Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (978)

Search Parameters:
Keywords = gold coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1573 KiB  
Article
Polyvalent Mannuronic Acid-Coated Gold Nanoparticles for Probing Multivalent Lectin–Glycan Interaction and Blocking Virus Infection
by Rahman Basaran, Darshita Budhadev, Eleni Dimitriou, Hannah S. Wootton, Gavin J. Miller, Amy Kempf, Inga Nehlmeier, Stefan Pöhlmann, Yuan Guo and Dejian Zhou
Viruses 2025, 17(8), 1066; https://doi.org/10.3390/v17081066 - 30 Jul 2025
Viewed by 286
Abstract
Multivalent lectin–glycan interactions (MLGIs) are vital for viral infection, cell-cell communication and regulation of immune responses. Their structural and biophysical data are thus important, not only for providing insights into their underlying mechanisms but also for designing potent glycoconjugate therapeutics against target MLGIs. [...] Read more.
Multivalent lectin–glycan interactions (MLGIs) are vital for viral infection, cell-cell communication and regulation of immune responses. Their structural and biophysical data are thus important, not only for providing insights into their underlying mechanisms but also for designing potent glycoconjugate therapeutics against target MLGIs. However, such information remains to be limited for some important MLGIs, significantly restricting the research progress. We have recently demonstrated that functional nanoparticles, including ∼4 nm quantum dots and varying sized gold nanoparticles (GNPs), densely glycosylated with various natural mono- and oligo- saccharides, are powerful biophysical probes for MLGIs. Using two important viral receptors, DC-SIGN and DC-SIGNR (together denoted as DC-SIGN/R hereafter), as model multimeric lectins, we have shown that α-mannose and α-manno-α-1,2-biose (abbreviated as Man and DiMan, respectively) coated GNPs not only can provide sensitive measurement of MLGI affinities but also reveal critical structural information (e.g., binding site orientation and mode) which are important for MLGI targeting. In this study, we produced mannuronic acid (ManA) coated GNPs (GNP-ManA) of two different sizes to probe the effect of glycan modification on their MLGI affinity and antiviral property. Using our recently developed GNP fluorescence quenching assay, we find that GNP-ManA binds effectively to both DC-SIGN/R and increasing the size of GNP significantly enhances their MLGI affinity. Consistent with this, increasing the GNP size also significantly enhances their ability to block DC-SIGN/R-augmented virus entry into host cells. Particularly, ManA coated 13 nm GNP potently block Ebola virus glycoprotein-driven entry into DC-SIGN/R-expressing cells with sub-nM levels of EC50. Our findings suggest that GNP-ManA probes can act as a useful tool to quantify the characteristics of MLGIs, where increasing the GNP scaffold size substantially enhances their MLGI affinity and antiviral potency. Full article
(This article belongs to the Special Issue Role of Lectins in Viral Infections and Antiviral Intervention)
Show Figures

Figure 1

21 pages, 7973 KiB  
Article
Enhanced Response of ZnO Nanorod-Based Flexible MEAs for Recording Ischemia-Induced Neural Activity in Acute Brain Slices
by José Ignacio Del Río De Vicente, Valeria Marchetti, Ivano Lucarini, Elena Palmieri, Davide Polese, Luca Montaina, Francesco Maita, Jan Kriska, Jana Tureckova, Miroslava Anderova and Luca Maiolo
Nanomaterials 2025, 15(15), 1173; https://doi.org/10.3390/nano15151173 - 30 Jul 2025
Viewed by 319
Abstract
Brain ischemia is a severe condition caused by reduced cerebral blood flow, leading to the disruption of ion gradients in brain tissue. This imbalance triggers spreading depolarizations, which are waves of neuronal and glial depolarization propagating through the gray matter. Microelectrode arrays (MEAs) [...] Read more.
Brain ischemia is a severe condition caused by reduced cerebral blood flow, leading to the disruption of ion gradients in brain tissue. This imbalance triggers spreading depolarizations, which are waves of neuronal and glial depolarization propagating through the gray matter. Microelectrode arrays (MEAs) are essential for real-time monitoring of these electrophysiological processes both in vivo and in vitro, but their sensitivity and signal quality are critical for accurate detection of extracellular brain activity. In this study, we evaluate the performance of a flexible microelectrode array based on gold-coated zinc oxide nanorods (ZnO NRs), referred to as nano-fMEA, specifically for high-fidelity electrophysiological recording under pathological conditions. Acute mouse brain slices were tested under two ischemic models: oxygen–glucose deprivation (OGD) and hyperkalemia. The nano-fMEA demonstrated significant improvements in event detection rates and in capturing subtle fluctuations in neural signals compared to flat fMEAs. This enhanced performance is primarily attributed to an optimized electrode–tissue interface that reduces impedance and improves charge transfer. These features enabled the nano-fMEA to detect weak or transient electrophysiological events more effectively, making it a valuable platform for investigating neural dynamics during metabolic stress. Overall, the results underscore the promise of ZnO NRs in advancing electrophysiological tools for neuroscience research. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

20 pages, 3332 KiB  
Review
Nafion in Biomedicine and Healthcare
by Antonios Kelarakis
Polymers 2025, 17(15), 2054; https://doi.org/10.3390/polym17152054 - 28 Jul 2025
Viewed by 361
Abstract
Nafion has long been recognized as the gold standard for proton exchange membranes, due to its exceptional ion exchange capacity and its advanced performance in chemically aggressive environments. In recent years, a growing body of evidence has demonstrated that Nafion is equally well-suited [...] Read more.
Nafion has long been recognized as the gold standard for proton exchange membranes, due to its exceptional ion exchange capacity and its advanced performance in chemically aggressive environments. In recent years, a growing body of evidence has demonstrated that Nafion is equally well-suited in complex biological conditions owing to its structural robustness, responsive functionality and intrinsic biocompatibility. These characteristics have enabled its transition into the biomedical and healthcare sectors, where it is currently being explored for a diverse and expanding range of applications. To that end, Nafion has been systematically investigated as a key component in bioelectronic systems for energy harvest, sensors, wearable electronics, tissue engineering, lab-on-a-chip platforms, implants, controlled drug delivery systems and antimicrobial surface coatings. This review examines the distinctive structural and electrochemical characteristics that underpin Nafion’s performance in these biomedical contexts, provides an overview of recent advancements, emphasizes critical performance metrics and highlights the material’s growing potential to shape the future of biomedical technology. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

24 pages, 8205 KiB  
Article
Preparation and Characterization of Magnesium Implants with Functionalized Surface with Enhanced Biological Activity Obtained via PEO Process
by Julia Radwan-Pragłowska, Julita Śmietana, Łukasz Janus, Aleksandra Sierakowska-Byczek, Karol Łysiak and Klaudia Kuźmiak
Processes 2025, 13(7), 2144; https://doi.org/10.3390/pr13072144 - 5 Jul 2025
Viewed by 350
Abstract
This study presents the development and comprehensive evaluation of magnesium-based implants with surface modifications using selected polymers and bioactive compounds. The implants were fabricated via plasma electrolytic oxidation (PEO), followed by the application of chitosan, polydopamine (PDA), and gold nanoparticles as bioactive surface [...] Read more.
This study presents the development and comprehensive evaluation of magnesium-based implants with surface modifications using selected polymers and bioactive compounds. The implants were fabricated via plasma electrolytic oxidation (PEO), followed by the application of chitosan, polydopamine (PDA), and gold nanoparticles as bioactive surface coatings. In vitro experiments, including FT-IR spectroscopy, scanning electron microscopy (SEM), wettability tests, biodegradation assays in simulated body fluid (SBF), electrochemical corrosion analysis, and cytotoxicity tests using MG-63 osteoblast-like cells, were employed to assess the physicochemical and biological properties of the materials. The PEO + PDA-modified samples demonstrated the highest corrosion resistance (−1.15 V corrosion potential), enhanced cell viability (~95%), and favorable surface wettability (contact angle ~12.5°), outperforming other tested configurations. These findings suggest that PEO combined with PDA offers a synergistic effect, leading to superior biocompatibility and degradation control compared to unmodified magnesium or single-coating strategies. The developed implants hold promise for orthopedic applications requiring biodegradable, bioactive, and cytocompatible materials. Full article
(This article belongs to the Special Issue Biochemical Processes for Sustainability, 2nd Edition)
Show Figures

Figure 1

17 pages, 3854 KiB  
Article
Pulsed Current Electrodeposition of Gold–Copper Alloys Using a Low-Cyanide Electrolyte
by Mohamed Amazian, Teresa Andreu and Maria Sarret
Coatings 2025, 15(7), 778; https://doi.org/10.3390/coatings15070778 - 30 Jun 2025
Viewed by 593
Abstract
The development of stable, non-toxic electrolytes is essential for electrodepositing large-area coatings. This study presents a novel low-cyanide electrolyte, offering a viable alternative to traditional cyanide-based solutions for the electroplating of gold–copper alloys. Compared to conventional baths, the new formulation offers safer handling [...] Read more.
The development of stable, non-toxic electrolytes is essential for electrodepositing large-area coatings. This study presents a novel low-cyanide electrolyte, offering a viable alternative to traditional cyanide-based solutions for the electroplating of gold–copper alloys. Compared to conventional baths, the new formulation offers safer handling and environmental compatibility without compromising performance. Electrolyte compositions were optimized via cyclic voltammetry, and coatings were deposited using direct current, pulse current, and reverse pulse current methods. The novel low-cyanide electrolyte system achieved a 99.1% reduction in cyanide use compared with the commercial formulation. Coatings produced with pulse current and reverse pulse current deposition exhibited structural, morphological, and mechanical properties comparable to those obtained from cyanide-based electrolytes. Overall, the low-cyanide electrolyte represents a safer, high-performance alternative to traditional cyanide-based systems. Full article
Show Figures

Figure 1

20 pages, 3506 KiB  
Article
AuNP/Magnetic Bead-Enhanced Electrochemical Sensor Toward Dual Saliva Alzheimer’s Biomarkers Detection
by Pengcheng Zhao, Jieyu Wang, Hongju Mao, Lin Zhou, Zhenhua Wu, Yunxing Lu, Teng Sun, Jianan Hui and Guowu Ma
Sensors 2025, 25(13), 4088; https://doi.org/10.3390/s25134088 - 30 Jun 2025
Viewed by 641
Abstract
Alzheimer’s disease (AD) early screening requires non-invasive, high-sensitivity detection of low-abundance biomarkers in complex biofluids like saliva. In this study, we present a miniaturized, silicon-based electrochemical sensor for sequential detection of two AD salivary biomarkers, lactoferrin (Lf) and amyloid β-protein 1-42 (Aβ1-42 [...] Read more.
Alzheimer’s disease (AD) early screening requires non-invasive, high-sensitivity detection of low-abundance biomarkers in complex biofluids like saliva. In this study, we present a miniaturized, silicon-based electrochemical sensor for sequential detection of two AD salivary biomarkers, lactoferrin (Lf) and amyloid β-protein 1-42 (Aβ1-42), on a single reusable electrode. The sensor features a three-electrode system fabricated by sputter-coating a quartz substrate with gold (Au) sensing electrodes, which are further modified with gold nanoparticles (AuNPs) to form 3D dendritic structures that enhance surface area and electron transfer. To improve specificity, immunomagnetic beads (MBs) are employed to selectively capture and isolate target biomarkers from saliva samples. These MB–biomarker complexes are introduced into a polydimethylsiloxane chamber aligned with Au sensing electrodes, where a detachable magnet localizes the complexes onto the electrode surface to amplify redox signals. The AuNPs/MBs sensor achieves detection limits of 2 μg/mL for Lf and 0.1 pg/mL for Aβ1-42, outperforming commercial ELISA kits (37.5 pg/mL for Aβ1-42) and covering physiological salivary concentrations. After the MBs capture the biomarkers, the sensor can output the result within one minute. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements confirm enhanced electron transfer kinetics on AuNP-decorated surfaces, while linear correlations (R2 > 0.95) validate quantitative accuracy across biomarker ranges. The compact and integrated design eliminates reliance on bulky instrumentation and enables user-friendly operation, establishing a promising platform for portable, cost-effective AD screening and monitoring. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

14 pages, 1800 KiB  
Article
Design of a Photonic Crystal Fiber Optic Magnetic Field Sensor Based on Surface Plasmon Resonance
by Yuxuan Yi, Hua Yang, Tangyou Sun, Zao Yi, Zigang Zhou, Chao Liu and Yougen Yi
Sensors 2025, 25(13), 3931; https://doi.org/10.3390/s25133931 - 24 Jun 2025
Viewed by 496
Abstract
To enhance the sensing performance of fiber-optic magnetic field sensors, we explored the design, optimization, and application prospects of a D-type fiber-optic magnetic field sensor. This D-type PCF-SPR sensor is metal coated on one side (the metal used in this study is gold), [...] Read more.
To enhance the sensing performance of fiber-optic magnetic field sensors, we explored the design, optimization, and application prospects of a D-type fiber-optic magnetic field sensor. This D-type PCF-SPR sensor is metal coated on one side (the metal used in this study is gold), which serves as the active metal for SPR and enhances structural stability. Magnetic fluid is applied on the outer side of the gold film for SPR magnetic field sensing. Six internal air holes arranged in a hexagonal shape form a central light transmission channel that facilitates the connection between the two modes, which are the sensor’s core mode and SPP mode, respectively. The outer six large air holes and two small air holes are arranged in a circular pattern to form the cladding, which allows for better energy transmission and reduces energy loss in the fiber. In this paper, the finite element method is employed to analyze the transmission performance of the sensor, focusing on the transmission mode. Guidelines for optimizing the PCF-SPR sensor are derived from analyzing the fiber optic sensor’s dispersion curve, the impact of surface plasmon excitation mode, and the core mode energy on sensing performance. After analyzing and optimizing the transmission mode and structural parameters, the optimized sensor achieves a magnetic field sensitivity of 18,500 pm/mT and a resolution of 54 nT. This performance is several orders of magnitude higher than most other sensors in terms of sensitivity and resolution. The SPR-PCF magnetic field sensor offers highly sensitive and accurate magnetic field measurements and shows promising applications in medical and industrial fields. Full article
(This article belongs to the Special Issue Advances and Applications of Magnetic Sensors: 2nd Edition)
Show Figures

Figure 1

18 pages, 13426 KiB  
Article
Minimizing Color Difference in AAO-Based Coatings for Urban Camouflage
by Yichen Wang, Xiujuan Reng, Dong Wang, Haifeng Liu and Yu Wu
Nanomaterials 2025, 15(12), 890; https://doi.org/10.3390/nano15120890 - 9 Jun 2025
Viewed by 353
Abstract
We explored anodic aluminum oxide (AAO) stealth materials combining low infrared emissivity and visible structural coloration through multi-parameter modulation. Using DC ion gold sputtering and UHV magnetron chromium sputtering, we successfully prepared an AAO stealth material with high-saturation visible structural coloration and low [...] Read more.
We explored anodic aluminum oxide (AAO) stealth materials combining low infrared emissivity and visible structural coloration through multi-parameter modulation. Using DC ion gold sputtering and UHV magnetron chromium sputtering, we successfully prepared an AAO stealth material with high-saturation visible structural coloration and low infrared emissivity (ε < 0.17). Quantitative evaluation based on the CIE Lab color difference model indicated that the gold-coated samples had high matching accuracy with PANTONE standard colors (ΔEab* < 1.6). The chromium-coated samples had slightly lower matching accuracy (ΔEab* < 3.0), but still displayed rich coloration, with color difference within human-perceptible tolerance limits. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

13 pages, 1744 KiB  
Article
Numerical Optimization of Metamaterial-Enhanced Infrared Emitters for Ultra-Low Power Consumption
by Bui Xuan Khuyen, Pham Duy Tan, Bui Son Tung, Nguyen Phon Hai, Pham Dinh Tuan, Do Xuan Phong, Do Khanh Tung, Nguyen Hai Anh, Ho Truong Giang, Nguyen Phuc Vinh, Nguyen Thanh Tung, Vu Dinh Lam, Liangyao Chen and YoungPak Lee
Photonics 2025, 12(6), 583; https://doi.org/10.3390/photonics12060583 - 7 Jun 2025
Viewed by 474
Abstract
This study addresses the challenges of high-power consumption and complexity in conventional infrared (IR) gas sensors by integrating metamaterials and gold coatings into IR radiation sources to reduce radiation loss. In addition, emitter design optimization and material selection were employed to minimize conduction [...] Read more.
This study addresses the challenges of high-power consumption and complexity in conventional infrared (IR) gas sensors by integrating metamaterials and gold coatings into IR radiation sources to reduce radiation loss. In addition, emitter design optimization and material selection were employed to minimize conduction loss. Our metasurface exhibited superior performance, achieving a narrower full width at half maximum at 4197 and 3950 nm, resulting in more confined emission spectral ranges. This focused emission reduced energy waste at unnecessary wavelengths, improving efficiency compared to traditional blackbody emitters. At 300 °C, the device consumed only 6.8 mW, while maintaining temperature uniformity and a fast response time. This enhancement is promising for the operation of such sensors in IoT networks with ultra-low power consumption and at suitably low costs for widespread demands in high-technology farming. Full article
(This article belongs to the Special Issue Emerging Trends in Metamaterials and Metasurfaces Research)
Show Figures

Figure 1

16 pages, 1075 KiB  
Article
Computational Study of Ultra-Small Gold Nanoparticles with Amphiphilic Polymer Coating
by Paulo Siani, Edoardo Donadoni, Giulia Frigerio, Marialaura D’Alessio and Cristiana Di Valentin
J. Compos. Sci. 2025, 9(6), 294; https://doi.org/10.3390/jcs9060294 - 7 Jun 2025
Viewed by 591
Abstract
Nanomedicine is rapidly evolving, with tailored nanoparticles enabling precise cellular-level interventions. Despite significant advances, challenges, such as rapid clearance and off-target effects, hinder the clinical translation of many nanosystems. Among the available nanoplatforms, gold nanoparticles (AuNPs) stand out due to their unique surface [...] Read more.
Nanomedicine is rapidly evolving, with tailored nanoparticles enabling precise cellular-level interventions. Despite significant advances, challenges, such as rapid clearance and off-target effects, hinder the clinical translation of many nanosystems. Among the available nanoplatforms, gold nanoparticles (AuNPs) stand out due to their unique surface chemistry, low toxicity, and excellent biocompatibility. In this work, we present a multi-level computational investigation of ultra-small AuNPs coated with non-conventional amphiphilic polymer chains via atomistic and coarse-grained molecular dynamics. Through high-level-resolution atomistic simulations, we investigate how variations in grafting density impact the collective behaviors of these amphiphilic polymer chains within the coating by quantifying relevant conformational, structural, and energetic descriptors, such as the radius of gyration, terminal group presentation, polymer coating thickness, brush height, and solvation energy. Our results reveal a conformational shift of polymer chains from coiled to stretched as grafting density increases, with a direct effect on the polymer conformational regime, terminal group presentation, and coating thickness. In parallel, we further benchmark low-level coarse-grained models using the atomistic data as a reference, demonstrating their ability to correctly reproduce the atomistic trends. This computational investigation reveals how key descriptors vary with grafting density and provides the tools for conducting similar studies on broader time and length scales, thereby advancing the rational design of nanosystems for nanomedicine. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

22 pages, 2615 KiB  
Article
Degradation of 1,4-Dioxane by Au/TiO2 Janus Nanoparticles Under Ultraviolet Light: Experiments and Modeling
by Yangyuan Ji, Matthew J. Tao, Lamar O. Mair, Amit Kumar Singh, Yuhang Fang, Sathish Rajendran, Thomas E. Beechem, David M. Warsinger and Jeffrey L. Moran
Water 2025, 17(11), 1708; https://doi.org/10.3390/w17111708 - 4 Jun 2025
Viewed by 674
Abstract
Advanced oxidation processes (AOPs) show significant promise to degrade recalcitrant water contaminants, such as 1,4-dioxane, but slow degradation kinetics limit the energy efficiency of this technology. We realized substantial enhancements in the degradation of 1,4-dioxane (a suspected carcinogen) using gold-coated titanium dioxide (Au/TiO [...] Read more.
Advanced oxidation processes (AOPs) show significant promise to degrade recalcitrant water contaminants, such as 1,4-dioxane, but slow degradation kinetics limit the energy efficiency of this technology. We realized substantial enhancements in the degradation of 1,4-dioxane (a suspected carcinogen) using gold-coated titanium dioxide (Au/TiO2) Janus nanoparticles (JNPs) irradiated with above-bandgap ultraviolet (UV) light (peak wavelength, 254 nm). To explain this result, we combined experimental measurements quantifying 1,4-dioxane degradation at varying UV wavelengths with finite-element simulations that provided explanatory insight into the light–matter interactions at play. The enhanced photocatalytic activity at the optimal condition (254 nm light, high intensity, Au/TiO2) resulted from a larger quantity of photogenerated holes in the TiO2 capable of reacting with water to form hydroxyl radicals that degrade 1,4-dioxane. This increased production of holes resulted from two sources: (1) more viable electron–hole pairs were created under 254 nm light owing to increased light absorption by the TiO2 that was localized near the surface; (2) the metal sequestered photogenerated electrons from the TiO2, which prevented electron–hole pairs from recombining, leaving more holes available to react with water. Our results motivate the exploration of different metal coatings (especially non-precious metals) and suggest a path toward broader implementation of TiO2-based photocatalytic AOPs, which can effectively remove many water pollutants that survive conventional treatment techniques. Full article
(This article belongs to the Special Issue Water Treatment Technology for Emerging Contaminants, 2nd Edition)
Show Figures

Graphical abstract

22 pages, 10281 KiB  
Article
From Flanders to Portugal: A Portuguese Painter in Pursuit of Prestigious Flemish Painting—Materials and Techniques Compared Through an Analytical Approach
by Vanessa Antunes, António Candeias, José Mirão, Sara Valadas, Ana Cardoso, Maria José Francisco, Alexandra Lauw, Marta Manso and Maria Luísa Carvalho
Heritage 2025, 8(6), 205; https://doi.org/10.3390/heritage8060205 - 3 Jun 2025
Viewed by 479
Abstract
This study offers fresh insights into the technical and stylistic exchanges between Flemish and Portuguese panel painting during the late 15th and early 16th centuries. By comparing two contemporaneous works, we trace Flemish influence in Portugal through a detailed materials and techniques analysis. [...] Read more.
This study offers fresh insights into the technical and stylistic exchanges between Flemish and Portuguese panel painting during the late 15th and early 16th centuries. By comparing two contemporaneous works, we trace Flemish influence in Portugal through a detailed materials and techniques analysis. Non-invasive, in situ methods—including energy dispersive X-ray fluorescence (XRF), macro-photography (MP), infrared reflectography (IRR), and dendrochronology—were used to examine each painting’s wooden support, ground layer, underdrawing, and pigment stratigraphy. Select micro-sampling analyses—micro-Fourier-transform infrared spectroscopy (μ-FTIR), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), and micro-Raman spectroscopy (µ-Raman)—provided complementary data on binder and pigment composition. While both paintings share nearly identical pigments and layering sequences and employ comparable coating techniques, their ground compositions differ subtly. Notably, the Flemish work features extensive gold-leaf application, whereas underdrawing execution takes on principal importance in the Portuguese example. Together, these findings reveal that Jorge Afonso’s workshop developed a distinct Portuguese method—rooted in Flemish practices disseminated by Quentin Metsys—yet adapted to local materials and aesthetic priorities. Full article
Show Figures

Graphical abstract

13 pages, 10700 KiB  
Article
Antifouling Modification of Gold Surfaces for Acoustic Wave Sensor Applications
by Aries Delica, Mikhail A. Nazarov, Brian De La Franier and Michael Thompson
Biosensors 2025, 15(6), 343; https://doi.org/10.3390/bios15060343 - 29 May 2025
Viewed by 505
Abstract
This study aims to develop a robust and reproducible method for fabricating efficient ultrathin antifouling coatings on gold surfaces by leveraging hydroxylation-based surface modifications. An ultrathin antifouling coating of a monoethylene glycol silane derivative, known to reduce fouling by at least 90% on [...] Read more.
This study aims to develop a robust and reproducible method for fabricating efficient ultrathin antifouling coatings on gold surfaces by leveraging hydroxylation-based surface modifications. An ultrathin antifouling coating of a monoethylene glycol silane derivative, known to reduce fouling by at least 90% on flat hydroxylated surfaces, was successfully replicated on flat gold (reducing fouling by ~75%) by hydroxylating its surface with β-mercaptoethanol. This tandem coating contains the monoethylene glycol silane layer on top of the β-mercaptoethanol on the gold. Characterization was performed using contact angle goniometry, atomic force microscopy, x-ray photoelectron spectroscopy, and antifouling measurements. The results from these techniques, consistent with the literature, confirmed the successful and reproducible application of the tandem coating. Through heterogeneities, including defects and incomplete coverage, the AFM data revealed distinct visible layers of the tandem coating. The direct application of monoethylene glycol silane onto gold resulted in superior antifouling performance (88% reduction), demonstrating that direct silylation exploits pre-existing oxygen-containing species on the gold surface for a more effective antifouling layer. These findings offer a scalable approach for engineering antifouling coatings on gold substrates, with potential applications in biosensing and implantable device antifouling technologies. Full article
(This article belongs to the Special Issue Mass Sensitive Biosensors for Biomedical Applications)
Show Figures

Figure 1

15 pages, 1993 KiB  
Article
Compact Dual-Wavelength Optical Fiber Sensor for the Simultaneous Measurement of the Refractive Index and Temperature of Liquid Samples
by Karla Ivonne Serrano-Arévalo, Erika Rodríguez-Sevilla, Monserrat Alonso-Murias, Héctor Pérez-Aguilar and David Monzón-Hernández
Chemosensors 2025, 13(6), 198; https://doi.org/10.3390/chemosensors13060198 - 28 May 2025
Viewed by 1004
Abstract
This study proposes the development of a dual-wavelength optical fiber sensor (DWOFS) that integrates two optical fiber structures in a multimode transmission line to measure the refractive index and temperature of a liquid concurrently. One structure is based on a refractive index sensor [...] Read more.
This study proposes the development of a dual-wavelength optical fiber sensor (DWOFS) that integrates two optical fiber structures in a multimode transmission line to measure the refractive index and temperature of a liquid concurrently. One structure is based on a refractive index sensor that utilizes surface plasmon resonance, comprising a 5 mm long single-mode fiber (SMF) section coated with chromium/gold (Cr/Au) films. The secondary structure employs a multimode interferometer with a 29 mm long no-core fiber (NCF) section covered with a thick layer of polydimethylsiloxane (PDMS) to measure temperature. The measurements obtained reveal two distinct drops in the transmission spectrum at approximately 600 nm and 1550 nm, respectively, enabling precise measurement of the two parameters. The sensor demonstrates a high degree of sensitivity to both refractive index and temperature, spanning the visible (2770.30 nm/RIU) and infrared (0.178 nm/°C) regions of the spectra, respectively. Furthermore, the thermo-optical coefficient for water (0.9928×104 RIU/°C) was estimated. The proposed sensor offers a compact solution for the simultaneous measurement of refractive index and temperature in liquid samples for a variety of applications, including biological, environmental, and healthcare research. Full article
Show Figures

Figure 1

18 pages, 14917 KiB  
Article
Preparation of Nanoparticle-Immobilized Gold Surfaces for the Reversible Conjugation of Neurotensin Peptide
by Hidayet Gok, Deniz Gol, Betul Zehra Temur, Nureddin Turkan, Ozge Can, Ceyhun Ekrem Kirimli, Gokcen Ozgun and Ozgul Gok
Biomolecules 2025, 15(6), 767; https://doi.org/10.3390/biom15060767 - 27 May 2025
Viewed by 2569
Abstract
Polymer coatings as thin films stand out as a commonly used strategy to modify biosensor surfaces for improving detection performance; however, nonspecific biomolecule interactions and the limited degree of ligand conjugation on the surface have necessitated the development of innovative methods for surface [...] Read more.
Polymer coatings as thin films stand out as a commonly used strategy to modify biosensor surfaces for improving detection performance; however, nonspecific biomolecule interactions and the limited degree of ligand conjugation on the surface have necessitated the development of innovative methods for surface modification. To this end, methacrylated tethered telechelic polyethylene glycol (PEG-diMA) chains of three different molecular weights (2, 6, and 10 kDa) were synthesized herein and used for obtaining thiolated nanoparticles (NPs) upon adding excess amounts of a tetra-thiol crosslinker. Characterized according to their size, surface charge, morphology, and thiol amounts, these nanoparticles were immobilized on gold surfaces that mimicked gold-coated mass sensor platforms. The PEG-based nanoparticles, prepared especially by PEG6K-diMA polymers, were shown to result in the preparation of a monolayer and smooth coating of 80–120 nm thickness. Cysteine-modified NTS(8–13) peptide (RRPYIL) was conjugated to thiolated NP with reversible disulfide bonds and it was demonstrated that its cleavage with a reducing agent such as dithiothreitol (DTT) restores the NP-immobilized gold surface for at least two cycles. Together with its binding studies to NTSR2 antibodies, it was revealed that the peptide-conjugated NP-modified gold surface could be employed as a model for a reusable sensor surface for the detection of biomarkers of same or different types. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

Back to TopTop