Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = glycosaminoglycans secretion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8515 KiB  
Article
Combined TGF-β3 and FGF-2 Stimulation Enhances Chondrogenic Potential of Ovine Bone Marrow-Derived MSCs
by Sandra Stamnitz, Agnieszka Krawczenko and Aleksandra Klimczak
Cells 2025, 14(13), 1013; https://doi.org/10.3390/cells14131013 - 2 Jul 2025
Viewed by 458
Abstract
Mesenchymal stem cells (MSCs) represent a promising cell source for cartilage tissue engineering due to their chondrogenic potential. However, current differentiation protocols result in limited efficiency. This study assessed the combined effects of transforming growth factor-beta 3 (TGF-β3) and fibroblast growth factor-2 (FGF-2) [...] Read more.
Mesenchymal stem cells (MSCs) represent a promising cell source for cartilage tissue engineering due to their chondrogenic potential. However, current differentiation protocols result in limited efficiency. This study assessed the combined effects of transforming growth factor-beta 3 (TGF-β3) and fibroblast growth factor-2 (FGF-2) on the morphology, proliferation, chondrogenic differentiation, chondrogenic gene expression, and cytokine profile of ovine bone marrow-derived MSCs (BM-MSCs). BM-MSCs were cultured under four conditions: control (αMEM) or αMEM supplemented with FGF-2, TGF-β3, or TGF-β3 + FGF-2. Morphological and proliferation analyses, Alcian blue staining in 2D and 3D, and real-time PCR for early (Chad, Comp, and Sox 5) and late (Agg, Col IX, Sox 9, and Fmod) chondrogenic markers were performed. Cytokine secretion profiles were analyzed using multiplex assay. TGF-β3 induced morphological changes indicative of early chondrogenesis, while FGF-2 enhanced proliferation. The combination of both cytokines led to a synergistic increase in cell proliferation, early and late chondrogenic gene expression, and glycosaminoglycans (GAG) deposition. Cytokine analysis revealed that TGF-β3 enhanced the immunomodulatory and angiogenic profile of BM-MSCs, whereas co-treatment with FGF-2 yielded a balanced and potentially regenerative secretome. Dual stimulation with TGF-β3 and FGF-2 significantly improves the chondrogenic differentiation of ovine BM-MSCs by enhancing both molecular and functional markers of cartilage formation. Full article
(This article belongs to the Special Issue Modelling Tissue Microenvironments in Development and Disease)
Show Figures

Figure 1

12 pages, 1959 KiB  
Article
Interactions of CFTR and Arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) in Prostate Carcinoma
by Sumit Bhattacharyya and Joanne K. Tobacman
Int. J. Mol. Sci. 2025, 26(9), 4350; https://doi.org/10.3390/ijms26094350 - 3 May 2025
Viewed by 2346
Abstract
Defective CFTR (cystic fibrosis transmembrane conductance regulator) is pathognomonic for cystic fibrosis (CF), which is characterized by an accumulation of tenacious secretions in pulmonary airways, as well as by abnormal ductal secretions in other organs, including the pancreas and prostate. The advent of [...] Read more.
Defective CFTR (cystic fibrosis transmembrane conductance regulator) is pathognomonic for cystic fibrosis (CF), which is characterized by an accumulation of tenacious secretions in pulmonary airways, as well as by abnormal ductal secretions in other organs, including the pancreas and prostate. The advent of CFTR modulating therapies has markedly improved the clinical status and survival of CF patients, primarily attributable to improved lung function. Previous publications reported that a decline in CFTR function was associated with a decline in activity and expression of the enzyme N-acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB). ARSB removes 4-sulfate groups from N-acetylgalactosamine 4-sulfate residues and is required for the degradation of chondroitin 4-sulfate (chondroitin sulfate A) and dermatan sulfate, two sulfated glycosaminoglycans which accumulate in cystic fibrosis. Declines in both ARSB and in CFTR have been associated with the development of malignancies, including prostate malignancy. The experiments in this report show that similar effects on invasiveness are present when either CFTR or ARSB is inhibited in human prostate epithelial cells, and these effects resemble findings detected in malignant prostate tissue. The effects of CFTR inhibition are reversed by treatment with recombinant human ARSB in prostate cells. These results suggest that treatment by rhARSB may benefit patients with cystic fibrosis and prostate cancer. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Pathophysiology of Cystic Fibrosis)
Show Figures

Figure 1

21 pages, 6568 KiB  
Article
Effects of Oligomeric Proanthocyanidins on Cadmium-Induced Extracellular Matrix Damage via Inhibiting the ERK1/2 Signaling Pathway in Chicken Chondrocytes
by Jianhong Gu, Dan Liu, Anqing Gong, Xinrui Zhao, Jiatao Zhou, Panting Wang, Han Xia, Ruilong Song, Yonggang Ma, Hui Zou, Muhammad Azhar Memon, Yan Yuan, Xuezhong Liu, Jianchun Bian, Zongping Liu and Xishuai Tong
Vet. Sci. 2025, 12(4), 317; https://doi.org/10.3390/vetsci12040317 - 31 Mar 2025
Viewed by 671
Abstract
Cadmium (Cd) is a toxic, non-essential metal that primarily enters animal bodies through the digestive and respiratory systems, leading to damage to multiple organs and tissues. Cd can accumulate in cartilage and induce damage to chondrocytes. Procyanidins (PAs), also known as concentrated tannic [...] Read more.
Cadmium (Cd) is a toxic, non-essential metal that primarily enters animal bodies through the digestive and respiratory systems, leading to damage to multiple organs and tissues. Cd can accumulate in cartilage and induce damage to chondrocytes. Procyanidins (PAs), also known as concentrated tannic acid or oligomeric proanthocyanidins (OPCs), exhibit diverse biological and pharmacological activities. However, the mechanism of OPCs alleviates Cd-induced damage to chondrocytes in chickens remains to be further explored in vitro. Chondrocytes were isolated from both ends of the tibia of 17-day-old SPF chicken embryos, and then subsequently treated with various concentrations of Cd (0, 1, 2.5, 5, and 10 μmol/L) or OPCs (0, 5, 10, 20, and 40 μmol/L) to investigate the mechanism underlying extracellular matrix (ECM) degradation and damage. Cd reduced cell viability, glycosaminoglycan (GAG) secretion, and ECM degradation in chondrocytes by decreasing the expression of type II collagen alpha 1 (COL2A1) and aggrecan (ACAN) while increasing the release of cartilage oligomeric matrix protein (COMP), along with elevated levels of matrix-degrading enzymes, such as matrix metalloproteinases 1 (MMP1), MMP10, and MMP13, and a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) and ADAMTS5. Cd induced phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and the expression of matrix-degrading enzymes, impairing ECM synthesis, an effect that could be alleviated by ERK1/2 inhibitor U0126. Chondrocytes were treated with 5 μmol/L Cd and 10 μmol/L OPCs, and it was found that OPCs inhibited the activation of the ERK1/2 signaling pathway and the expression of matrix-degrading enzymes, while promoting ECM synthesis and alleviating Cd-induced ECM damage in chickens. This study provides a theoretical basis for clinical research on OPCs with respect to the prevention and treatment of Cd-induced chondrogenic diseases in poultry. Full article
Show Figures

Graphical abstract

43 pages, 3193 KiB  
Review
Sialic Acids in Health and Disease
by Gerardo N. Guerrero-Flores, Fayth M. Butler, Veronica L. Martinez Marignac, Guangyu Zhang, Fabio J. Pacheco and Danilo S. Boskovic
Biologics 2025, 5(2), 10; https://doi.org/10.3390/biologics5020010 - 26 Mar 2025
Viewed by 3657
Abstract
Vertebrate cell surfaces exhibit intricate arrangements of glycosaminoglycan polymers, which are primarily linked to lipids and proteins. Numerous soluble secreted proteins are also decorated with either individual sugar molecules or their polymers. The carbohydrate polymers commonly possess terminal nine-carbon sugars, known as sialic [...] Read more.
Vertebrate cell surfaces exhibit intricate arrangements of glycosaminoglycan polymers, which are primarily linked to lipids and proteins. Numerous soluble secreted proteins are also decorated with either individual sugar molecules or their polymers. The carbohydrate polymers commonly possess terminal nine-carbon sugars, known as sialic acids. Due to their widespread distribution and strategic positioning, sialic acids play a crucial role in mediating and regulating a wide range of physiologic processes and pathologic conditions. Human- or animal-based investigations predominantly concentrate on the effects of sialic acids during infections, inflammations, vascular disorders, or cancers. Further investigations encompass a variety of applications, including cell–cell interactions, signaling, host–pathogen interactions, and other biological functions associated with nutrition, metabolism, or genetic disorders. Nevertheless, future mechanistic investigations are needed to clarify the specific roles of sialic acids in these varied contexts, so that more effective interventions may be developed. Full article
Show Figures

Graphical abstract

15 pages, 3082 KiB  
Article
Diseased Tendon Models Demonstrate Influence of Extracellular Matrix Alterations on Extracellular Vesicle Profile
by Kariman A. Shama, Zachary Franklin Greenberg, Chadine Tammame, Mei He and Brittany L. Taylor
Bioengineering 2024, 11(10), 1019; https://doi.org/10.3390/bioengineering11101019 - 12 Oct 2024
Cited by 1 | Viewed by 1786
Abstract
Tendons enable movement through their highly aligned extracellular matrix (ECM), predominantly composed of collagen I. Tendinopathies disrupt the structural integrity of tendons by causing fragmentation of collagen fibers, disorganization of fiber bundles, and an increase in glycosaminoglycans and microvasculature, thereby driving the apparent [...] Read more.
Tendons enable movement through their highly aligned extracellular matrix (ECM), predominantly composed of collagen I. Tendinopathies disrupt the structural integrity of tendons by causing fragmentation of collagen fibers, disorganization of fiber bundles, and an increase in glycosaminoglycans and microvasculature, thereby driving the apparent biomechanical and regenerative capacity in patients. Moreover, the complex cellular communication within the tendon microenvironment ultimately dictates the fate between healthy and diseased tendon, wherein extracellular vesicles (EVs) may facilitate the tendon’s fate by transporting biomolecules within the tissue. In this study, we aimed to elucidate how the EV functionality is altered in the context of tendon microenvironments by using polycaprolactone (PCL) electrospun scaffolds mimicking healthy and pathological tendon matrices. Scaffolds were characterized for fiber alignment, mechanical properties, and cellular activity. EVs were isolated and analyzed for concentration, heterogeneity, and protein content. Our results show that our mimicked healthy tendon led to an increase in EV secretion and baseline metabolic activity over the mimicked diseased tendon, where reduced EV secretion and a significant increase in metabolic activity over 5 days were observed. These findings suggest that scaffold mechanics may influence EV functionality, offering insights into tendon homeostasis. Future research should further investigate how EV cargo affects the tendon’s microenvironment. Full article
(This article belongs to the Special Issue Biomaterial Scaffolds for Tissue Engineering)
Show Figures

Figure 1

18 pages, 1838 KiB  
Article
Influence of Anticoagulants and Heparin Contaminants on the Suitability of MMP-9 as a Blood-Derived Biomarker
by Daniela Küper, Josefin Klos, Friederike Kühl, Rozan Attili, Korbinian Brand, Karin Weissenborn, Ralf Lichtinghagen and René Huber
Int. J. Mol. Sci. 2024, 25(18), 10106; https://doi.org/10.3390/ijms251810106 - 20 Sep 2024
Viewed by 1593
Abstract
In contrast to other common anticoagulants such as citrate and low-molecular-weight heparin (LMWH), high-molecular-weight heparin (HMWH) induces the expression of matrix metalloproteinase (MMP)-9, which is also measured as a biomarker for stroke in blood samples. Mechanistically, HMWH-stimulated T cells produce cytokines that induce [...] Read more.
In contrast to other common anticoagulants such as citrate and low-molecular-weight heparin (LMWH), high-molecular-weight heparin (HMWH) induces the expression of matrix metalloproteinase (MMP)-9, which is also measured as a biomarker for stroke in blood samples. Mechanistically, HMWH-stimulated T cells produce cytokines that induce monocytic MMP-9 expression. Here, the influence of further anticoagulants (Fondaparinux, Hirudin, and Alteplase) and the heparin-contaminating glycosaminoglycans (GAG) hyaluronic acid (HA), dermatan sulfate (DS), chondroitin sulfate (CS), and over-sulfated CS (OSCS) on MMP-9 was analyzed to assess its suitability as a biomarker under various conditions. Therefore, starved Jurkat T cells were stimulated with anticoagulants/contaminants. Subsequently, starved monocytic THP-1 cells were incubated with the conditioned Jurkat supernatant, and MMP-9 mRNA levels were monitored (quantitative (q)PCR). Jurkat-derived mediators secreted in response to anticoagulants/contaminants were also assessed (proteome profiler array). The supernatants of HMWH-, Hirudin-, CS-, and OSCS-treated Jurkat cells comprised combinations of activating mediators and led to a significant (in the case of OSCS, dramatic) MMP-9 induction in THP-1. HA induced MMP-9 only in high concentrations, while LMWH, Fondaparinux, Alteplase, and DS had no effect. This indicates that depending on molecular weight and charge (but independent of anticoagulant activity), anticoagulants/contaminants provoke the expression of T-cell-derived cytokines/chemokines that induce monocytic MMP-9 expression, thus potentially impairing the diagnostic validity of MMP-9. Full article
(This article belongs to the Special Issue Glycosaminoglycans, 2nd Edition)
Show Figures

Figure 1

16 pages, 3551 KiB  
Article
Cant1 Affects Cartilage Proteoglycan Properties: Aggrecan and Decorin Characterization in a Mouse Model of Desbuquois Dysplasia Type 1
by Chiara Gramegna Tota, Alessandra Leone, Asifa Khan, Antonella Forlino, Antonio Rossi and Chiara Paganini
Biomolecules 2024, 14(9), 1064; https://doi.org/10.3390/biom14091064 - 26 Aug 2024
Viewed by 4473
Abstract
Desbuquois dysplasia type 1 (DBQD1) is a recessive chondrodysplasia caused by mutations in the CANT1 gene, encoding for the Golgi Calcium-Activated Nucleotidase 1 (CANT1). The enzyme hydrolyzes UDP, the by-product of glycosyltransferase reactions, but it might play other roles in different cell types. [...] Read more.
Desbuquois dysplasia type 1 (DBQD1) is a recessive chondrodysplasia caused by mutations in the CANT1 gene, encoding for the Golgi Calcium-Activated Nucleotidase 1 (CANT1). The enzyme hydrolyzes UDP, the by-product of glycosyltransferase reactions, but it might play other roles in different cell types. Using a Cant1 knock-out mouse, we demonstrated that CANT1 is crucial for glycosaminoglycan (GAG) synthesis; however, its impact on the biochemical properties of cartilage proteoglycans remains unknown. Thus, in this work, we characterized decorin and aggrecan from primary chondrocyte cultures and cartilage biopsies of mutant mice at post-natal day 4 by Western blots and further investigated their distribution in the cartilage extracellular matrix (ECM) by immunohistochemistry. We demonstrated that the GAG synthesis defect caused by CANT1 impairment led to the synthesis and secretion of proteoglycans with shorter GAG chains compared with wild-type animals. However, this alteration did not result in the synthesis and secretion of decorin and aggrecan in the unglycanated form. Interestingly, the defect was not cartilage-specific since also skin decorin showed a reduced hydrodynamic size. Finally, immunohistochemical studies in epiphyseal sections of mutant mice demonstrated that the proteoglycan structural defect moderately affected decorin distribution in the ECM. Full article
(This article belongs to the Special Issue Hyaluronic Acid and Proteoglycans: Basic and Biomedical Applications)
Show Figures

Figure 1

13 pages, 2899 KiB  
Article
The Influence of Sulfation Degree of Glycosaminoglycan-Functionalized 3D Collagen I Networks on Cytokine Profiles of In Vitro Macrophage–Fibroblast Cocultures
by Franziska Ullm, Alexander Renner, Uwe Freudenberg, Carsten Werner and Tilo Pompe
Gels 2024, 10(7), 450; https://doi.org/10.3390/gels10070450 - 9 Jul 2024
Viewed by 1531
Abstract
Cell–cell interactions between fibroblasts and immune cells, like macrophages, are influenced by interaction with the surrounding extracellular matrix during wound healing. In vitro hydrogel models that mimic and modulate these interactions, especially of soluble mediators like cytokines, may allow for a more detailed [...] Read more.
Cell–cell interactions between fibroblasts and immune cells, like macrophages, are influenced by interaction with the surrounding extracellular matrix during wound healing. In vitro hydrogel models that mimic and modulate these interactions, especially of soluble mediators like cytokines, may allow for a more detailed investigation of immunomodulatory processes. In the present study, a biomimetic extracellular matrix model based on fibrillar 3D collagen I networks with a functionalization with heparin or 6-ON-desulfated heparin, as mimics of naturally occurring heparan sulfate, was developed to modulate cytokine binding effects with the hydrogel matrix. The constitution and microstructure of the collagen I network were found to be stable throughout the 7-day culture period. A coculture study of primary human fibroblasts/myofibroblasts and M-CSF-stimulated macrophages was used to show its applicability to simulate processes of progressed wound healing. The quantification of secreted cytokines (IL-8, IL-10, IL-6, FGF-2) in the cell culture supernatant demonstrated the differential impact of glycosaminoglycan functionalization of the collagen I network. Most prominently, IL-6 and FGF-2 were shown to be regulated by the cell culture condition and network constitution, indicating changes in paracrine and autocrine cell–cell communication of the fibroblast–macrophage coculture. From this perspective, we consider our newly established in vitro hydrogel model suitable for mechanistic coculture analyses of primary human cells to unravel the role of extracellular matrix factors in key events of tissue regeneration and beyond. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

17 pages, 1022 KiB  
Review
Immune-Mediated Ocular Surface Disease in Diabetes Mellitus—Clinical Perspectives and Treatment: A Narrative Review
by Laura Andreea Ghenciu, Ovidiu Alin Hațegan, Sorin Lucian Bolintineanu, Alexandra-Ioana Dănilă, Alexandra Corina Faur, Cătălin Prodan-Bărbulescu, Emil Robert Stoicescu, Roxana Iacob and Alina Maria Șișu
Biomedicines 2024, 12(6), 1303; https://doi.org/10.3390/biomedicines12061303 - 12 Jun 2024
Cited by 9 | Viewed by 2426
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder marked by hyperglycemia due to defects in insulin secretion, action, or both, with a global prevalence that has tripled in recent decades. This condition poses significant public health challenges, affecting individuals, healthcare systems, and economies [...] Read more.
Diabetes mellitus (DM) is a chronic metabolic disorder marked by hyperglycemia due to defects in insulin secretion, action, or both, with a global prevalence that has tripled in recent decades. This condition poses significant public health challenges, affecting individuals, healthcare systems, and economies worldwide. Among its numerous complications, ocular surface disease (OSD) is a significant concern, yet understanding its pathophysiology, diagnosis, and management remains challenging. This review aims to explore the epidemiology, pathophysiology, clinical manifestations, diagnostic approaches, and management strategies of diabetes-related OSD. The ocular surface, including the cornea, conjunctiva, and associated structures, is vital for maintaining eye health, with the lacrimal functional unit (LFU) playing a crucial role in tear film regulation. In DM, changes in glycosaminoglycan metabolism, collagen synthesis, oxygen consumption, and LFU dysfunction contribute to ocular complications. Persistent hyperglycemia leads to the expression of cytokines, chemokines, and cell adhesion molecules, resulting in neuropathy, tear film abnormalities, and epithelial lesions. Recent advances in molecular research and therapeutic modalities, such as gene and stem cell therapies, show promise for managing diabetic ocular complications. Future research should focus on pathogenetically oriented therapies for diabetic neuropathy and keratopathy, transitioning from animal models to clinical trials to improve patient outcomes. Full article
Show Figures

Figure 1

19 pages, 3746 KiB  
Article
Steady Laminar Flow Decreases Endothelial Glycolytic Flux While Enhancing Proteoglycan Synthesis and Antioxidant Pathways
by Sarah E. Basehore, Jonathan Garcia and Alisa Morss Clyne
Int. J. Mol. Sci. 2024, 25(5), 2485; https://doi.org/10.3390/ijms25052485 - 20 Feb 2024
Viewed by 1753
Abstract
Endothelial cells in steady laminar flow assume a healthy, quiescent phenotype, while endothelial cells in oscillating disturbed flow become dysfunctional. Since endothelial dysfunction leads to atherosclerosis and cardiovascular disease, it is important to understand the mechanisms by which endothelial cells change their function [...] Read more.
Endothelial cells in steady laminar flow assume a healthy, quiescent phenotype, while endothelial cells in oscillating disturbed flow become dysfunctional. Since endothelial dysfunction leads to atherosclerosis and cardiovascular disease, it is important to understand the mechanisms by which endothelial cells change their function in varied flow environments. Endothelial metabolism has recently been proven a powerful tool to regulate vascular function. Endothelial cells generate most of their energy from glycolysis, and steady laminar flow may reduce endothelial glycolytic flux. We hypothesized that steady laminar but not oscillating disturbed flow would reduce glycolytic flux and alter glycolytic side branch pathways. In this study, we exposed human umbilical vein endothelial cells to static culture, steady laminar flow (20 dynes/cm2 shear stress), or oscillating disturbed flow (4 ± 6 dynes/cm2 shear stress) for 24 h using a cone-and-plate device. We then measured glucose and lactate uptake and secretion, respectively, and glycolytic metabolites. Finally, we explored changes in the expression and protein levels of endothelial glycolytic enzymes. Our data show that endothelial cells in steady laminar flow had decreased glucose uptake and 13C labeling of glycolytic metabolites while cells in oscillating disturbed flow did not. Steady laminar flow did not significantly change glycolytic enzyme gene or protein expression, suggesting that glycolysis may be altered through enzyme activity. Flow also modulated glycolytic side branch pathways involved in proteoglycan and glycosaminoglycan synthesis, as well as oxidative stress. These flow-induced changes in endothelial glucose metabolism may impact the atheroprone endothelial phenotype in oscillating disturbed flow. Full article
Show Figures

Figure 1

21 pages, 2703 KiB  
Article
An Unusual Two-Domain Thyropin from Tick Saliva: NMR Solution Structure and Highly Selective Inhibition of Cysteine Cathepsins Modulated by Glycosaminoglycans
by Zuzana Matoušková, Katarína Orsághová, Pavel Srb, Jana Pytelková, Zdeněk Kukačka, Michal Buša, Ondřej Hajdušek, Radek Šíma, Milan Fábry, Petr Novák, Martin Horn, Petr Kopáček and Michael Mareš
Int. J. Mol. Sci. 2024, 25(4), 2240; https://doi.org/10.3390/ijms25042240 - 13 Feb 2024
Viewed by 2222
Abstract
The structure and biochemical properties of protease inhibitors from the thyropin family are poorly understood in parasites and pathogens. Here, we introduce a novel family member, Ir-thyropin (IrThy), which is secreted in the saliva of Ixodes ricinus ticks, vectors of Lyme borreliosis and [...] Read more.
The structure and biochemical properties of protease inhibitors from the thyropin family are poorly understood in parasites and pathogens. Here, we introduce a novel family member, Ir-thyropin (IrThy), which is secreted in the saliva of Ixodes ricinus ticks, vectors of Lyme borreliosis and tick-borne encephalitis. The IrThy molecule consists of two consecutive thyroglobulin type-1 (Tg1) domains with an unusual disulfide pattern. Recombinant IrThy was found to inhibit human host-derived cathepsin proteases with a high specificity for cathepsins V, K, and L among a wide range of screened cathepsins exhibiting diverse endo- and exopeptidase activities. Both Tg1 domains displayed inhibitory activities, but with distinct specificity profiles. We determined the spatial structure of one of the Tg1 domains by solution NMR spectroscopy and described its reactive center to elucidate the unique inhibitory specificity. Furthermore, we found that the inhibitory potency of IrThy was modulated in a complex manner by various glycosaminoglycans from host tissues. IrThy was additionally regulated by pH and proteolytic degradation. This study provides a comprehensive structure–function characterization of IrThy—the first investigated thyropin of parasite origin—and suggests its potential role in host–parasite interactions at the tick bite site. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 11414 KiB  
Article
Enhanced Cartilage and Subchondral Bone Repair Using Carbon Nanotube-Doped Peptide Hydrogel–Polycaprolactone Composite Scaffolds
by Jiayi Lv, Yilun Wu, Zhicheng Cao, Xu Liu, Yuzhi Sun, Po Zhang, Xin Zhang, Kexin Tang, Min Cheng, Qingqiang Yao and Yishen Zhu
Pharmaceutics 2023, 15(8), 2145; https://doi.org/10.3390/pharmaceutics15082145 - 15 Aug 2023
Cited by 6 | Viewed by 2322
Abstract
A carbon nanotube-doped octapeptide self-assembled hydrogel (FEK/C) and a hydrogel-based polycaprolactone PCL composite scaffold (FEK/C3-S) were developed for cartilage and subchondral bone repair. The composite scaffold demonstrated modulated microstructure, mechanical properties, and conductivity by adjusting CNT concentration. In vitro evaluations showed [...] Read more.
A carbon nanotube-doped octapeptide self-assembled hydrogel (FEK/C) and a hydrogel-based polycaprolactone PCL composite scaffold (FEK/C3-S) were developed for cartilage and subchondral bone repair. The composite scaffold demonstrated modulated microstructure, mechanical properties, and conductivity by adjusting CNT concentration. In vitro evaluations showed enhanced cell proliferation, adhesion, and migration of articular cartilage cells, osteoblasts, and bone marrow mesenchymal stem cells. The composite scaffold exhibited good biocompatibility, low haemolysis rate, and high protein absorption capacity. It also promoted osteogenesis and chondrogenesis, with increased mineralization, alkaline phosphatase (ALP) activity, and glycosaminoglycan (GAG) secretion. The composite scaffold facilitated accelerated cartilage and subchondral bone regeneration in a rabbit knee joint defect model. Histological analysis revealed improved cartilage tissue formation and increased subchondral bone density. Notably, the FEK/C3-S composite scaffold exhibited the most significant cartilage and subchondral bone formation. The FEK/C3-S composite scaffold holds great promise for cartilage and subchondral bone repair. It offers enhanced mechanical support, conductivity, and bioactivity, leading to improved tissue regeneration. These findings contribute to the advancement of regenerative strategies for challenging musculoskeletal tissue defects. Full article
(This article belongs to the Special Issue Functional Peptide-Based Biomaterials for Biomedical Applications)
Show Figures

Figure 1

19 pages, 2643 KiB  
Article
Reinforcement of Hydrogels with a 3D-Printed Polycaprolactone (PCL) Structure Enhances Cell Numbers and Cartilage ECM Production under Compression
by Hamed Alizadeh Sardroud, Xiongbiao Chen and B. Frank Eames
J. Funct. Biomater. 2023, 14(6), 313; https://doi.org/10.3390/jfb14060313 - 7 Jun 2023
Cited by 5 | Viewed by 2774
Abstract
Hydrogels show promise in cartilage tissue engineering (CTE) by supporting chondrocytes and maintaining their phenotype and extracellular matrix (ECM) production. Under prolonged mechanical forces, however, hydrogels can be structurally unstable, leading to cell and ECM loss. Furthermore, long periods of mechanical loading might [...] Read more.
Hydrogels show promise in cartilage tissue engineering (CTE) by supporting chondrocytes and maintaining their phenotype and extracellular matrix (ECM) production. Under prolonged mechanical forces, however, hydrogels can be structurally unstable, leading to cell and ECM loss. Furthermore, long periods of mechanical loading might alter the production of cartilage ECM molecules, including glycosaminoglycans (GAGs) and collagen type 2 (Col2), specifically with the negative effect of stimulating fibrocartilage, typified by collagen type 1 (Col1) secretion. Reinforcing hydrogels with 3D-printed Polycaprolactone (PCL) structures offer a solution to enhance the structural integrity and mechanical response of impregnated chondrocytes. This study aimed to assess the impact of compression duration and PCL reinforcement on the performance of chondrocytes impregnated with hydrogel. Results showed that shorter loading periods did not significantly affect cell numbers and ECM production in 3D-bioprinted hydrogels, but longer periods tended to reduce cell numbers and ECM compared to unloaded conditions. PCL reinforcement enhanced cell numbers under mechanical compression compared to unreinforced hydrogels. However, the reinforced constructs seemed to produce more fibrocartilage-like, Col1-positive ECM. These findings suggest that reinforced hydrogel constructs hold potential for in vivo cartilage regeneration and defect treatment by retaining higher cell numbers and ECM content. To further enhance hyaline cartilage ECM formation, future studies should focus on adjusting the mechanical properties of reinforced constructs and exploring mechanotransduction pathways. Full article
(This article belongs to the Special Issue Biomaterials for Soft and Hard Tissue Engineering)
Show Figures

Figure 1

13 pages, 1021 KiB  
Review
Hyaluronan in the Cancer Cells Microenvironment
by Evgenia Karousou, Arianna Parnigoni, Paola Moretto, Alberto Passi, Manuela Viola and Davide Vigetti
Cancers 2023, 15(3), 798; https://doi.org/10.3390/cancers15030798 - 28 Jan 2023
Cited by 20 | Viewed by 3578
Abstract
The presence of the glycosaminoglycan hyaluronan in the extracellular matrix of tissues is the result of the cooperative synthesis of several resident cells, that is, macrophages and tumor and stromal cells. Any change in hyaluronan concentration or dimension leads to a modification in [...] Read more.
The presence of the glycosaminoglycan hyaluronan in the extracellular matrix of tissues is the result of the cooperative synthesis of several resident cells, that is, macrophages and tumor and stromal cells. Any change in hyaluronan concentration or dimension leads to a modification in stiffness and cellular response through receptors on the plasma membrane. Hyaluronan has an effect on all cancer cell behaviors, such as evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and metastasis. It is noteworthy that hyaluronan metabolism can be dramatically altered by growth factors and matrikines during inflammation, as well as by the metabolic homeostasis of cells. The regulation of HA deposition and its dimensions are pivotal for tumor progression and cancer patient prognosis. Nevertheless, because of all the factors involved, modulating hyaluronan metabolism could be tough. Several commercial drugs have already been described as potential or effective modulators; however, deeper investigations are needed to study their possible side effects. Moreover, other matrix molecules could be identified and targeted as upstream regulators of synthetic or degrading enzymes. Finally, co-cultures of cancer, fibroblasts, and immune cells could reveal potential new targets among secreted factors. Full article
Show Figures

Graphical abstract

11 pages, 1859 KiB  
Article
Microdialysis Reveals Anti-Inflammatory Effects of Sulfated Glycosaminoglycanes in the Early Phase of Bone Healing
by Sabine Schulze, Christin Neuber, Stephanie Möller, Jens Pietzsch, Klaus-Dieter Schaser and Stefan Rammelt
Int. J. Mol. Sci. 2023, 24(3), 2077; https://doi.org/10.3390/ijms24032077 - 20 Jan 2023
Cited by 2 | Viewed by 1974
Abstract
Although chronic inflammation inhibits bone healing, the healing process is initiated by an inflammatory phase. In a well-tuned sequence of molecular events, pro-inflammatory cytokines are secreted to orchestrate the inflammation response to injury and the recruitment of progenitor cells. These events in turn [...] Read more.
Although chronic inflammation inhibits bone healing, the healing process is initiated by an inflammatory phase. In a well-tuned sequence of molecular events, pro-inflammatory cytokines are secreted to orchestrate the inflammation response to injury and the recruitment of progenitor cells. These events in turn activate the secretion of anti-inflammatory signaling molecules and attract cells and mediators that antagonize the inflammation and initiate the repair phase. Sulfated glycosaminoglycanes (sGAG) are known to interact with cytokines, chemokines and growth factors and, thus, alter the availability, duration and impact of those mediators on the local molecular level. sGAG-coated polycaprolactone-co-lactide (PCL) scaffolds were inserted into critical-size femur defects in adult male Wistar rats. The femur was stabilized with a plate, and the defect was filled with either sGAG-containing PCL scaffolds or autologous bone (positive control). Wound fluid samples obtained by microdialysis were characterized regarding alterations of cytokine concentrations over the first 24 h after surgery. The analyses revealed the inhibition of the pro-inflammatory cytokines IL-1β and MIP-2 in the sGAG-treated groups compared to the positive control. A simultaneous increase of IL-6 and TNF-α indicated advanced regenerative capacity of sGAG, suggesting their potential to improve bone healing. Full article
Show Figures

Figure 1

Back to TopTop