Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (433)

Search Parameters:
Keywords = gold-based drugs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 9773 KiB  
Review
Visceral Arterial Pseudoaneurysms—A Clinical Review
by Ashita Ashish Sule, Shreya Sah, Justin Kwan, Sundeep Punamiya and Vishal G. Shelat
Medicina 2025, 61(7), 1312; https://doi.org/10.3390/medicina61071312 - 21 Jul 2025
Viewed by 437
Abstract
Background and Objectives: Visceral arterial pseudoaneurysms (VAPAs) are rare vascular lesions characterized by the disruption of partial disruption of the arterial wall, most commonly involving the intima and media. They have an estimated incidence of 0.1–0.2%, with the splenic artery most commonly [...] Read more.
Background and Objectives: Visceral arterial pseudoaneurysms (VAPAs) are rare vascular lesions characterized by the disruption of partial disruption of the arterial wall, most commonly involving the intima and media. They have an estimated incidence of 0.1–0.2%, with the splenic artery most commonly affected. Their management poses unique challenges due to the high risk of rupture. Timely recognition is crucial, as unmanaged pseudoaneurysms have a mortality rate of 90%. This narrative review aims to synthesize current knowledge regarding the epidemiology, etiology, clinical presentation, diagnostic methods, and management strategies for VAPAs. Materials and Methods: A literature search was performed across Pubmed for articles reporting on VAPAs, including case reports, review articles, and cohort studies, with inclusion of manuscripts that were up to (date). VAPAs are grouped by embryological origin—foregut, midgut, and hindgut. Results: Chronic pancreatitis is a primary cause of VAPAs, with the splenic artery being involved in 60–65% of cases. Other causes include acute pancreatitis, as well as iatrogenic trauma from surgeries, trauma, infections, drug use, and vascular diseases. VAPAs often present as abdominal pain upon rupture, with symptoms like nausea, vomiting, and gastrointestinal hemorrhage. Unruptured pseudoaneurysms may manifest as pulsatile masses or bruits but are frequently asymptomatic and discovered incidentally. Diagnosis relies on both non-invasive imaging techniques, such as CT angiography and Doppler ultrasound, and invasive methods like digital subtraction angiography, which remains the gold standard for detailed evaluation and treatment. A range of management options exists that are tailored to individual cases based on the aneurysm’s characteristics and patient-specific factors. This encompasses both surgical and endovascular approaches, with a growing preference for minimally invasive techniques due to lower associated morbidity. Conclusions: VAPAs are a critical condition requiring prompt early recognition and intervention. This review highlights the need for ongoing research to improve diagnostic accuracy and refine treatment protocols, enhancing patient outcomes in this challenging domain of vascular surgery. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

30 pages, 3682 KiB  
Review
Advanced Nanomaterials Functionalized with Metal Complexes for Cancer Therapy: From Drug Loading to Targeted Cellular Response
by Bojana B. Zmejkovski, Nebojša Đ. Pantelić and Goran N. Kaluđerović
Pharmaceuticals 2025, 18(7), 999; https://doi.org/10.3390/ph18070999 - 3 Jul 2025
Viewed by 705
Abstract
Developments of nanostructured materials have a significant impact in various areas, such as energy technology and biomedical use. Examples include solar cells, energy management, environmental control, bioprobes, tissue engineering, biological marking, cancer diagnosis, therapy, and drug delivery. Currently, researchers are designing multifunctional nanodrugs [...] Read more.
Developments of nanostructured materials have a significant impact in various areas, such as energy technology and biomedical use. Examples include solar cells, energy management, environmental control, bioprobes, tissue engineering, biological marking, cancer diagnosis, therapy, and drug delivery. Currently, researchers are designing multifunctional nanodrugs that combine in vivo imaging (using fluorescent nanomaterials) with targeted drug delivery, aiming to maximize therapeutic efficacy while minimizing toxicity. These fascinating nanoscale “magic bullets” should be available in the near future. Inorganic nanovehicles are flexible carriers to deliver drugs to their biological targets. Most commonly, mesoporous nanostructured silica, carbon nanotubes, gold, and iron oxide nanoparticles have been thoroughly studied in recent years. Opposite to polymeric and lipid nanostructured materials, inorganic nanomaterial drug carriers are unique because they have shown astonishing theranostic (therapy and diagnostics) effects, expressing an undeniable part of future use in medicine. This review summarizes research from development to the most recent discoveries in the field of nanostructured materials and their applications in drug delivery, including promising metal-based complexes, platinum, palladium, ruthenium, titanium, and tin, to tumor cells and possible use in theranostics. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Figure 1

15 pages, 2577 KiB  
Article
The Influence of pH on the Catalytic Capacity of Levodopa in the Electroreduction Processes of Zn2+ Ions
by Jolanta Nieszporek and Tomasz Pańczyk
Molecules 2025, 30(12), 2590; https://doi.org/10.3390/molecules30122590 - 13 Jun 2025
Viewed by 330
Abstract
The aim of the study was to investigate the influence of L-DOPA—the gold standard in the treatment of Parkinson’s disease symptoms—on the electroreduction kinetics of Zn2+ ions. It was demonstrated that this effect depends not only on the concentration of the drug [...] Read more.
The aim of the study was to investigate the influence of L-DOPA—the gold standard in the treatment of Parkinson’s disease symptoms—on the electroreduction kinetics of Zn2+ ions. It was demonstrated that this effect depends not only on the concentration of the drug but also on the environment in which the process takes place. In the experimental part, cyclic voltammetry (CV), square wave voltammetry (SWV), direct current polarography (DC), and electrochemical impedance spectroscopy (EIS) were used. Based on the obtained results, it was determined that the analyzed electrode reaction, both in the absence and presence of L-DOPA, proceeded in two steps. The kinetic parameters of Zn2+ ion electroreduction indicated its quasi-reversible nature in solutions with both pH = 2.0 and pH = 6.0. The presence of the drug in the lower pH solution resulted in a slight slowing down of the electrode process, whereas in the pH = 6.0 solution, it led to a significant acceleration. In both low and high pH solutions, the first step was slower and determined the rate of the entire electrode process. Full article
Show Figures

Graphical abstract

14 pages, 2913 KiB  
Article
Sensitive Gold Nanostar-Based Adsorption Sensor for the Determination of Dexamethasone
by Riccarda Thelma MacDonald, Keagan Pokpas, Emmanuel Iwuoha and Candice Cupido
Chemosensors 2025, 13(6), 208; https://doi.org/10.3390/chemosensors13060208 - 7 Jun 2025
Viewed by 1048
Abstract
Herein, a novel, highly efficient electrochemical adsorption method is introduced for detection of the potent anti-inflammatory synthetic corticosteroid, dexamethasone (DEX). Unlike conventional electrochemical techniques that rely on high reduction potentials, the proposed sensor offers an alternative adsorption-based mechanism with a gold nanostar-modified glassy [...] Read more.
Herein, a novel, highly efficient electrochemical adsorption method is introduced for detection of the potent anti-inflammatory synthetic corticosteroid, dexamethasone (DEX). Unlike conventional electrochemical techniques that rely on high reduction potentials, the proposed sensor offers an alternative adsorption-based mechanism with a gold nanostar-modified glassy carbon electrode (AuNS|GCE). This enables DEX detection at a less negative or moderate reduction potential of +200 mV, circumventing potential window limitations of a GCE and providing a suitable microenvironment for detection in biological media. DEX is known to effectively prevent or suppress symptoms of inflammation due to its small applied dosage; however, an overdose thereof in the human body could lead to adverse drug effects such as gastrointestinal perforation, seizures, and heart attacks. Therefore, a sensitive method is essential to monitor DEX concentration in biofluids such as urine. NMGA-capped AuNSs were leveraged to enhance the active surface area of the sensing platform and allow adsorption of DEX onto the gold surfaces through its highly electronegative fluorine atom. Under optimized experimental conditions, the developed AuNS|GCE sensor showed excellent analytical performance with a remarkably low limit of detection (LOD) of 1.11 nM, a good sensitivity of 0.187 µA.nM−1, and a high percentage recovery of 92.5% over the dynamic linear range of 20–120 nM (linear regression of 0.995). The favourable electrochemical performance of this sensor allowed for successful application in the sensitive determination of DEX in synthetic urine (20% v/v in PBS, pH 7). Full article
Show Figures

Graphical abstract

31 pages, 4568 KiB  
Review
Stimuli-Responsive DNA Hydrogel Design Strategies for Biomedical Applications
by Minhyuk Lee, Minjae Lee, Sungjee Kim and Nokyoung Park
Biosensors 2025, 15(6), 355; https://doi.org/10.3390/bios15060355 - 4 Jun 2025
Viewed by 1062
Abstract
Hydrogels are three-dimensional network structures composed of hydrophilic polymers that can swell in water and are very similar to soft tissues such as connective tissue or the extracellular matrix. DNA hydrogels are particularly notable for biomedical applications due to their high biocompatibility, physiological [...] Read more.
Hydrogels are three-dimensional network structures composed of hydrophilic polymers that can swell in water and are very similar to soft tissues such as connective tissue or the extracellular matrix. DNA hydrogels are particularly notable for biomedical applications due to their high biocompatibility, physiological stability, molecular recognition, biodegradability, easy functionalization, and low immunogenicity. Based on these advantages, stimuli-responsive DNA hydrogels that have the property of reversibly changing their structure in response to various microenvironments or molecules are attracting attention as smart nanomaterials that can be applied to biosensing and material transfer, such as in the case of cells and drugs. As DNA nanotechnology advances, DNA can be hybridized with a variety of nanomaterials, from inorganic nanomaterials such as gold nanoparticles (AuNPs) and quantum dots (QDs) to synthetic polymers such as polyacrylamide (PAAm) and poly(N-isopropylacrylamide) (pNIPAM). These hybrid structures exhibit various optical and chemical properties. This review discusses recent advances and remaining challenges in biomedical applications of stimuli-responsive smart DNA hydrogel-based systems. It also highlights various types of hybridized DNA hydrogel, explores various response mechanism strategies of stimuli-responsive DNA hydrogel, and provides insights and prospects for biomedical applications such as biosensing and drug delivery. Full article
(This article belongs to the Special Issue Hydrogel-Based Biosensors: From Design to Applications)
Show Figures

Figure 1

12 pages, 9594 KiB  
Article
An Electrochemical Sensor Based on AuNPs@Cu-MOF/MWCNTs Integrated Microfluidic Device for Selective Monitoring of Hydroxychloroquine in Human Serum
by Xuanlin Feng, Jiaqi Zhao, Shiwei Wu, Ying Kan, Honemei Li and Weifei Zhang
Chemosensors 2025, 13(6), 200; https://doi.org/10.3390/chemosensors13060200 - 1 Jun 2025
Viewed by 742
Abstract
Hydroxychloroquine (HCQ), a cornerstone therapeutic agent for autoimmune diseases, requires precise serum concentration monitoring due to its narrow therapeutic window. Current HCQ monitoring methods such as HPLC and LC-MS/MS are sensitive but costly and complex. While electrochemical sensors offer rapid, cost-effective detection, their [...] Read more.
Hydroxychloroquine (HCQ), a cornerstone therapeutic agent for autoimmune diseases, requires precise serum concentration monitoring due to its narrow therapeutic window. Current HCQ monitoring methods such as HPLC and LC-MS/MS are sensitive but costly and complex. While electrochemical sensors offer rapid, cost-effective detection, their large chambers and high sample consumption hinder point-of-care use. To address these challenges, we developed a microfluidic electrochemical sensing platform based on a screen-printed carbon electrode (SPCE) modified with a hierarchical nanocomposite of gold nanoparticles (AuNPs), copper-based metal–organic frameworks (Cu-MOFs), and multi-walled carbon nanotubes (MWCNTs). The Cu-MOF provided high porosity and analyte enrichment, MWCNTs established a 3D conductive network to enhance electron transfer, and AuNPs further optimized catalytic activity through localized plasmonic effects. Structural characterization (SEM, XRD, FT-IR) confirmed the successful integration of these components via π-π stacking and metal–carboxylate coordination. Electrochemical analyses (CV, EIS, DPV) revealed exceptional performance, with a wide linear range (0.05–50 μM), a low detection limit (19 nM, S/N = 3), and a rapid response time (<5 min). The sensor exhibited outstanding selectivity against common interferents, high reproducibility (RSD = 3.15%), and long-term stability (98% signal retention after 15 days). By integrating the nanocomposite-modified SPCE into a microfluidic chip, we achieved accurate HCQ detection in 50 μL of serum, with recovery rates of 95.0–103.0%, meeting FDA validation criteria. This portable platform combines the synergistic advantages of nanomaterials with microfluidic miniaturization, offering a robust and practical tool for real-time therapeutic drug monitoring in clinical settings. Full article
(This article belongs to the Special Issue Feature Papers on Luminescent Sensing (Second Edition))
Show Figures

Figure 1

25 pages, 899 KiB  
Review
A Scoping Review of Vitamins Detection Using Electrochemically Polymerised, Molecularly Imprinted Polymers
by Mohd Azerulazree Jamilan, Balqis Kamarudin, Zainiharyati Mohd Zain, Kavirajaa Pandian Sambasevam, Faizatul Shimal Mehamod and Mohd Fairulnizal Md Noh
Polymers 2025, 17(10), 1415; https://doi.org/10.3390/polym17101415 - 21 May 2025
Viewed by 698
Abstract
Vitamins are crucial micro-nutrients for overall well-being, making continuous monitoring essential. There are demands to provide an alternative detection, especially using a portable detection or a point-of-care-testing (POCT) device. One promising approach is employing an in situ electro-polymerised MIP (eMIP), which offers a [...] Read more.
Vitamins are crucial micro-nutrients for overall well-being, making continuous monitoring essential. There are demands to provide an alternative detection, especially using a portable detection or a point-of-care-testing (POCT) device. One promising approach is employing an in situ electro-polymerised MIP (eMIP), which offers a straightforward polymerisation technique on screen-printed electrodes (SPEs). Here, we report a review based on three databases (PubMed, Scopus, and Web of Science) from 2014 to 2024 using medical subject heading (MeSH) terms “electrochemical polymerisation” OR “electropolymerisation” crossed with the terms “molecularly imprinted polymer” AND “vitamin A” OR “vitamin D” OR “vitamin E” OR “vitamin K” OR “fat soluble vitamin” OR “vitamin B” OR “vitamin C” OR “water soluble vitamin”. The resulting 12 articles covered the detection of vitamins in ascorbic acid, riboflavin, cholecalciferol, calcifediol, and menadione using monomers of catechol (CAT), 3,4-ethylenedioxythiophene (EDOT), o-aminophenol (oAP), o-phenylenediamine (oPD), pyrrole, p-aminophenol (pAP), p-phenylenediamine (pPD), or resorcinol (RES), using common bare electrodes including graphite rod electrode (GRE), glassy carbon electrode (GCE), gold electrode (GE), and screen-printed carbon electrode (SPCE). The most common electrochemical detections were differential pulse voltammetry (DPV) and linear sweep voltammetry (LSV). The imprinting factor (IF) of the eMIP-modified electrodes were from 1.6 to 21.0, whereas the cross-reactivity was from 0.0% to 29.9%. Several types of food and biological samples were tested, such as supplement tablets, poultry and pharmaceutical drugs, soft drinks, beverages, milk, infant formula, human and calf serum, and human plasma. However, more discoveries and development of detection methods needs to be performed, especially for the vitamins that have not been studied yet. This will allow the improvement in the application of eMIPs on portable-based detection and POCT devices. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymers: Latest Advances and Applications)
Show Figures

Graphical abstract

13 pages, 1488 KiB  
Article
Biology-Informed Matrix Factorization: An AI-Driven Framework for Enhanced Drug Repositioning
by Yangyang Wang, Yaping Wang, Ya Hu and Jihan Wang
Biology 2025, 14(5), 549; https://doi.org/10.3390/biology14050549 - 15 May 2025
Viewed by 430
Abstract
Advances in artificial intelligence (AI) and intelligent computing have significantly accelerated drug discovery by enabling accurate modeling of complex biomedical relationships. Among these efforts, drug repositioning—identifying novel therapeutic uses for approved or investigational drugs—offers a cost-effective and time-efficient alternative to de novo drug [...] Read more.
Advances in artificial intelligence (AI) and intelligent computing have significantly accelerated drug discovery by enabling accurate modeling of complex biomedical relationships. Among these efforts, drug repositioning—identifying novel therapeutic uses for approved or investigational drugs—offers a cost-effective and time-efficient alternative to de novo drug development. While non-negative matrix factorization (NMF) has been widely adopted for uncovering latent drug–disease associations, conventional implementations often neglect the biological context that underpins these relationships. In this work, we propose a novel NMF-based drug repositioning model that incorporates biological context (NMFIBC), which integrates drug and disease similarity networks through graph-regularized optimization to enhance predictive performance. This design enhances both the robustness and interpretability of association prediction. Extensive benchmarking on multiple gold-standard datasets demonstrates that NMFIBC outperforms existing methods across a range of metrics, including AUC, precision, and F1-score. Moreover, case studies involving clinically relevant drugs validate the biological plausibility of the predicted associations using public databases such as DrugBank, CTD, and KEGG. The proposed framework provides a powerful, context-aware AI strategy for discovering actionable insights in drug repositioning research. Full article
(This article belongs to the Special Issue Artificial Intelligence Research for Complex Biological Systems)
Show Figures

Graphical abstract

29 pages, 12163 KiB  
Article
Gold Nanoparticle-Based Hydrogel: Application in Anticancer Drug Delivery and Wound Healing In Vitro
by Varshan Gounden and Moganavelli Singh
Pharmaceutics 2025, 17(5), 633; https://doi.org/10.3390/pharmaceutics17050633 - 9 May 2025
Viewed by 750
Abstract
Background/Objectives: Due to the challenges faced by anticancer therapeutics, such as poor selectivity and metabolic degradation, novel delivery systems are needed to mitigate the adverse effects of chemotherapy. The management of chronic wounds is often overlooked and affects patients mentally and physically. [...] Read more.
Background/Objectives: Due to the challenges faced by anticancer therapeutics, such as poor selectivity and metabolic degradation, novel delivery systems are needed to mitigate the adverse effects of chemotherapy. The management of chronic wounds is often overlooked and affects patients mentally and physically. The application of hydrogels can reduce deficiencies in drug delivery and wound healing due to their similarity to the extracellular matrix and stimuli-responsive properties. Methods: A chitosan (CS) hydrogel, cross-linked to gold nanoparticles (AuNPs), followed by the encapsulation of 5-fluorouracil (5-FU), was formulated. The physicochemical properties, drug release profiles, cytotoxicity, and wound healing in vitro were analyzed. Results: Fourier transform infrared spectroscopy and a UV-visible peak at 530 nm confirmed their successful synthesis. Transmission electron microscopy revealed spherical NPs of 89.31 nm, while scanning electron microscopy confirmed the porous network surface of the hydrogels. The thermogravimetric analysis demonstrated enhanced stability for the CS-Au hydrogel, while a non-Newtonian shear-thinning property was evident from rheology. Drug release showed a sustained, pH-dependent release with specificity for the acidic cancer microenvironment. The cytotoxicity assay demonstrated a specificity of the CS-Au-5-FU hydrogel for the cancer cells (HeLa and MCF-7) and diminished cytotoxicity in the non-cancer cells (HEK293). The scratch assay illustrated a complete closure of the wounds in HEK293 cells at low concentrations (15.63 and 31.25 µg/mL). Conclusions: The positive findings from this study confirm the potential of these CS-Au hydrogels to function as smart in vitro delivery systems and scaffolds for wound healing, warranting additional optimizations and in vivo studies. Full article
Show Figures

Graphical abstract

17 pages, 11168 KiB  
Article
pH-Responsive Gold Nanoparticle/PVP Nanoconjugate for Targeted Delivery and Enhanced Anticancer Activity of Withaferin A
by Velmurugan Sekar, Amutha Santhanam and Paulraj Arunkumar
Processes 2025, 13(5), 1290; https://doi.org/10.3390/pr13051290 - 23 Apr 2025
Cited by 1 | Viewed by 716
Abstract
The development of advanced high-capacity nanoparticle-based drug loading, precise targeting, low toxicity, and excellent biocompatibility is critical for improving cancer therapeutics. Withaferin A, a natural steroidal lactone derived from Physalis minima, exhibits potential biological activity and holds promise as a therapeutic agent. [...] Read more.
The development of advanced high-capacity nanoparticle-based drug loading, precise targeting, low toxicity, and excellent biocompatibility is critical for improving cancer therapeutics. Withaferin A, a natural steroidal lactone derived from Physalis minima, exhibits potential biological activity and holds promise as a therapeutic agent. In this study, a novel nanoconjugate (NC) was developed using gold nanoparticles (AuNPs) functionalized with polyvinylpyrrolidone (PVP), Withaferin A drug, and folic acid for targeted drug delivery in cancer treatment. The AuNPs–PVP–Withaferin A–FA nanoconjugate was synthesized through a layer-by-layer assembly process and was confirmed using UV–visible and FTIR spectroscopy. The hydrodynamic radius, surface charge, and morphology of the NC were characterized using dynamic light scattering (DLS), zeta potential analysis, and electron microscopy, respectively. The nanoformulation demonstrated a pH-responsive drug release, with 92% of Withaferin A released at pH 5, mimicking the tumor microenvironment. In vitro cytotoxicity studies conducted on MCF-7 cells using MTT assays, dual dye staining, and protein expression analysis revealed that the nanoconjugate effectively induced apoptosis in cancer cells. These outcomes emphasize the prospect AuNPs–PVP–Withaferin A–FA nanoconjugate as a targeted and efficient Withaferin A delivery system for cancer therapy, leveraging the inherent anticancer properties of Withaferin A. Full article
(This article belongs to the Special Issue Composite Materials Processing, Modeling and Simulation)
Show Figures

Figure 1

23 pages, 995 KiB  
Review
Exploring Oxidative Stress Mechanisms of Nanoparticles Using Zebrafish (Danio rerio): Toxicological and Pharmaceutical Insights
by Denisa Batir-Marin, Monica Boev, Oana Cioanca, Ionut-Iulian Lungu, George-Alexandru Marin, Ana Flavia Burlec, Andreea-Maria Mitran, Cornelia Mircea and Monica Hancianu
Antioxidants 2025, 14(4), 489; https://doi.org/10.3390/antiox14040489 - 18 Apr 2025
Cited by 3 | Viewed by 1627
Abstract
Nanoparticles (NPs) have revolutionized biomedical and pharmaceutical applications due to their unique physicochemical properties. However, their widespread use has raised concerns regarding their potential toxicity, particularly mediated by oxidative stress mechanisms. This redox imbalance, primarily driven by the overproduction of reactive oxygen species [...] Read more.
Nanoparticles (NPs) have revolutionized biomedical and pharmaceutical applications due to their unique physicochemical properties. However, their widespread use has raised concerns regarding their potential toxicity, particularly mediated by oxidative stress mechanisms. This redox imbalance, primarily driven by the overproduction of reactive oxygen species (ROS), plays a central role in NP-induced toxicity, leading to cellular dysfunction, inflammation, apoptosis, and genotoxicity. Zebrafish (Danio rerio) have emerged as a powerful in vivo model for nanotoxicology, offering advantages such as genetic similarity to humans, rapid development, and optical transparency, allowing real-time monitoring of oxidative damage. This review synthesizes current findings on NP-induced oxidative stress in zebrafish, highlighting key toxicity mechanisms and case studies involving metallic (gold, silver, copper), metal oxide (zinc oxide, titanium dioxide, iron oxide), polymeric, and lipid-based NPs. The influence of NP physicochemical properties, such as size, surface charge, and functionalization, on oxidative stress responses is explored. Additionally, experimental approaches used to assess ROS generation, antioxidant enzyme activity, and oxidative damage biomarkers in zebrafish models are examined. In addition to toxicity concerns, pharmaceutical applications of antioxidant-modified NPs are evaluated, particularly their potential in drug delivery, neuroprotection, and disease therapeutics. Notably, studies show that curcumin- and quercetin-loaded nanoparticles enhance antioxidant defense and reduce neurotoxicity in zebrafish models, demonstrating their promise in neuroprotective therapies. Furthermore, cerium oxide nanoparticles, which mimic catalase and SOD enzymatic activity, have shown significant efficacy in reducing ROS and protecting against oxidative damage. Challenges in zebrafish-based nanotoxicology, the need for standardized methodologies, and future directions for optimizing NP design to minimize oxidative stress-related risks are also discussed. By integrating insights from toxicity mechanisms, case studies, and pharmaceutical strategies, this review supports the development of safer and more effective nanoparticle-based therapies while addressing the challenges of oxidative stress-related toxicity. Full article
(This article belongs to the Special Issue Natural Antioxidants in Pharmaceuticals and Dermatocosmetology)
Show Figures

Figure 1

18 pages, 5022 KiB  
Review
Searching for New Gold(I)-Based Complexes as Anticancer and/or Antiviral Agents
by Paola Checconi, Annaluisa Mariconda, Alessia Catalano, Jessica Ceramella, Michele Pellegrino, Stefano Aquaro, Maria Stefania Sinicropi and Pasquale Longo
Molecules 2025, 30(8), 1726; https://doi.org/10.3390/molecules30081726 - 11 Apr 2025
Viewed by 848
Abstract
Approaches capable of simultaneously treating cancer and protecting susceptible patients from lethal infections are highly desirable, although they prove challenging. Taking inspiration from the well-known anticancer platinum complexes, successive studies about the complexation of organic compounds with other late transition metals, such as [...] Read more.
Approaches capable of simultaneously treating cancer and protecting susceptible patients from lethal infections are highly desirable, although they prove challenging. Taking inspiration from the well-known anticancer platinum complexes, successive studies about the complexation of organic compounds with other late transition metals, such as silver, gold, palladium, rhodium, ruthenium, iridium, and osmium, have led to remarkable anticancer activities. Among the numerous chemical moieties studied, N-heterocyclic carbenes (NHCs) have revealed very attractive activities due to their favorable chemical properties. Specifically, gold–NHC complexes emerged as some of the most active complexes acting as antitumor agents. On the other hand, some recent studies have highlighted the involvement of these complexes in antiviral research as well. The well-known gold-based, orally available complex auranofin approved by the Food and Drug Administration (FDA) for the treatment of rheumatoid arthritis has been suggested as a repositioned drug for both cancer and viral infections. In the era of the COVID-19 pandemic, the most interesting goal could be the discovery of gold–NHC complexes as dual antiviral and anticancer agents. In this review, the most recent studies regarding the anticancer and antiviral activities of gold(I)–NHC complexes will be analyzed and discussed, offering an interesting insight into the research in this field. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry, 3rd Edition)
Show Figures

Graphical abstract

15 pages, 1560 KiB  
Article
Assessment of Phenotypic Tools for Detection of OXA-48, KPC, and NDM in Klebsiella pneumoniae in Oman
by Arwa AL Rujaibi, Zaaima AL Jabri, Amina Al Jardani, Azza AL Rashdi, Azza AL Mamari, Sara AL Sumri, Hiba Sami, Zakariya Al Muharrmi and Meher Rizvi
Diagnostics 2025, 15(8), 949; https://doi.org/10.3390/diagnostics15080949 - 8 Apr 2025
Viewed by 993
Abstract
Background: The alarming increase in carbapenemase-producing Enterobacterales is a matter of grave public health concern. The most ubiquitous carbapenemases, Klebsiella pneumoniae carbapenemase (KPC)-, New Delhi metallo-β-lactamase (NDM)-, and oxacillinase (OXA-48)-like enzymes, belong to the Ambler molecular classes A, B, and D, respectively. [...] Read more.
Background: The alarming increase in carbapenemase-producing Enterobacterales is a matter of grave public health concern. The most ubiquitous carbapenemases, Klebsiella pneumoniae carbapenemase (KPC)-, New Delhi metallo-β-lactamase (NDM)-, and oxacillinase (OXA-48)-like enzymes, belong to the Ambler molecular classes A, B, and D, respectively. KPC- and OXA-48-like enzymes have a serine-based hydrolytic mechanism, while NDMs are metallo-β-lactamases that contain zinc in the active site. For the judicious use of reserve drugs and promoting antimicrobial stewardship, timely detection of carbapenemases is essential. While molecular tools are the gold standard for the detection of these enzymes, many laboratories have limited access to them. This study focused on evaluating in-house tools and commercial phenotypic tests for the detection of OXA-48-, KPC-, and NDM-like enzymes in K. pneumoniae, the predominant extremely drug-resistant pathogen in Oman. Methods: In total, 80 GeneXpert/PCR-confirmed (40 OXA-48 and 20 KPC and NDM each) and 37 whole-genome-sequenced (25 OXA-232 and 6 KPC-2, plus NDM-1 and NDM-5) K. pneumoniae were subjected to screening by temocillin (30 μg disk) (MAST Diagnostica, Germany) and D71C (MASTDISCS®). Isolates resistant to temocillin (<11 mm) and D71C were subjected to four tests: an in-house tool (OXA-48 disk test) and three commercial phenotypic tests: (i) the MASTDISCS® Combi (D72C) (MAST Group Ltd., Bootle, UK); (ii) the MASTDISCS® Combi (D73C) (MAST Group Ltd., UK); and (iii) an immunochromatographic assay (ICT), which is the KPC/IMP/NDM/VIM/OXA-48 Combo test kit (Medomics, China), for the detection of OXA-48-, KPC-, and NDM-like carbapenemases. Results: Temocillin exhibited good sensitivity and specificity (100% and 97.50%) compared to D71C (70% and 100%). Among the confirmatory tests, the in-house OXA-48 disk test had 92.50% sensitivity and 100% specificity, while the commercial MAST DISC tests D72C, D73C, and ICT had 97.50%, 95.00%, and 100% sensitivity and 100%, 91.67%, and 95% specificity, respectively. Conclusions: The temocillin disk test is a good screening tool. With high sensitivity and specificity, ease of performance, short turnaround time, and low cost, we recommend the ICT format for routine diagnostic use. In resource-constrained centers, the OXA-48 disk test is an excellent alternative with high sensitivity and specificity. Full article
Show Figures

Figure 1

23 pages, 4048 KiB  
Systematic Review
Insights into Sinus-Lift Bone Grafting Materials: What’s Changed?
by Anida-Maria Băbțan, Claudia N. Feurdean, Anca Ionel, Willi A. Uriciuc, Radu Chifor, Chambon Antoine Bernard Jaques, Bianca A. Boșca and Aranka Ilea
J. Funct. Biomater. 2025, 16(4), 133; https://doi.org/10.3390/jfb16040133 - 7 Apr 2025
Viewed by 2389
Abstract
Background: Sinus-lift (SL) is a pre-prosthetic procedure with the objective of increasing bone height to achieve implant insertion primary stability in implant-supported prostheses. The biomechanical properties of SL augmentation materials are influenced by their origin, manufacture, bioactive substances addition, receiver, and surgical procedure. [...] Read more.
Background: Sinus-lift (SL) is a pre-prosthetic procedure with the objective of increasing bone height to achieve implant insertion primary stability in implant-supported prostheses. The biomechanical properties of SL augmentation materials are influenced by their origin, manufacture, bioactive substances addition, receiver, and surgical procedure. This systematic review provides insights into state-of-the-art SL biomaterials, focusing on autologous bone grafting as the gold standard. Methods: The study followed the PRISMA flow diagram, searching WoS (Web of Science), Embase, Cochrane, and PubMed databases using the search terms «sinus lift» OR «sinus augmentation» OR «bone graft» OR «bovine» OR «porcine» OR «autologous» OR «allogenic» OR «xenogeneic» OR «alloplastic» OR «hydroxyapatite» OR «β-tricalcium phosphate (β-TCP)» OR «equine» OR «PRF». Results: The highest bone gain was provided by Bioglass at 42%. Articles written between 2014 and 2024 in English or French, containing human studies and with full text available, were included. Participants were required to be in good general health, without acute, chronic, or congenital diseases, or substance abuse (drugs, alcohol, or nicotine). SL surgery was performed using the lateral approach, with no Schneiderian membrane perforation or postoperative complications. The network meta-analysis was conducted using the R statistical computing environment. To assess the inconsistency between direct and indirect evidence, we used a net heat plot. To evaluate heterogeneity across studies, we used the chi-squared-based Q-test and I2 statistic. A significance level of 0.05 was applied throughout all analyses. Results: Allogeneic bovine bone and hydrox yapatite demonstrated the lowest resorption rates. Significant differences were found for residual graft and connective tissue between allogenous bovine bone (ABB) + AlB vs. β-TCP + PRF (p = 0.028); ABB + AlB vs. β-TCP (p = 0.034); ABB + AlB vs. BCP (p = 0.037). Meta-analysis showed that the overall heterogeneity was 51.8% (6.9–75%; p = 0.019), with significant heterogeneity within designs (p = 0.007) and no significant heterogeneity between designs (p = 0.39). AB had a better bone regeneration ratio compared to many of the other interventions, but only two passed the threshold of significance: A1B and B-TCP + AB. Conclusions: A grafting material’s superiority is determined by its new bone formation ratio, connective tissue integration, residual graft content, and bone resorptionratio. Although autologous bone grafting has exhibited superior bone regeneration compared to other biomaterials, it was not favored due to its unpredictable connective tissue concentration and bone resorption ratio. Additionally, autologous bone exhibited the fastest metabolic turnover among all grafting materials. Full article
(This article belongs to the Special Issue Bone Regeneration and Repair Materials, 2nd Edition)
Show Figures

Figure 1

16 pages, 1717 KiB  
Article
Anti-Candida Activity of Cysteine-Modified Amidated Decoralin in the Presence of Engineered Nanomaterials
by Vânia Rocha, Helena Almeida, Bruno Sarmento and José das Neves
Pharmaceutics 2025, 17(4), 460; https://doi.org/10.3390/pharmaceutics17040460 - 2 Apr 2025
Cited by 1 | Viewed by 735
Abstract
Background: Candidiasis remains a chief concern in global healthcare. Drug safety issues and increasing resistance make it urgent to develop alternative antifungal agents, namely antimicrobial peptides. Amidated decoralin (Dec-CONH2) possesses considerable anti-Candida activity, and its association with nanocarriers could help [...] Read more.
Background: Candidiasis remains a chief concern in global healthcare. Drug safety issues and increasing resistance make it urgent to develop alternative antifungal agents, namely antimicrobial peptides. Amidated decoralin (Dec-CONH2) possesses considerable anti-Candida activity, and its association with nanocarriers could help in enhancing efficacy while reducing intrinsic toxicity to the host. Methods: We studied an N-terminal cysteine-modified version of the peptide (Cys-Dec-CONH2) and screened the effects of different nanosystems (polymeric nanoparticles (NPs), liposomes and gold NPs) on its activity against azole-sensitive and azole-resistant Candida species using a clinically relevant in vitro assay. Results: The antifungal activity of Cys-Dec-CONH2 was maintained (minimum inhibitory concentration (MIC) = 16–64 µg/mL), but the presence of poly(d,l-lactic-co-glycolic acid) (PLGA)- and polycaprolactone-based NPs impaired the antifungal effect of the peptide (MIC > 256 µg/mL). This effect was milder for polystyrene-based NPs, liposomes, and gold NPs (MIC ≤ 128 µg/mL). Additionally, the covalent surface functionalization of PLGA-based NPs with Cys-Dec-CONH2 or the presence of relevant biomolecules (albumin and mucin) resulted in complete inhibition of antifungal activity. Conclusions: Our data suggest that Cys-Dec-CONH2 is able to establish strong interfacial interactions with different nanomaterials, which need to be considered when developing nanomedicines based on this peptide for the management of candidiasis. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

Back to TopTop