Anti-Candida Activity of Cysteine-Modified Amidated Decoralin in the Presence of Engineered Nanomaterials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of Nanosystems
2.3. Association of Cys-Dec-CONH2 with Nanosystems
2.4. Physicochemical Characterization of Nanosystems
2.5. Antifungal Assays
2.6. Cell Viability
2.7. Statistical Analysis
3. Results and Discussion
3.1. Colloidal Properties of Nanosystems
3.2. Antifungal Activity of Dec-CONH2 and Cysteine-Modified Derivatives
3.3. Antifungal Activity of Cys-Dec-CONH2 in the Presence of Nanosystems
3.4. Antifungal Activity of Nanosystems Incorporating Cys-Dec-CONH2
3.5. Antifungal Activity of Cys-Dec-CONH2 in the Presence of Biomolecules
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Au NPs | Gold nanoparticles |
CC50 | Half-maximal cytotoxic concentration |
CE% | Conjugation efficiency percentage |
Cys-Dec-CONH2 | N-terminal cysteine-modified Dec-CONH2 |
Cys-Dec-CONH2@Lipossomes | Liposomes post-functionalized with Cys-Dec-CONH2 |
Cys-Dec-CONH2@PLGA-PEG NPs [Loaded] | Cys-Dec-CONH2-loaded PLGA-PEG NPs |
Cys-Dec-CONH2@PLGA-PEG NPs [Post-funct] | PLGA-PEG NPs post-functionalized with Cys-Dec-CONH2 |
Cys-Dec-CONH2@PLGA-PEG NPs [Pre-funct] | PLGA-PEG NPs pre-functionalized with Cys-Dec-CONH2 |
Dec | Decoralin |
Dec-CONH2 | C-terminal amidated decoralin |
Dec-CONH2-Cys | C-terminal cysteine-modified Dec-CONH2 |
DL% | Drug loading percentage |
MFC | Minimum fungicidal concentration |
MIC | Minimum inhibitory concentration |
PCL NPs | Polycaprolactone nanoparticles |
PdI | Polydispersity index |
PLGA NPs | Poly(d,l-lactic-co-glycolic acid) nanoparticles |
PLGA-PEG NPs | Poly(d,l-lactic-co-glycolic acid)-poly(ethylene glycol) nanoparticles |
PLGA-PEG-Mal NPs | Poly(d,l-lactic-co-glycolic acid)-poly(ethylene glycol)-maleimide |
PS NPs | Polystyrene nanoparticles |
PS-PEG NPs | Polystyrene-poly(ethylene glycol) nanoparticles |
References
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat. Rev. Dis. Primers 2018, 4, 18026. [Google Scholar] [CrossRef] [PubMed]
- Netea, M.G.; Joosten, L.A.; van der Meer, J.W.; Kullberg, B.J.; van de Veerdonk, F.L. Immune defence against Candida fungal infections. Nat. Rev. Immunol. 2015, 15, 630–642. [Google Scholar] [PubMed]
- McCarty, T.P.; White, C.M.; Pappas, P.G. Candidemia and invasive candidiasis. Infect. Dis. Clin. N. Am. 2021, 35, 389–413. [Google Scholar]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar]
- Cornely, O.A.; Sprute, R.; Bassetti, M.; Chen, S.C.; Groll, A.H.; Kurzai, O.; Lass-Florl, C.; Ostrosky-Zeichner, L.; Rautemaa-Richardson, R.; Revathi, G.; et al. Global guideline for the diagnosis and management of candidiasis: An initiative of the ECMM in cooperation with ISHAM and ASM. Lancet Infect. Dis. 2025. [Google Scholar] [CrossRef]
- Whaley, S.G.; Berkow, E.L.; Rybak, J.M.; Nishimoto, A.T.; Barker, K.S.; Rogers, P.D. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front. Microbiol. 2017, 7, 2173. [Google Scholar]
- Vitale, R.G. Role of antifungal combinations in difficult to treat Candida infections. J. Fungi 2021, 7, 731. [Google Scholar] [CrossRef]
- Astvad, K.M.T.; Johansen, H.K.; Roder, B.L.; Rosenvinge, F.S.; Knudsen, J.D.; Lemming, L.; Schonheyder, H.C.; Hare, R.K.; Kristensen, L.; Nielsen, L.; et al. Update from a 12-year nationwide fungemia surveillance: Increasing intrinsic and acquired resistance causes concern. J. Clin. Microbiol. 2018, 56, e01564-17. [Google Scholar]
- Pristov, K.E.; Ghannoum, M.A. Resistance of Candida to azoles and echinocandins worldwide. Clin. Microbiol. Infect. 2019, 25, 792–798. [Google Scholar]
- Lee, A. Ibrexafungerp: First approval. Drugs 2021, 81, 1445–1450. [Google Scholar]
- Hoy, S.M. Oteseconazole: First approval. Drugs 2022, 82, 1017–1023. [Google Scholar] [PubMed]
- Syed, Y.Y. Rezafungin: First approval. Drugs 2023, 83, 833–840. [Google Scholar] [PubMed]
- Perfect, J.R. The antifungal pipeline: A reality check. Nat. Rev. Drug Discov. 2017, 16, 603–616. [Google Scholar]
- Wan, F.; Wong, F.; Collins, J.J.; de la Fuente-Nunez, C. Machine learning for antimicrobial peptide identification and design. Nat. Rev. Bioeng. 2024, 2, 392–407. [Google Scholar]
- Freitas, C.G.; Felipe, M.S. Candida albicans and antifungal peptides. Infect. Dis. Ther. 2023, 12, 2631–2648. [Google Scholar]
- Brauner, A.; Alvendal, C.; Chromek, M.; Stopsack, K.H.; Ehrström, S.; Schröder, J.M.; Bohm-Starke, N. Psoriasin, a novel anti-Candida albicans adhesin. J. Mol. Med. 2018, 96, 537–545. [Google Scholar]
- Cheng, R.; Xu, Q.; Hu, F.; Li, H.; Yang, B.; Duan, Z.; Zhang, K.; Wu, J.; Li, W.; Luo, Z. Antifungal activity of MAF-1A peptide against Candida albicans. Int. J. Microbiol. 2021, 24, 233–242. [Google Scholar]
- Mancino, D.; Kharouf, N.; Scavello, F.; Hellé, S.; Salloum-Yared, F.; Mutschler, A.; Mathieu, E.; Lavalle, P.; Metz-Boutigue, M.H.; Haïkel, Y. The catestatin-derived peptides are new actors to fight the development of oral candidosis. Int. J. Mol. Sci. 2022, 23, 2066. [Google Scholar] [CrossRef]
- Rather, I.A.; Sabir, J.S.M.; Asseri, A.H.; Ali, S. Antifungal activity of human cathelicidin LL-37, a membrane disrupting peptide, by triggering oxidative stress and cell cycle arrest in Candida auris. J. Fungi 2022, 8, 204. [Google Scholar] [CrossRef]
- Perez-Rodriguez, A.; Eraso, E.; Quindós, G.; Mateo, E. Antimicrobial peptides with anti-Candida activity. Int. J. Mol. Sci. 2022, 23, 9264. [Google Scholar] [CrossRef]
- Konno, K.; Rangel, M.; Oliveira, J.S.; Dos Santos Cabrera, M.P.; Fontana, R.; Hirata, I.Y.; Hide, I.; Nakata, Y.; Mori, K.; Kawano, M.; et al. Decoralin, a novel linear cationic alpha-helical peptide from the venom of the solitary eumenine wasp Oreumenes decoratus. Peptides 2007, 28, 2320–2327. [Google Scholar] [PubMed]
- Ng, S.M.; Yap, Y.Y.; Cheong, J.W.; Ng, F.M.; Lau, Q.Y.; Barkham, T.; Teo, J.W.; Hill, J.; Chia, C.S. Antifungal peptides: A potential new class of antifungals for treating vulvovaginal candidiasis caused by fluconazole-resistant Candida albicans. J. Pept. Sci. 2017, 23, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Mitra, K.; Azmi, S.; Ghosh, J.K.; Chakraborty, T.K. Towards the synthesis of sugar amino acid containing antimicrobial noncytotoxic CAP conjugates with gold nanoparticles and a mechanistic study of cell disruption. Org. Biomol. Chem. 2011, 9, 4806–4810. [Google Scholar] [PubMed]
- Pal, I.; Brahmkhatri, V.P.; Bera, S.; Bhattacharyya, D.; Quirishi, Y.; Bhunia, A.; Atreya, H.S. Enhanced stability and activity of an antimicrobial peptide in conjugation with silver nanoparticle. J. Colloid Interface Sci. 2016, 483, 385–393. [Google Scholar]
- Cui, Z.; Luo, Q.; Bannon, M.S.; Gray, V.P.; Bloom, T.G.; Clore, M.F.; Hughes, M.A.; Crawford, M.A.; Letteri, R.A. Molecular engineering of antimicrobial peptide (AMP)-polymer conjugates. Biomater. Sci. 2021, 9, 5069–5091. [Google Scholar]
- Jayathilaka, E.; Nikapitiya, C.; De Zoysa, M.; Whang, I. Antimicrobial peptide octominin-encapsulated chitosan nanoparticles enhanced antifungal and antibacterial activities. Int. J. Mol. Sci. 2022, 23, 15882. [Google Scholar] [CrossRef]
- Rahimi, H.; Roudbarmohammadi, S.; Delavari, H.H.; Roudbary, M. Antifungal effects of indolicidin-conjugated gold nanoparticles against fluconazole-resistant strains of Candida albicans isolated from patients with burn infection. Int. J. Nanomed. 2019, 14, 5323–5338. [Google Scholar]
- Nunes, R.; Araújo, F.; Barreiros, L.; Bártolo, I.; Segundo, M.A.; Taveira, N.; Sarmento, B.; das Neves, J. Noncovalent PEG coating of nanoparticle drug carriers improves the local pharmacokinetics of rectal anti-HIV microbicides. ACS Appl. Mater. Interfaces 2018, 10, 34942–34953. [Google Scholar]
- Ramôa, A.M.; Campos, F.; Moreira, L.; Teixeira, C.; Leiro, V.; Gomes, P.; das Neves, J.; Martins, M.C.L.; Monteiro, C. Antimicrobial peptide-grafted PLGA-PEG nanoparticles to fight bacterial wound infections. Biomater. Sci. 2023, 11, 499–508. [Google Scholar]
- Garizo, A.R.; Castro, F.; Martins, C.; Almeida, A.; Dias, T.P.; Fernardes, F.; Barrias, C.C.; Bernardes, N.; Fialho, A.M.; Sarmento, B. p28-functionalized PLGA nanoparticles loaded with gefitinib reduce tumor burden and metastases formation on lung cancer. J. Control Release 2021, 337, 329–342. [Google Scholar]
- Maurelli, A.M.; Ferreira, B.; Dias, S.; Almeida, H.; De Leo, V.; Sarmento, B.; Catucci, L.; das Neves, J. Impact of polyethylene glycol and polydopamine coatings on the performance of camptothecin-loaded liposomes for localised treatment of colorectal cancer. Mater. Adv. 2024, 5, 4276–4285. [Google Scholar] [CrossRef]
- Faria, M.J.; Machado, R.; Ribeiro, A.; Goncalves, H.; Real Oliveira, M.E.C.D.; Viseu, T.; das Neves, J.; Lúcio, M. Rational development of liposomal hydrogels: A strategy for topical vaginal antiretroviral drug delivery in the context of HIV prevention. Pharmaceutics 2019, 11, 485. [Google Scholar] [CrossRef] [PubMed]
- Londoño, C.A.; Rojas, J.; Yarce, C.J.; Salamanca, C.H. Design of prototype formulations for in vitro dermal delivery of the natural antioxidant ferulic acid based on ethosomal colloidal systems. Cosmetics 2019, 6, 5. [Google Scholar] [CrossRef]
- Kastantin, M.; Ananthanarayanan, B.; Karmali, P.; Ruoslahti, E.; Tirrell, M. Effect of the lipid chain melting transition on the stability of DSPE-PEG(2000) micelles. Langmuir 2009, 25, 7279–7286. [Google Scholar] [CrossRef]
- Pinto, S.; Hosseini, M.; Buckley, S.T.; Yin, W.; Garousi, J.; Graslund, T.; van Ijzendoorn, S.; Santos, H.A.; Sarmento, B. Nanoparticles targeting the intestinal Fc receptor enhance intestinal cellular trafficking of semaglutide. J. Control Release 2024, 366, 621–636. [Google Scholar] [CrossRef]
- Shcherbatykh, A.A.; Chernov’yants, M.S.; Popov, L.D. Determination of low molecular thiols and protein sulfhydryl groups using heterocyclic disulfides. Amino Acids 2022, 54, 469–479. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. M27-A4: Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 4th ed.; Clinical and Laboratory Standards Institute: Berwyn, PA, USA, 2017. [Google Scholar]
- Facchinatto, W.M.; Galante, J.; Mesquita, L.; Silva, D.S.; dos Santos, D.M.; Moraes, T.B.; Campana-Filho, S.P.; Colnago, L.A.; Sarmento, B.; das Neves, J. Clotrimazole-loaded N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan nanoparticles for topical treatment of vulvovaginal candidiasis. Acta Biomater. 2021, 125, 312–321. [Google Scholar] [CrossRef]
- Silva, A.M.; Rocha, B.; Moreira, M.M.; Delerue-Matos, C.; das Neves, J.; Rodrigues, F. Biological activity and chemical composition of propolis extracts with potential use in vulvovaginal candidiasis management. Int. J. Mol. Sci. 2024, 25, 2478. [Google Scholar] [CrossRef]
- Präbst, K.; Engelhardt, H.; Ringgeler, S.; Hübner, H. Basic colorimetric proliferation assays: MTT, WST, and resazurin. In Cell Viability Assays: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2017; Volume 1601, pp. 1–17. [Google Scholar]
- Gabriel, L.; Almeida, H.; Avelar, M.; Sarmento, B.; das Neves, J. MPTHub: An open-source software for characterizing the transport of particles in biorelevant media. Nanomaterials 2022, 12, 1899. [Google Scholar] [CrossRef]
- Nunes, R.; Araújo, F.; Tavares, J.; Sarmento, B.; das Neves, J. Surface modification with polyethylene glycol enhances colorectal distribution and retention of nanoparticles. Eur. J. Pharm. Biopharm. 2018, 130, 200–206. [Google Scholar] [CrossRef]
- Lyden, A.; Lombardi, L.; Sire, W.; Li, P.; Simpson, J.C.; Butler, G.; Lee, G.U. Characterization of carboxylate nanoparticle adhesion with the fungal pathogen Candida albicans. Nanoscale 2017, 9, 15911–15922. [Google Scholar] [PubMed]
- Espinel-Ingroff, A.; Barchiesi, F.; Cuenca-Estrella, M.; Pfaller, M.A.; Rinaldi, M.; Rodriguez-Tudela, J.L.; Verweij, P.E. International and multicenter comparison of EUCAST and CLSI M27-A2 broth microdilution methods for testing susceptibilities of Candida spp. to fluconazole, itraconazole, posaconazole, and voriconazole. J. Clin. Microbiol. 2005, 43, 3884–3889. [Google Scholar] [PubMed]
- Choukri, F.; Benderdouche, M.; Sednaoui, P. In vitro susceptibility profile of 200 recent clinical isolates of Candida spp. to topical antifungal treatments of vulvovaginal candidiasis, the imidazoles and nystatin agents. J. Mycol. Med. 2014, 24, 303–307. [Google Scholar]
- Nagashima, M.; Yamagishi, Y.; Mikamo, H. Antifungal susceptibilities of Candida species isolated from the patients with vaginal candidiasis. J. Infect. Chemother. 2016, 22, 124–126. [Google Scholar]
- de Sousa, E.S.O.; Pinheiro, S.B.; Cortez, A.C.A.; Cruz, K.S.; de Souza, E.S.; Melhem, M.S.C.; Frickmann, H.; de Souza, J.V.B. Modifications of antifungal sensibility testing as suggested by CLSI document M27-A4: Proposal for using different culture medium and buffer. Diagn. Microbiol. Infect. Dis. 2021, 101, 115488. [Google Scholar]
- Parambath, S.; Dao, A.; Kim, H.Y.; Zawahir, S.; Izquierdo, A.A.; Tacconelli, E.; Govender, N.; Oladele, R.; Colombo, A.; Sorrell, T.; et al. Candida albicans-A systematic review to inform the World Health Organization Fungal Priority Pathogens List. Med. Mycol. 2024, 62, myae045. [Google Scholar]
- Jayaseelan, C.; Ramkumar, R.; Rahuman, A.A.; Perumal, P. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind. Crops Prod. 2013, 45, 423–429. [Google Scholar]
- Wani, I.A.; Ahmad, T.; Manzoor, N. Size and shape dependant antifungal activity of gold nanoparticles: A case study of Candida. Colloids Surf. B Biointerfaces 2013, 101, 162–170. [Google Scholar]
- Ahmad, T.; Wani, I.A.; Lone, I.H.; Ganguly, A.; Manzoor, N.; Ahmad, A.; Ahmed, J.; Al-Shihri, A.S. Antifungal activity of gold nanoparticles prepared by solvothermal method. Mater. Res. Bull. 2013, 48, 12–20. [Google Scholar]
- Williams, T.J.; Schneider, R.P.; Willcox, M.D. The effect of protein-coated contact lenses on the adhesion and viability of gram negative bacteria. Curr. Eye Res. 2003, 27, 227–235. [Google Scholar]
- Costa, F.M.; Maia, S.R.; Gomes, P.A.; Martins, M.C. Dhvar5 antimicrobial peptide (AMP) chemoselective covalent immobilization results on higher antiadherence effect than simple physical adsorption. Biomaterials 2015, 52, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Lai, S.K.; Wang, Y.Y.; Zhong, W.; Happe, C.; Zhang, M.; Fu, J.; Hanes, J. Biodegradable nanoparticles composed entirely of safe materials that rapidly penetrate human mucus. Angew. Chem. Int. Ed. Engl. 2011, 50, 2597–2600. [Google Scholar] [CrossRef] [PubMed]
- Ndumiso, M.; Buchtova, N.; Husselmann, L.; Mohamed, G.; Klein, A.; Aucamp, M.; Canevet, D.; D’Souza, S.; Maphasa, R.E.; Boury, F.; et al. Comparative whole corona fingerprinting and protein adsorption thermodynamics of PLGA and PCL nanoparticles in human serum. Colloids Surf. B Biointerfaces 2020, 188, 110816. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.; Rehim, M.A.; Turky, G. Dielectric study of polystyrene/polycaprolactone composites prepared by miniemulsion polymerization. J. Phys. Chem. Solids 2018, 119, 56–61. [Google Scholar] [CrossRef]
- Travkova, O.G.; Moehwald, H.; Brezesinski, G. The interaction of antimicrobial peptides with membranes. Adv. Colloid Interface Sci. 2017, 247, 521–532. [Google Scholar] [CrossRef]
- Ramamourthy, G.; Park, J.; Seo, C.J.; Vogel, H.; Park, Y. Antifungal and antibiofilm activities and the mechanism of action of repeating lysine-tryptophan peptides against Candida albicans. Microorganisms 2020, 8, 758. [Google Scholar] [CrossRef]
- Swiecicki, J.-M.; Tailhades, J.; Lepeltier, E.; Chassaing, G.; Lavielle, S.; Mansuy, C. Peptide-coated nanoparticles: Adsorption and desorption studies of cationic peptides on nanodiamonds. Colloids Surf. A Physicochem. Eng. Asp. 2013, 431, 73–79. [Google Scholar] [CrossRef]
- Conte, C.; Longobardi, G.; Barbieri, A.; Palma, G.; Luciano, A.; Dal Poggetto, G.; Avitabile, C.; Pecoraro, A.; Russo, A.; Russo, G.; et al. Non-covalent strategies to functionalize polymeric nanoparticles with NGR peptides for targeting breast cancer. Int. J. Pharm. 2023, 633, 122618. [Google Scholar] [CrossRef]
- Gref, R.; Minamitake, Y.; Peracchia, M.T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-circulating polymeric nanospheres. Science 1994, 263, 1600–1603. [Google Scholar] [CrossRef]
- Partikel, K.; Korte, R.; Stein, N.C.; Mulac, D.; Herrmann, F.C.; Humpf, H.U.; Langer, K. Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles. Eur. J. Pharm. Biopharm. 2019, 141, 70–80. [Google Scholar] [CrossRef]
- Tang, B.C.; Dawson, M.; Lai, S.K.; Wang, Y.Y.; Suk, J.S.; Yang, M.; Zeitlin, P.; Boyle, M.P.; Fu, J.; Hanes, J. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc. Natl. Acad. Sci. USA 2009, 106, 19268–19273. [Google Scholar] [PubMed]
- Xu, Q.; Ensign, L.M.; Boylan, N.J.; Schon, A.; Gong, X.; Yang, J.C.; Lamb, N.W.; Cai, S.; Yu, T.; Freire, E.; et al. Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo. ACS Nano 2015, 9, 9217–9227. [Google Scholar] [PubMed]
- Wu, X.; Wei, P.H.; Zhu, X.; Wirth, M.J.; Bhunia, A.; Narsimhan, G. Effect of immobilization on the antimicrobial activity of a cysteine-terminated antimicrobial Peptide Cecropin P1 tethered to silica nanoparticle against E. coli O157:H7 EDL933. Colloids Surf. B Biointerfaces 2017, 156, 305–312. [Google Scholar] [PubMed]
- Onaizi, S.A.; Leong, S.S. Tethering antimicrobial peptides: Current status and potential challenges. Biotechnol. Adv. 2011, 29, 67–74. [Google Scholar]
- Skerlavaj, B.; Boix-Lemonche, G. The potential of surface-immobilized antimicrobial peptides for the enhancement of orthopaedic medical devices: A review. Antibiotics 2023, 12, 211. [Google Scholar] [CrossRef]
- Zhao, H.; Jumblatt, J.E.; Wood, T.O.; Jumblatt, M.M. Quantification of MUC5AC protein in human tears. Cornea 2001, 20, 873–877. [Google Scholar]
- Allen, A.; Garner, A. Mucus and bicarbonate secretion in the stomach and their possible role in mucosal protection. Gut 1980, 21, 249–262. [Google Scholar]
- Bansil, R.; Turner, B.S. The biology of mucus: Composition, synthesis and organization. Adv. Drug Deliv. Rev. 2018, 124, 3–15. [Google Scholar]
- Felgentreff, K.; Beisswenger, C.; Griese, M.; Gulder, T.; Bringmann, G.; Bals, R. The antimicrobial peptide cathelicidin interacts with airway mucus. Peptides 2006, 27, 3100–3106. [Google Scholar]
- Huang, J.X.; Blaskovich, M.A.; Pelingon, R.; Ramu, S.; Kavanagh, A.; Elliott, A.G.; Butler, M.S.; Montgomery, A.B.; Cooper, M.A. Mucin binding reduces colistin antimicrobial activity. Antimicrob. Agents Chemother. 2015, 59, 5925–5931. [Google Scholar] [CrossRef]
- Abedi, F.; Zarei, B.; Elyasi, S. Albumin: A comprehensive review and practical guideline for clinical use. Eur. J. Clin. Pharmacol. 2024, 80, 1151–1169. [Google Scholar] [PubMed]
- Tang, W.H.; Wang, C.F.; Liao, Y.D. Fetal bovine serum albumin inhibits antimicrobial peptide activity and binds drug only in complex with alpha1-antitrypsin. Sci. Rep. 2021, 11, 1267. [Google Scholar]
- Silveira, M.J.; Martins, C.; Cruz, T.; Castro, F.; Amorim-Costa, A.; Chester, K.; Oliveira, M.J.; Sarmento, B. scFv biofunctionalized nanoparticles to effective and safe targeting of CEA-expressing colorectal cancer cells. J. Nanobiotechnol. 2023, 21, 357. [Google Scholar]
Nanosystem | Diameter (nm) | PdI | Zeta Potential (mV) |
---|---|---|---|
PLGA NPs | 174 ± 4 | 0.093 ± 0.021 | −11.7 ± 1.3 |
PLGA-PEG NPs | 142 ± 12 | 0.090 ± 0.010 | −7.6 ± 1.2 |
PCL NPs | 247 ± 6 | 0.147 ± 0.016 | −3.2 ± 0.5 |
PS NPs | 200 ± 2 | 0.025 ± 0.014 | −64.3 ± 2.0 |
PS-PEG NPs | 218 ± 3 | 0.024 ± 0.013 | −2.3 ± 2.3 |
Au NPs | 53 ± 0 | 0.249 ± 0.007 | −32.4 ± 1.5 |
Liposomes | 168 ± 7 | 0.118 ± 0.051 | −3.9 ± 1.2 |
C. albicans ATCC 90028 | C. albicans ATCC 64550 | C. krusei ATCC 6258 | C. glabrata ATCC 2001 | C. tropicalis ATCC 750 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | |
Dec-CONH2 | 32 | 32 | 32 | 32 | 32 | 32 | 64 | 64 | 8 | 16 |
Cys-Dec-CONH2 | 64 | 64 | 64 | 64 | 16 | 16 | 32 | 32 | 16 | 16 |
Dec-CONH2-Cys | 128 | 128 | 128 | 128 | 64 | 64 | 128 | 256 | 16–32 | 32 |
Fluconazole | 0.5–1 | >256 | >256 | >256 | 64 | 128 | 16–32 | >256 | 2 | >256 |
Clotrimazole | 1 | 2 | 4 | >256 | <1 | 1 | 2 | 8–16 | 4 | 16 |
C. albicans ATCC 90028 | C. krusei ATCC 6258 | |||
---|---|---|---|---|
MIC | MFC | MIC | MFC | |
Cys-Dec-CONH2 | 64 | 64 | 16 | 16 |
Cys-Dec-CONH2 + PLGA NPs | >256 | >256 | >256 | >256 |
Cys-Dec-CONH2 + PLGA-PEG NPs | >256 | >256 | >256 | >256 |
Cys-Dec-CONH2 + PLGA NPs (12 h) (a) | >256 | >256 | >256 | >256 |
Cys-Dec-CONH2 + PLGA-PEG NPs (12 h) (a) | >256 | >256 | >256 | >256 |
Cys-Dec-CONH2 + PCL NPs | >256 | >256 | >256 | >256 |
Cys-Dec-CONH2 + PS NPs | 64 | 64 | 64 | 64 |
Cys-Dec-CONH2 + PS-PEG NPs | 64 | 64 | 32 | 32 |
Cys-Dec-CONH2 + Au NPs | 128 | 128 | 32 | 32 |
Cys-Dec-CONH2 + liposomes | 128 | 128 | 64 | 64 |
Diameter (nm) | PdI | Zeta Potential (mV) | CE% | DL% | |
---|---|---|---|---|---|
Cys-Dec-CONH2@PLGA-PEG NPs [Pre-funct] | 162 ± 5 | 0.075 ± 0.010 | −3.0 ± 1.7 | 30 ± 12 | 4.1 ± 3.3 |
Cys-Dec-CONH2@PLGA-PEG NPs [Post-funct] | 143 ± 6 | 0.105 ± 0.028 | −1.6 ± 0.9 | 33 ± 20 | 2.6 ± 1.6 |
Cys-Dec-CONH2@PLGA-PEG NPs [Loaded] | 168 ± 1 | 0.097 ± 0.029 | −4.7 ± 0.6 | N.A. | 1.1 ± 0.1 |
Cys-Dec-CONH2@Lipossomes | 169 ± 3 | 0.128 ± 0.023 | −2.5 ± 1.3 | 94 ± 0 | 2.2 ± 0.0 |
C. albicans ATCC 90028 | C. krusei ATCC 6258 | |||
---|---|---|---|---|
MIC | MFC | MIC | MFC | |
Cys-Dec-CONH2 | 64 | 64 | 16 | 16 |
Cys-Dec-CONH2@PLGA-PEG NPs [Pre-funct] | >256 | >256 | >256 | >256 |
Cys-Dec-CONH2@PLGA-PEG NPs [Post-funct] | >256 | >256 | >256 | >256 |
Cys-Dec-CONH2@PLGA-PEG NPs [Loaded] | >256 | >256 | >256 | >256 |
Cys-Dec-CONH2@Lipossomes | >256 | >256 | >256 | >256 |
C. albicans ATCC 90028 | C. krusei ATCC 6258 | |||
---|---|---|---|---|
MIC | MFC | MIC | MFC | |
Cys-Dec-CONH2 | 64 | 64 | 16 | 16 |
Cys-Dec-CONH2 + mucin (0.1%) | 64 | 64 | 32 | 32 |
Cys-Dec-CONH2 + mucin (1%) | >256 | >256 | >256 | >256 |
Cys-Dec-CONH2 + albumin (0.1%) | 128 | 128 | 32 | 32 |
Cys-Dec-CONH2 + albumin (1%) | >256 | >256 | >256 | >256 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha, V.; Almeida, H.; Sarmento, B.; das Neves, J. Anti-Candida Activity of Cysteine-Modified Amidated Decoralin in the Presence of Engineered Nanomaterials. Pharmaceutics 2025, 17, 460. https://doi.org/10.3390/pharmaceutics17040460
Rocha V, Almeida H, Sarmento B, das Neves J. Anti-Candida Activity of Cysteine-Modified Amidated Decoralin in the Presence of Engineered Nanomaterials. Pharmaceutics. 2025; 17(4):460. https://doi.org/10.3390/pharmaceutics17040460
Chicago/Turabian StyleRocha, Vânia, Helena Almeida, Bruno Sarmento, and José das Neves. 2025. "Anti-Candida Activity of Cysteine-Modified Amidated Decoralin in the Presence of Engineered Nanomaterials" Pharmaceutics 17, no. 4: 460. https://doi.org/10.3390/pharmaceutics17040460
APA StyleRocha, V., Almeida, H., Sarmento, B., & das Neves, J. (2025). Anti-Candida Activity of Cysteine-Modified Amidated Decoralin in the Presence of Engineered Nanomaterials. Pharmaceutics, 17(4), 460. https://doi.org/10.3390/pharmaceutics17040460