A-P terrain are dominated by kaolinite, with minor illite and gibbsite and traces of goethite, and those from DT terrain are dominated by smectite with minor illite, kaolinite and chlorite. The sediments are depleted of Si, Ca, Mg, Na and K relative to those of Post-Archean average Australian Shale. The SiO2/Al2O3 ratio of the sediments suggests lateritic soils in the A-P terrain and non-lateritic, chemically weathered soils in the DT terrain. Weathering indices indicate strong weathering in the clay fractions of all sediments. The silt fractions of sediments from Goa, Maharashtra and Gujarat exhibit intermediate to weak weathering and influence by hydraulic sorting processes and source rock characteristics. The total trace element content (∑TE) was higher in the silt fractions than in clay fractions of all sediments, and peaks of high ∑TE occur in the silt fractions of Kerala and Maharashtra. The silt fractions exhibit relatively high Th, U, La, Zr and Hf from A-P terrain, and high Sc, Cr, Co, Ni, V and Ga from DT terrain. The Th/U and Rb/Sr ratios are controlled by the intensity of weathering and lithology of source rocks. The standard plots using trace elements reveal that the clay fractions of sediments are more mafic from both the terrains, while silt fractions exhibit intermediate provenance between felsic and mafic sources. Since mafic component-dominated clays are transported to the adjacent seas and oceans, it would be a challenge to identify the provenance of clays from granitic terrain in the oceans using trace element chemistry. Full article
(This article belongs to the Special Issue Chemical Weathering Studies)
Show Figures

Figure 1

Back to TopTop