Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (148)

Search Parameters:
Keywords = glycosylation, phosphorylation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 3667 KB  
Review
Engineered Protein Modification: A New Paradigm for Enhancing Biosensing Sensitivity and Diagnostic Accuracy
by Zheng Xu, Chu Wang, Ziting Zhang, Heng Wang, Peiyi Gao and Lixing Weng
Biosensors 2026, 16(1), 21; https://doi.org/10.3390/bios16010021 - 26 Dec 2025
Viewed by 486
Abstract
Protein modifications, particularly post-translational modifications (PTMs) such as phosphorylation and glycosylation, are fundamental mechanisms regulating cellular activity and disease pathogenesis, with their detection emerging as a promising frontier for advanced diagnostics. This review systematically examines the integration of engineered protein modifications with biosensing [...] Read more.
Protein modifications, particularly post-translational modifications (PTMs) such as phosphorylation and glycosylation, are fundamental mechanisms regulating cellular activity and disease pathogenesis, with their detection emerging as a promising frontier for advanced diagnostics. This review systematically examines the integration of engineered protein modifications with biosensing technologies to enhance analytical performance and diagnostic accuracy. Through critical analysis of current methodologies, we highlight how strategic manipulation of PTMs improves biosensor sensitivity and specificity in applications ranging from early disease detection to environmental monitoring. The analysis identifies significant advancements in detection platforms while acknowledging persistent challenges in real-world integration and standardization. We conclude that optimizing protein modification-based sensing strategies represents a crucial pathway for developing robust, clinically translatable diagnostic tools, and propose focused research directions to address existing technical barriers and accelerate practical implementation. Full article
(This article belongs to the Special Issue Biomedical Applications of Smart Sensors)
Show Figures

Figure 1

31 pages, 4168 KB  
Review
Protein Post-Translational Modifications in Plant Abiotic Stress Responses
by Gengmi Li, Baohua Feng, Qian-Hao Zhu, Kaifeng Jiang and Tao Zhang
Plants 2026, 15(1), 52; https://doi.org/10.3390/plants15010052 - 23 Dec 2025
Viewed by 539
Abstract
Protein post-translational modifications (PTMs), as an important biological process of plants responding to environmental stimuli, can regulate the chemical decoration and properties of translated proteins by altering amino acid side chains or protein terminal structures, thereby affecting the synthesis, assembly, localization, function, and [...] Read more.
Protein post-translational modifications (PTMs), as an important biological process of plants responding to environmental stimuli, can regulate the chemical decoration and properties of translated proteins by altering amino acid side chains or protein terminal structures, thereby affecting the synthesis, assembly, localization, function, and degradation of proteins. Notably, PTMs regulate protein function without changing protein expression levels. Two dozen types of PTMs have been identified. This review summarizes the molecular mechanisms of major types of PTMs, including phosphorylation, ubiquitination, SUMOylation, glycosylation, methylation, and acetylation, with a focus on their regulatory roles in plant responses to abiotic stresses. Under heat stress, phosphorylation activates transcription factors such as HSFA1 (heat shock transcription factor 1), while SUMOylation regulates the activity of HSFA1/HSFA2 in the heat stress signaling pathway. Upon cold stress, phosphorylation, ubiquitination, and S-acylation collectively regulate the expression of cold tolerance-related genes. The drought stress response relies on SnRK2s (Sucrose 321 non-Fermenting 1-related protein kinase 2s) -mediated phosphorylation, regulation of ARF7 (auxin response factor 7) by SUMOylation, and ubiquitination. In salt stress, the coupling of phosphorylation of SOS (salt overly sensitive) pathway-related proteins, ubiquitination, and phospholipid metabolism maintains ion homeostasis. Additionally, PTMs play a key role in ABA-mediated abiotic stress responses by regulating core components of signal transduction, such as PYR (pyrabactin resistance)/PYL (PYR1-LIKE)/RCAR (regulatory components of ABA receptor) receptors, PP2Cs (protein phosphatases type 2C), and SnRK2s. On the basis of the synthesis of the regulatory mechanisms of PTMs, we discuss how PTMs can be manipulated to breed abiotic stress resilient crops and the issues to be addressed to achieve the goal, such as crosstalk between PTMs, technical challenges in investigating PTMs and identifying PTM substrates. Full article
(This article belongs to the Special Issue Recent Advances in Plant Genetics and Genomics)
Show Figures

Figure 1

24 pages, 2852 KB  
Review
The Role of Posttranslational Modifications During Ebola Virus Infection
by Joaquin Moreno-Contreras, Yoatzin Peñaflor-Tellez and Ricardo Rajsbaum
Viruses 2025, 17(12), 1640; https://doi.org/10.3390/v17121640 - 18 Dec 2025
Viewed by 631
Abstract
Orthoebolaviruses (OEV) are highly pathogenic viruses responsible for the Ebola virus disease (EVD). To establish a successful infection, OEV hijacks the host cell machinery, which in turn responds to infection by activating cellular antiviral pathways. These processes are regulated via post-translational modifications (PTMs) [...] Read more.
Orthoebolaviruses (OEV) are highly pathogenic viruses responsible for the Ebola virus disease (EVD). To establish a successful infection, OEV hijacks the host cell machinery, which in turn responds to infection by activating cellular antiviral pathways. These processes are regulated via post-translational modifications (PTMs) of both cellular and viral proteins. The most common PTMs include phosphorylation, ubiquitination, acetylation, methylation, and glycosylation. These modifications regulate stability, activity, and interactions between proteins that control the immune response, cell metabolism, and cell death, among others. PTMs are critical during the viral replication cycle as they can be either proviral, facilitating adequate virus replication inside the infected cell, or antiviral, most commonly hindering essential viral processes such as viral genome transcription or replication. Here, we review the different roles of PTMs known to occur during OEV infection in both viral and cellular proteins. Understanding how OEV modulates the fate of host cell proteins through specific PTMs can provide a basis for the development of novel therapeutic strategies. Full article
(This article belongs to the Special Issue 15-Year Anniversary of Viruses)
Show Figures

Figure 1

25 pages, 1216 KB  
Review
Unlocking the Sugar Code: Implications and Consequences of Glycosylation in Alzheimer’s Disease and Other Tauopathies
by Andrei-Cristian Bondar, Marius P. Iordache, Mirela Coroescu, Anca Buliman, Elena Rusu, Magdalena Budișteanu and Cristiana Tanase
Biomedicines 2025, 13(12), 2884; https://doi.org/10.3390/biomedicines13122884 - 26 Nov 2025
Cited by 2 | Viewed by 638
Abstract
Alzheimer’s disease (AD) is the most prevalent cause of dementia, characterized by progressive cognitive decline, amyloid-β (Aβ) plaques, and neurofibrillary tangles composed of hyperphosphorylated tau protein. Other tauopathies, including frontotemporal lobar degeneration (FTLD), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD) share pathological [...] Read more.
Alzheimer’s disease (AD) is the most prevalent cause of dementia, characterized by progressive cognitive decline, amyloid-β (Aβ) plaques, and neurofibrillary tangles composed of hyperphosphorylated tau protein. Other tauopathies, including frontotemporal lobar degeneration (FTLD), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD) share pathological hallmarks centered on abnormal tau biology. Increasing evidence highlights the role of post-translational modifications in modulating these pathogenic processes. Among these, glycosylation, the enzymatic attachment of glycans to proteins or lipids, has emerged as a critical regulator of protein folding, trafficking, aggregation, and clearance. Both N-linked glycosylation (N-glycosylation) and O-linked glycosylation (O-glycosylation) influence tau stability, Aβ processing, receptor signaling, synaptic integrity, and neuroinflammation. Dysregulated glycosylation patterns have been documented in brains and cerebrospinal fluid (CSF) of AD patients, suggesting biomarker potential and novel therapeutic targets. Moreover, glycosyltransferases and glycosidases show altered expression in neurodegeneration, linking metabolic and inflammatory pathways to tauopathy progression. This review synthesizes current evidence on the implications and consequences of glycosylation in AD and other tauopathies, integrating mechanistic, pathological, and clinical findings. We also discuss advances in glycoproteomics, the interplay between glycosylation and phosphorylation, and the translational potential of targeting glycosylation pathways for diagnosis and therapy. Full article
(This article belongs to the Special Issue Role of Glycomics in Health and Diseases)
Show Figures

Figure 1

14 pages, 2185 KB  
Article
Identification and Expression Patterns of Four Key Nitrogen Assimilation Enzyme Gene Families in Malus domestica
by Tong Li, Longxin Luo, Zhi Li, Ziquan Feng, Qi Zhang, Shuo Ma, Xinyi Li, Huaina Gao, Minmin Zhou, Shang Wu, Yali Zhang, Han Jiang and Yuanyuan Li
Nitrogen 2025, 6(4), 99; https://doi.org/10.3390/nitrogen6040099 - 5 Nov 2025
Viewed by 449
Abstract
Nitrogen assimilation is vital for apple growth, yield, and quality, with nitrate reductase (NIA), nitrite reductase (NIR), glutamine synthetase (GS), and glutamate synthase (GOGAT) serving as key regulatory enzymes. This study systematically identified these four gene families in apple (Malus domestica) [...] Read more.
Nitrogen assimilation is vital for apple growth, yield, and quality, with nitrate reductase (NIA), nitrite reductase (NIR), glutamine synthetase (GS), and glutamate synthase (GOGAT) serving as key regulatory enzymes. This study systematically identified these four gene families in apple (Malus domestica) through genome-wide analysis and examined their expression patterns under nitrate treatment. In total, 13 genes were identified, 2 MdNIAs, 1 MdNIR, 7 MdGSs, and 3 MdGOGATs, with gene lengths ranging from 2577 to 27736 base pairs (bp); MdGLT1A had the longest coding sequence (6627 bp). The encoded proteins contained 355–2208 amino acids, with predicted isoelectric points (pIs) between 5.55 and 6.63. Subcellular localization analysis predicted distinct compartmentalization: MdNIA1A in peroxisomes; MdGS1 in the cytosol; MdNIR1, MdGS2, and MdGLU1 in chloroplasts; and MdGLT1 in mitochondria/chloroplasts. Functional site prediction revealed multiple phosphorylation and glycosylation sites, with ATP/GTP-binding motifs present only in certain MdGOGAT proteins. Protein interaction analysis suggested close associations among these genes and possible interactions with NRT2.1/2.2. Chromosomal mapping showed their distribution across eight chromosomes, while promoter analysis identified diverse cis-acting regulatory elements (e.g., ABRE and G-box). Under nitrate treatment (0–12 h), these genes exhibited distinct expression dynamics: MdNIA1A and B were rapidly induced (0–6 h) and maintained high expression; MdNIR1 peaked at 6 h and then declined; MdGS1.1B was activated after 6 h; and MdGS2A, MdGLU1, and MdGLT1A/B peaked at 6 h before decreasing. Therefore, these results elucidate the structural and functional divergence of nitrogen assimilation genes in apple and provide a basis for understanding nitrogen utilization mechanisms and developing nitrogen-efficient breeding strategies. Full article
Show Figures

Figure 1

33 pages, 2286 KB  
Review
Antigenic Dark Matter: Unexplored Post-Translational Modifications of Tumor-Associated and Tumor-Specific Antigens in Pancreatic Cancer
by Amin Safa, Idris Vruzhaj, Marta Gambirasi and Giuseppe Toffoli
Cancers 2025, 17(21), 3506; https://doi.org/10.3390/cancers17213506 - 30 Oct 2025
Cited by 1 | Viewed by 1543
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) exhibits marked resistance to immunotherapy. Beyond its characteristically low tumor mutational burden, post-translational modifications (PTMs) remodel the immunopeptidome and promote immune escape through reversible, enzyme-driven programs. Subject Matter: We synthesize evidence that aberrant glycosylation, O-GlcNAcylation, phosphorylation, and citrullination [...] Read more.
Background: Pancreatic ductal adenocarcinoma (PDAC) exhibits marked resistance to immunotherapy. Beyond its characteristically low tumor mutational burden, post-translational modifications (PTMs) remodel the immunopeptidome and promote immune escape through reversible, enzyme-driven programs. Subject Matter: We synthesize evidence that aberrant glycosylation, O-GlcNAcylation, phosphorylation, and citrullination constitute core determinants of antigen visibility operating within spatially discrete tumor niches and a desmoplastic stroma. In hypoxic regions, HIF-linked hexosamine metabolism and OGT activity stabilize immune checkpoints and attenuate antigen processing; at tumor margins, sialylated mucins engage inhibitory Siglec receptors on innate and adaptive lymphocytes; within the stroma, PAD4-dependent NET formation enforces T cell exclusion. We also delineate technical barriers to discovering PTM antigens labile chemistry, low stoichiometry, and method-embedded biases and outline practical solutions: ETD/EThcD/AI-ETD fragmentation, PTM-aware database searching and machine-learning models, and autologous validation in patient-derived organoid–T cell co-cultures. Finally, we highlight therapeutic strategies that either immunize against PTM neoepitopes or inhibit PTM machinery (e.g., PAD4, OGT, ST6GAL1), with stromal remodeling as an enabling adjunct. Conclusions: PTM biology, spatial omics, and patient sample models can uncover targetable niches and speed up PDAC vaccination, TCR, and enzyme-directed treatment development. Full article
Show Figures

Figure 1

14 pages, 1462 KB  
Article
Theoretical Investigation of the Material Usage During On-Bead Enrichment of Post-Translationally Modified Peptides in Suspension Systems
by Kai Liu, Yuanyu Huang, Thomas Huang, Pengyuan Yang, Jilie Kong, Huali Shen and Quanqing Zhang
Molecules 2025, 30(15), 3245; https://doi.org/10.3390/molecules30153245 - 2 Aug 2025
Viewed by 744
Abstract
Over the past decade, the number and diversity of identified protein post-translational modifications (PTMs) have grown significantly. However, most PTMs occur at relatively low abundance, making selective enrichment of modified peptides essential. To address this, we developed a thermodynamic model describing the free [...] Read more.
Over the past decade, the number and diversity of identified protein post-translational modifications (PTMs) have grown significantly. However, most PTMs occur at relatively low abundance, making selective enrichment of modified peptides essential. To address this, we developed a thermodynamic model describing the free beads enrichment in suspension enrichment process and derived a theoretical relationship between material dosage and analyte recovery. The model predicts a non-linear trend, with enrichment efficiency increasing up to an optimal dosage and declining thereafter—a pattern confirmed by experimental data. We validated the model using centrifugation-based enrichment for glycosylated peptides and magnetic-based enrichment for phosphorylated peptides. In both cases, the results aligned with theoretical predictions. Additionally, the optimal dosage varied among peptides with the same modification type, highlighting the importance of tailoring enrichment strategies. This study provides a solid theoretical and experimental basis for optimizing PTMs enrichment and advancing more sensitive, accurate, and efficient mass spectrometry-based proteomic workflows. Full article
Show Figures

Figure 1

18 pages, 2449 KB  
Article
Functional Divergence for N-Linked Glycosylation Sites in Equine Lutropin/Choriogonadotropin Receptors
by Munkhzaya Byambaragchaa, Han-Ju Kang, Sei Hyen Park, Min Gyu Shin, Kyong-Mi Won, Myung-Hwa Kang and Kwan-Sik Min
Curr. Issues Mol. Biol. 2025, 47(8), 590; https://doi.org/10.3390/cimb47080590 - 25 Jul 2025
Viewed by 768
Abstract
Equine lutropin hormone/choriogonadotropin receptor (LH/CGR) is a G protein-coupled receptor that binds to both luteinizing hormone and choriogonadotropin, with multiple potential N-linked glycosylation sites in the long extracellular domain region. The roles of these glycosylation sites in hormone binding have been widely studied; [...] Read more.
Equine lutropin hormone/choriogonadotropin receptor (LH/CGR) is a G protein-coupled receptor that binds to both luteinizing hormone and choriogonadotropin, with multiple potential N-linked glycosylation sites in the long extracellular domain region. The roles of these glycosylation sites in hormone binding have been widely studied; however, their relationships with cyclic adenosine monophosphate (cAMP) activation, loss of cell surface receptors, and phosphorylated extracellular signal-regulated kinases1/2 (pERK1/2) expression are unknown. We used site-directed mutagenesis with the substitution of Asn for Gln to alter the consensus sequences for N-linked glycosylation, and cAMP signaling was analyzed in the mutants. Specifically, the N174Q and N195Q mutants exhibited markedly reduced expression levels, reaching approximately 15.3% and 2.5%, respectively, of that observed for wild-type equine LH/CGR. Correspondingly, the cAMP EC50 values were decreased by 7.6-fold and 5.6-fold, respectively. Notably, the N195Q mutant displayed an almost complete loss of cAMP activity, even at high concentrations of recombinant eCG, suggesting a critical role for this glycosylation site in receptor function. Despite these alterations, Western blot analysis revealed that pERK1/2 phosphorylation peaked at 5 min following agonist stimulation across all mutants, indicating that the ERK1/2 signaling pathway remains functionally intact. This study demonstrates that the specific N-linked glycosylation site, N195, in equine LH/CGR is indispensable for cAMP activity but is normally processed in pERK1/2 signaling. Thus, we suggest that in equine LH/CGR, agonist treatment induces biased signaling, differentially activating cAMP signaling and the pERK1/2 pathway. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

27 pages, 3961 KB  
Article
Floridoside Phosphotriester Derivatives: Synthesis and Inhibition of Human Neutrophils’ Oxidative Burst
by Luís Pinheiro, Catarina Cipriano, Filipe Santos, Patrícia Máximo, Eduarda Fernandes, Marisa Freitas and Paula S. Branco
Molecules 2025, 30(13), 2850; https://doi.org/10.3390/molecules30132850 - 3 Jul 2025
Viewed by 1908
Abstract
Floridoside (2-O-D-glycerol-α-D-galactopyranoside) is a natural product typically found in red algae. It serves as the algae’s carbon reserve and is produced as a protective response against osmotic and heat stress. Both floridoside and its acylated derivatives have been associated [...] Read more.
Floridoside (2-O-D-glycerol-α-D-galactopyranoside) is a natural product typically found in red algae. It serves as the algae’s carbon reserve and is produced as a protective response against osmotic and heat stress. Both floridoside and its acylated derivatives have been associated with modulating redox homeostasis and inflammatory responses. Therefore, we aimed to evaluate whether the newly synthesized floridoside phosphotriesters (1b1d, 1f1h) and acylated floridoside derivative (1e) can modulate the oxidative burst in stimulated human neutrophils. Synthetic strategies included the glycosylation of the thioglycoside donor with glycerol derivatives, having NIS/TfOH as the promoter. Phosphorylation was achieved with POCl3 in the presence of pyridine. The compounds were analysed for their cytotoxicity, with 1b and 1h being cytotoxic at 50 μM, while the others showed no cytotoxicity in the tested concentrations. The detection of the neutrophils’ oxidative burst was performed using multiple probes [luminol, aminophenyl fluorescein (APF), and Amplex Red (AR)] to evaluate reactive species levels. Compound 1e prevented the oxidative burst in activated human neutrophils (IC50 = 83 ± 7 μM). All the other tested compounds were ineffective in inhibiting APF and AR oxidation under the present experimental conditions. These findings highlight the potential of floridoside-based derivatives as candidates for targeting inflammatory pathways. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Figure 1

17 pages, 2209 KB  
Article
N-Glycosylation as a Key Requirement for the Positive Interaction of Integrin and uPAR in Glioblastoma
by Gretel Magalí Ferreira, Hector Adrian Cuello, Aylen Camila Nogueira, Jeremias Omar Castillo, Selene Rojo, Cynthia Antonella Gulino, Valeria Inés Segatori and Mariano Rolando Gabri
Int. J. Mol. Sci. 2025, 26(11), 5310; https://doi.org/10.3390/ijms26115310 - 31 May 2025
Cited by 1 | Viewed by 4381
Abstract
Integrin αV (IαV) and the urokinase-type plasminogen activator receptor (uPAR) are key mediators of tumor malignancy in Glioblastoma. This study aims to characterize IαV/uPAR interaction in GBM and investigate the role played by glycans in this scenario. Protein expression and interaction were confirmed [...] Read more.
Integrin αV (IαV) and the urokinase-type plasminogen activator receptor (uPAR) are key mediators of tumor malignancy in Glioblastoma. This study aims to characterize IαV/uPAR interaction in GBM and investigate the role played by glycans in this scenario. Protein expression and interaction were confirmed via confocal microscopy and co-immunoprecipitation. The role of N-glycosylation was evaluated using Swainsonine (SW) and PNGase F. IαV glycoproteomic analysis was performed by mass spectrometry. Sialic acids and glycan structures in IαV/uPAR interaction were tested using neuraminidase A (NeuA) and lectin interference assays, respectively. Protein expression and their interaction were detected in GBM cells, but not in low-grade glioma cells, even in cells transfected to overexpress uPAR. SW, PNGase, and NeuA treatments significantly reduced IαV/uPAR interaction. Also, lectin interference assays indicated that β1-6 branched glycans play a crucial role in this interaction. Analysis of the IαV glycosylation profile revealed the presence of complex and hybrid N-glycans in GBM, while only oligomannose N-glycans were identified in low-grade glioma. N-glycosylation inhibition and sialic acid removal reduced AKT phosphorylation. Our findings demonstrate, for the first time, the interaction between IαV and uPAR in GBM cells, highlighting the essential role of N-glycosylation, particularly β1-6 branched glycans and sialic acids. Full article
(This article belongs to the Special Issue Glycobiology of Health and Diseases)
Show Figures

Figure 1

36 pages, 3058 KB  
Review
Post-Translational Modifications in Multiple Myeloma: Mechanisms of Drug Resistance and Therapeutic Opportunities
by Shuoyang Hu, Jirun Xu, Weiyan Cui, Haoran Jin, Xiaoyu Wang and Yasen Maimaitiyiming
Biomolecules 2025, 15(5), 702; https://doi.org/10.3390/biom15050702 - 12 May 2025
Cited by 1 | Viewed by 2233
Abstract
Multiple myeloma (MM) remains an incurable hematologic malignancy due to the inevitable development of drug resistance, particularly in relapsed or refractory cases. Post-translational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, and glycosylation, play pivotal roles in regulating protein function, stability, and interactions, thereby influencing [...] Read more.
Multiple myeloma (MM) remains an incurable hematologic malignancy due to the inevitable development of drug resistance, particularly in relapsed or refractory cases. Post-translational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, and glycosylation, play pivotal roles in regulating protein function, stability, and interactions, thereby influencing MM pathogenesis and therapeutic resistance. This review comprehensively explores the mechanisms by which dysregulated PTMs contribute to drug resistance in MM, focusing on their impact on key signaling pathways, metabolic reprogramming, and the tumor microenvironment. We highlight how PTMs modulate drug uptake, alter drug targets, and regulate cell survival signals, ultimately promoting resistance to PIs, IMiDs, and other therapeutic agents. Furthermore, we discuss emerging therapeutic strategies targeting PTM-related pathways, which offer promising avenues for overcoming resistance to treatment. By integrating preclinical and clinical insights, this review underscores the potential of PTM-targeted therapies to enhance treatment efficacy and improve patient outcomes in MM. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

18 pages, 2137 KB  
Article
Complex Metabolomic Changes in a Combined Defect of Glycosylation and Oxidative Phosphorylation in a Patient with Pathogenic Variants in PGM1 and NDUFA13
by Silvia Radenkovic, Isabelle Adant, Matthew J. Bird, Johannes V. Swinnen, David Cassiman, Tamas Kozicz, Sarah C. Gruenert, Bart Ghesquière and Eva Morava
Cells 2025, 14(9), 638; https://doi.org/10.3390/cells14090638 - 25 Apr 2025
Cited by 1 | Viewed by 2218
Abstract
Inherited metabolic disorders (IMDs) are genetic disorders that occur in as many as 1:2500 births worldwide. Nevertheless, they are quite rare individually and even more rare is the co-occurrence of two IMDs in one individual. To better understand the metabolic cross-talk between glycosylation [...] Read more.
Inherited metabolic disorders (IMDs) are genetic disorders that occur in as many as 1:2500 births worldwide. Nevertheless, they are quite rare individually and even more rare is the co-occurrence of two IMDs in one individual. To better understand the metabolic cross-talk between glycosylation changes and deficient energy metabolism, and its potential effect on outcomes, we evaluated patient fibroblasts with likely pathogenic variants in PGM1 and pathogenic variants in NDUFA13 derived from a patient who passed away at 16 years of age. The patient presented with characteristic of PGM1-CDG including bifid uvula, muscle involvement, abnormal glycosylation in blood, and elevated liver transaminases. In addition, hearing loss, seizures, elevated plasma and CSF lactate and a Leigh-like MRI brain pattern were present, which are commonly associated with Leigh syndrome. PGM1-CDG has been reported in about 70 individuals, while NDUFA13 deficiency has so far only been reported in 13 patients. As abundant energy is essential for glycosylation, and both PGM1 and NDUFA13 are linked to energy metabolism, we sought to better understand the underlying biochemical cause of the patient’s clinical presentation. To do so, we performed extensive investigations including tracer metabolomics, lipidomics and enzymatic studies on the patient’s fibroblasts. We found a profound depletion of UDP-hexoses, consistent with PGM1-CDG. Complex I enzyme activity and mitochondrial function were also impaired, corroborating complex I deficiency and Leigh syndrome. Further, lipidomics analysis showed similarities with both PGM1-CDG and OXPHOS-deficient patients. Based on our results, the patient was diagnosed with both PGM1-CDG and Leigh syndrome. In summary, we present the first case of combined CDG and Leigh syndrome, caused by (likely) pathogenic variants in PGM1 and NDUFA13, and underline the importance of considering the synergistic effects of multiple disease-causing variants in patients with complex clinical presentation, leading to the patient’s early demise. Full article
Show Figures

Figure 1

18 pages, 3588 KB  
Review
FNIP1 Deficiency: Pathophysiology and Clinical Manifestations of a Rare Syndromic Primary Immunodeficiency
by Samuele Roncareggi, Brian M. Iritani and Francesco Saettini
Curr. Issues Mol. Biol. 2025, 47(4), 290; https://doi.org/10.3390/cimb47040290 - 18 Apr 2025
Viewed by 1394
Abstract
Folliculin-interacting protein 1 (FNIP1) is a key regulator of cellular metabolism and immune homeostasis, integrating nutrient signaling with proteostasis. FNIP1 forms a complex with folliculin (FLCN) to regulate the mechanistic target of rapamycin complex 1 (mTORC1), functioning as a GTPase-activating protein (GAP) for [...] Read more.
Folliculin-interacting protein 1 (FNIP1) is a key regulator of cellular metabolism and immune homeostasis, integrating nutrient signaling with proteostasis. FNIP1 forms a complex with folliculin (FLCN) to regulate the mechanistic target of rapamycin complex 1 (mTORC1), functioning as a GTPase-activating protein (GAP) for RagC/D. Additionally, FNIP1 interacts with heat shock protein 90 (HSP90) and undergoes phosphorylation, glycosylation, and ubiquitination, which dynamically regulate its stability and function. Evidence from murine models suggests that FNIP1 loss disrupts immune cell development and mitochondrial homeostasis. However, FNIP1 deficiency in humans remains incompletely characterized, and its full phenotypic spectrum is likely underestimated. Notably, FNIP1-deficient patients exhibit immunological and hematological abnormalities, immune dysregulation, and metabolic perturbations, emphasizing its role in cellular adaptation to stress. Understanding the mechanistic basis of FNIP1 dysfunction in human tissues will be critical for delineating its contributions to immune and metabolic disorders and identifying targeted interventions. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Biology 2025)
Show Figures

Figure 1

21 pages, 722 KB  
Review
SnRK2s: Kinases or Substrates?
by Yunmin Wei, Linzhu Peng and Xiangui Zhou
Plants 2025, 14(8), 1171; https://doi.org/10.3390/plants14081171 - 9 Apr 2025
Cited by 3 | Viewed by 2774
Abstract
Throughout their life cycle, plants persistent through environmental adversities that activate sophisticated stress-signaling networks, with protein kinases serving as pivotal regulators of these responses. The sucrose non-fermenting-1-related protein kinase 2 (SnRK2), a plant-specific serine/threonine kinase, orchestrates stress adaptation by phosphorylating downstream targets to [...] Read more.
Throughout their life cycle, plants persistent through environmental adversities that activate sophisticated stress-signaling networks, with protein kinases serving as pivotal regulators of these responses. The sucrose non-fermenting-1-related protein kinase 2 (SnRK2), a plant-specific serine/threonine kinase, orchestrates stress adaptation by phosphorylating downstream targets to modulate gene expression and physiological adjustments. While SnRK2 substrates have been extensively identified, the existing literature lacks a systematic classification of these components and their functional implications. This review synthesizes recent advances in characterizing SnRK2-phosphorylated substrates in Arabidopsis thaliana, providing a mechanistic framework for their roles in stress signaling and developmental regulation. Furthermore, we explore the understudied paradigm of SnRK2 undergoing multilayered post-translational modifications (PTMs), including phosphorylation, ubiquitination, SUMOylation, S-nitrosylation, sulfation (S-sulfination and tyrosine sulfation), and N-glycosylation. These PTMs collectively fine-tune SnRK2 stability, activity, and subcellular dynamics, revealing an intricate feedback system that balances kinase activation and attenuation. By integrating substrate networks with regulatory modifications, this work highlights SnRK2’s dual role as both a phosphorylation executor and a PTM-regulated scaffold, offering new perspectives for engineering stress-resilient crops through targeted manipulation of SnRK2 signaling modules. Full article
Show Figures

Figure 1

43 pages, 4626 KB  
Review
The Role of Post-Translational Modifications in Necroptosis
by Hao Xiao, Zeping Han, Min Xu, Xukang Gao, Shuangjian Qiu, Ning Ren, Yong Yi and Chenhao Zhou
Biomolecules 2025, 15(4), 549; https://doi.org/10.3390/biom15040549 - 9 Apr 2025
Cited by 2 | Viewed by 3563
Abstract
Necroptosis, a distinct form of regulated necrosis implicated in various human pathologies, is orchestrated through sophisticated signaling pathways. During this process, cells undergoing necroptosis exhibit characteristic necrotic morphology and provoke substantial inflammatory responses. Post-translational modifications (PTMs)—chemical alterations occurring after protein synthesis that critically [...] Read more.
Necroptosis, a distinct form of regulated necrosis implicated in various human pathologies, is orchestrated through sophisticated signaling pathways. During this process, cells undergoing necroptosis exhibit characteristic necrotic morphology and provoke substantial inflammatory responses. Post-translational modifications (PTMs)—chemical alterations occurring after protein synthesis that critically regulate protein functionality—constitute essential regulatory components within these complex signaling cascades. This intricate crosstalk between necroptotic pathways and PTM networks presents promising therapeutic opportunities. Our comprehensive review systematically analyzes the molecular mechanisms underlying necroptosis, with particular emphasis on the regulatory roles of PTMs in signal transduction. Through systematic evaluation of key modifications including ubiquitination, phosphorylation, glycosylation, methylation, acetylation, disulfide bond formation, caspase cleavage, nitrosylation, and SUMOylation, we examine potential therapeutic applications targeting necroptosis in disease pathogenesis. Furthermore, we synthesize current pharmacological strategies for manipulating PTM-regulated necroptosis, offering novel perspectives on clinical target development and therapeutic intervention. Full article
(This article belongs to the Collection Molecular Biology: Feature Papers)
Show Figures

Figure 1

Back to TopTop