Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = glycine-based leaching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2957 KB  
Article
Experimental Study on the Removal of Copper Cyanide from Simulated Cyanide Leaching Gold Wastewater by Flocculation Flotation
by Chenhao Zhang, Dongxia Feng, Meng Dong, Heng Zhang, Xujie Wen, Yuanbin Liu and Wang Cai
Metals 2026, 16(1), 75; https://doi.org/10.3390/met16010075 - 9 Jan 2026
Viewed by 186
Abstract
The removal of copper–cyanide complexes from cyanide gold leaching tail water poses a significant challenge, as they are difficult to eliminate and risk causing secondary pollution. This study developed a synergistic flocculation–flotation process using the bio-collector sodium cocoyl glycinate (SCG) and the coagulant [...] Read more.
The removal of copper–cyanide complexes from cyanide gold leaching tail water poses a significant challenge, as they are difficult to eliminate and risk causing secondary pollution. This study developed a synergistic flocculation–flotation process using the bio-collector sodium cocoyl glycinate (SCG) and the coagulant polyferric sulfate (PFS) for purification. Simulated wastewater, prepared based on actual gold mine effluent, was treated under optimized conditions of reagent dosage, a solution pH of 6–10, and a flotation time of 1–5 min, achieving high removal efficiencies of 96.48% for copper and 94.68% for total cyanide. Mechanistic studies via FT-IR, Zeta potential, and XPS revealed that Fe3+ from PFS formed Fe-CN complexes with both free and copper-complexed cyanide. Simultaneously, copper ions coordinated with SCG to generate a hydrophobic Fe-CN-Cu-SCG ternary complex, which was subsequently removed by adsorption onto air bubbles via the hydrophobic chains of SCG. This work provides a novel, efficient, and mechanistically clear strategy for the advanced treatment of cyanide-containing tailing water with a gold content of 0.021 mg/L. Full article
(This article belongs to the Special Issue Advances in Sustainable Utilization of Metals: Recovery and Recycling)
Show Figures

Figure 1

14 pages, 2079 KB  
Article
Advances in Glycine–Ammonia Leaching for the Sustainable Recovery of Critical Raw Materials from Thermally Treated Black Mass
by Alfonso Bonilla, Ana Méndez and Gabriel Gascó
Environments 2025, 12(12), 484; https://doi.org/10.3390/environments12120484 - 10 Dec 2025
Viewed by 983
Abstract
The growing demand for electric and hybrid vehicles with lithium-ion batteries has made the development of sustainable recycling process for the recovery of critical raw materials from spent batteries necessary. Our main objective is to study the use of sustainable leaching solutions based [...] Read more.
The growing demand for electric and hybrid vehicles with lithium-ion batteries has made the development of sustainable recycling process for the recovery of critical raw materials from spent batteries necessary. Our main objective is to study the use of sustainable leaching solutions based on glycine and glycine/NH3 for the recovery of Li, Co, Ni, and Cu from thermally treated black mass. The process variables studied in this research (time, temperature, and solid/liquid ratio) have a significant influence on the extraction percentages of Ni, Co, Li, and Cu. Due to the alkaline nature of the black matter, additional pH adjustments are not necessary, as glycine alone achieves a pH greater than eight, suitable for the formation of metal–glycine and metal–NH3 complexes. At 80 °C using glycine/NH3 solutions, it is possible to recover 99% of Cu, 92.4% of Ni, 78.4% of Co, and 76.5% of Ni. Full article
Show Figures

Figure 1

18 pages, 3111 KB  
Article
Advances in the Development of Hydrometallurgical Processes in Acidic and Alkaline Environments for the Extraction of Copper from Tailings Deposit
by Diego Davoise and Ana Méndez
Minerals 2025, 15(6), 550; https://doi.org/10.3390/min15060550 - 22 May 2025
Cited by 2 | Viewed by 2160
Abstract
The geopolitical and economic situation impacts raw materials demand. As principal ore deposits reach exhaustion, the study of new sources of raw materials becomes essential. Therefore, mining wastes emerge as alternative sources of raw materials. Their physicochemical properties, such as small particle size [...] Read more.
The geopolitical and economic situation impacts raw materials demand. As principal ore deposits reach exhaustion, the study of new sources of raw materials becomes essential. Therefore, mining wastes emerge as alternative sources of raw materials. Their physicochemical properties, such as small particle size or concentration of some metals of interest, enhance reprocessing. A number of critical raw materials (As, Co, Cu, Sb) and base metals (Pb, Zn), as well as precious metals (Ag), were found present in an abandoned tailing deposit composed by finely grounded washed roasted pyrites within the Iberian Pyrite Belt. Copper leaching from a sample of this deposit was investigated. Two hydrometallurgical approaches were studied: acidic leaching with and without activated carbon; and alkaline leaching with glycine solutions. Leaching tests were carried out during 24 h at ambient and moderate temperatures (60 °C). In acidic medium, the maximum copper extraction varied from 88 to 92.5%, while in alkaline medium, the maximum copper extraction was in the range of 71%–76%. Using activated carbon and H2O2 seemed to slightly promote the copper extraction with the maximum extraction (92.5%) after 2 h of leaching at 60 °C. Complementarily, above 50% of the zinc and cobalt contained were extracted. In contrast, temperature in alkaline conditions played a key role in reaction speed, but also in precipitation of copper insoluble compounds. In addition, the glycine solution at pH 10–10.5 showed high selectivity for copper over zinc, iron, lead, arsenic, and antimony. Two extra tests at pH above 12 showed arsenic dissolution (up to 51% at pH 12.5). Full article
(This article belongs to the Special Issue Hydrometallurgical Treatments of Copper Ores, By-Products and Waste)
Show Figures

Graphical abstract

43 pages, 2907 KB  
Systematic Review
A Systematic Review of Copper Heap Leaching: Key Operational Variables, Green Reagents, and Sustainable Engineering Strategies
by Fabian León, Luis Rojas, Vanesa Bazán, Yuniel Martínez, Alvaro Peña and José Garcia
Processes 2025, 13(5), 1513; https://doi.org/10.3390/pr13051513 - 15 May 2025
Cited by 3 | Viewed by 7722
Abstract
Heap leaching of copper is faced with a complex set of challenges, including mineral heterogeneity, the formation of passivating species, and the need to regulate critical variables such as pH, redox potential (Eh), oxidant concentration, and irrigation rate. If these factors are not [...] Read more.
Heap leaching of copper is faced with a complex set of challenges, including mineral heterogeneity, the formation of passivating species, and the need to regulate critical variables such as pH, redox potential (Eh), oxidant concentration, and irrigation rate. If these factors are not properly managed, copper recovery is reduced, and significant environmental impacts may be generated, highlighting the urgency for systematic and sustainable approaches. To address this challenge, a systematic literature review (SLR) was conducted, screening 2344 documents and selecting 106 primary sources to analyze operational drivers and environmental considerations. Statistical methodologies (factorial designs, response surface methodology), multiscale modeling, and laboratory column tests were used to validate key variables, including pH (1.5–2.0), Eh (600–750 mV), temperature (25–55 °C), irrigation rate (5–15 L/(h·m2)), acid concentration (0.5–2.0 M), and emerging “green” reagents (e.g., glycine, organic surfactants). Precise control of these factors was found to reduce passivation, minimize fine-particle migration, and improve copper extraction up to 90%. The incorporation of oxidizing agents (e.g., Fe3+, H2O2) further accelerated mineral dissolution while preventing unwanted precipitates. In parallel, bioleaching strategies maintained high recoveries with lower chemical demand. Reviews of pilot studies confirmed the scalability of these optimized conditions, emphasizing both sustainability and cost-effectiveness. Full article
(This article belongs to the Special Issue Green Separation and Purification Processes)
Show Figures

Figure 1

24 pages, 6358 KB  
Article
Recovery of Metals from the “Black Mass” of Waste Portable Li-Ion Batteries with Choline Chloride-Based Deep Eutectic Solvents and Bi-Functional Ionic Liquids by Solvent Extraction
by Urszula Domańska, Anna Wiśniewska, Zbigniew Dąbrowski, Dorota Kolasa, Kamil Wróbel and Jakub Lach
Molecules 2024, 29(13), 3142; https://doi.org/10.3390/molecules29133142 - 2 Jul 2024
Cited by 6 | Viewed by 4091
Abstract
Lithium-ion portable batteries (LiPBs) contain valuable elements such as cobalt (Co), nickel (Ni), copper (Cu), lithium (Li) and manganese (Mn), which can be recovered through solid–liquid extraction using choline chloride-based Deep Eutectic Solvents (DESs) and bi-functional ionic liquids (ILs). This study was carried [...] Read more.
Lithium-ion portable batteries (LiPBs) contain valuable elements such as cobalt (Co), nickel (Ni), copper (Cu), lithium (Li) and manganese (Mn), which can be recovered through solid–liquid extraction using choline chloride-based Deep Eutectic Solvents (DESs) and bi-functional ionic liquids (ILs). This study was carried out to investigate the extraction of metals from solid powder, black mass (BM), obtained from LiPBs, with various solvents used: six choline chloride-based DESs in combination with organic acids: lactic acid (1:2, DES 1), malonic acid (1:1, DES 2), succinic acid (1:1, DES 3), glutaric acid (1:1, DES 4) and citric acid (1:1, DES 5 and 2:1, DES 6). Various additives, such as didecyldimethylammonium chloride (DDACl) surfactant, hydrogen peroxide (H2O2), trichloroisocyanuric acid (TCCA), sodium dichloroisocyanurate (NaDCC), pentapotassium bis(peroxymonosulphate) bis(sulphate) (PHM), (glycine + H2O2) or (glutaric acid + H2O2) were used. The best efficiency of metal extraction was obtained with the mixture of {DES 2 + 15 g of glycine + H2O2} in two-stage extraction at pH = 3, T = 333 K, 2 h. In order to obtain better extraction efficiency towards Co, Ni, Li and Mn (100%) and for Cu (75%), the addition of glycine was used. The obtained extraction results using choline chloride-based DESs were compared with those obtained with three bi-functional ILs: didecyldimethylammonium bis(2,4,4-trimethylpentyl) phosphinate, [N10,10,1,1][Cyanex272], didecyldimethylammonium bis(2-ethylhexyl) phosphate, [N10,10,1,1][D2EHPA], and trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl) phosphinate, [P6,6,6,14][Cyanex272]/toluene. The results of the extraction of all metal ions with these bi-functional ILs were only at the level of 35–50 wt%. The content of metal ions in aqueous and stripped organic solutions was determined by ICP-OES. In this work, we propose an alternative and highly efficient concept for the extraction of valuable metals from BM of LiPBs using DESs and ILs at low temperatures instead of acid leaching at high temperatures. Full article
Show Figures

Figure 1

13 pages, 2803 KB  
Article
Advances in the Sustainable Production of Fertilizers from Spent Zinc-Based Batteries
by Silvia Patricia Barragán-Mantilla, Raquel Ortiz, Patricia Almendros, Laura Sánchez-Martín, Gabriel Gascó and Ana Méndez
Sustainability 2024, 16(10), 4255; https://doi.org/10.3390/su16104255 - 18 May 2024
Cited by 5 | Viewed by 2768
Abstract
Wastes from spent batteries are a secondary source of raw materials. To ensure this, it is mandatory to design sustainable and low-cost processes. In the case of alkaline and zinc–carbon-based batteries, the high content of Zn and Mn makes them of interest in [...] Read more.
Wastes from spent batteries are a secondary source of raw materials. To ensure this, it is mandatory to design sustainable and low-cost processes. In the case of alkaline and zinc–carbon-based batteries, the high content of Zn and Mn makes them of interest in the development of fertilizers. The main objective of this research is to study the fertilizers production from spent zinc-based batteries, using sulfuric acid, citric acid (CIT) and glycine (GLY) solutions as leaching agents. Leaching with glycine at alkaline pHs shows a high selectivity of Zn over Mn, whereas the use of citric and sulfuric solutions leads to recoveries of Zn and Mn. Solutions with the highest Zn recoveries were tested in sand columns. Commercial ZnSO4 heptahydrate was used as a control. For sulfuric acid, two solutions (H2SO4 2M and 0.25M) were used. The elution of leached Zn and Mn in sand columns depended on the solution added. The Zn-Mn-CIT treatment showed a slight but steady increase in the leachates, reaching 70% and 75% of the total leached Zn and Mn, respectively, in the medium term. The Zn-Mn-H2SO4 2M and ZnSO4 treatments showed a similar behavior in Zn release. Both Zn-Mn-GLY and Zn-Mn-H2SO4 0.25M treatments showed similar amounts of leached Mn in the medium term (77% of total leached Mn), differing in the leached Zn. Solutions from the leaching of spent black mass batteries, especially Zn-Mn-CIT or Zn-Mn-GLY, showed promising behavior as fertilizer from the point of view of Zn and Mn availability as nutrients. Full article
(This article belongs to the Special Issue Sustainable Waste Management in the Context of Urban Environment)
Show Figures

Figure 1

25 pages, 5108 KB  
Article
A Comprehensive and Sustainable Recycling Process for Different Types of Blended End-of-Life Solar Panels: Leaching and Recovery of Valuable Base and Precious Metals and/or Elements
by Maryam Kavousi and Eskandar Keshavarz Alamdari
Metals 2023, 13(10), 1677; https://doi.org/10.3390/met13101677 - 30 Sep 2023
Cited by 12 | Viewed by 4760
Abstract
The production of photovoltaic modules is increasing to reduce greenhouse gas emissions. However, this results in a significant amount of waste at the end of their lifespan. Therefore, recycling these solar panels is important for environmental and economic reasons. However, collecting and separating [...] Read more.
The production of photovoltaic modules is increasing to reduce greenhouse gas emissions. However, this results in a significant amount of waste at the end of their lifespan. Therefore, recycling these solar panels is important for environmental and economic reasons. However, collecting and separating crystalline silicon, cadmium telluride, and copper–indium–gallium–selenide panels can be challenging, especially in underdeveloped countries. The innovation in this work is the development of a process to recycle all solar panel waste. The dissolution of all metals through the leaching process is studied as the main step of the flowchart. In the first step of leaching, 98% of silver can be recovered by 0.5 M nitric acid. Then, the second and third step involves the use of glycine for base metal dissolution, followed by the leaching of valuable metals with hydrochloric acid. The effect of parameters such as the initial pH, acid concentration, solid/liquid ratio, and hydrogen peroxide concentration is studied. The results show that up to 100% of Cu, Pb, Sn, Zn, Cd, In, Ga, and Se can be recovered under optimal conditions. The optimal conditions for the dissolution of Cu, Zn, and Cd were a glycine concentration of 0.5 M, a temperature of 25 °C, a solid/liquid ratio of 10 gr/L, and 1% of hydrogen peroxide. The optimized glycine concentration for the leaching of lead and tin was 1.5 M. Indium and gallium were recovered at 100% by the use of 5 M hydrochloric acid, S/L ratio = 10 gr/L, and T = 45 °C. Separation of selenium and tellurium occurred using 0.5 M HCl at a temperature of 60 °C. Additionally, for the first time, a general outlook for the recycling of various end-of-life solar panels is suggested. Full article
(This article belongs to the Special Issue Selective Separation and Comprehensive Recovery of Valuable Metals)
Show Figures

Graphical abstract

15 pages, 2364 KB  
Article
Extraction of Copper from Chalcopyrite Using Alkaline Glycine–Ammonia Solutions
by Zixian Deng, Elsayed Oraby, Huan Li and Jacques Eksteen
Minerals 2022, 12(12), 1507; https://doi.org/10.3390/min12121507 - 25 Nov 2022
Cited by 8 | Viewed by 5713
Abstract
Chalcopyrite is well known as being refractory to conventional leaching approaches at atmospheric pressure. The current study investigated a hybrid approach using aqueous ammonia as a pH modifier for glycine-based lixiviant systems to leach copper from chalcopyrite while maintaining surface refreshment using ceramic [...] Read more.
Chalcopyrite is well known as being refractory to conventional leaching approaches at atmospheric pressure. The current study investigated a hybrid approach using aqueous ammonia as a pH modifier for glycine-based lixiviant systems to leach copper from chalcopyrite while maintaining surface refreshment using ceramic media at room temperature. The glycine–ammonia system exhibited significantly better copper extraction than the traditional glycine–NaOH system. A copper extraction of 91.5% was achieved after 72 h of leaching by using 0.71 M ammonia, at a Gly:Cu molar ratio of 4:1, by using a solid content of 1%, with a ceramic media: solid ratio of 3:5 and at ambient temperature. Adding ceramic beads during leaching led to a breakup of particles and a refreshment of particles’ surfaces that significantly improved the copper extraction. At a solid content of 10%, oxygen is essential for leaching; a copper extraction of 95.4% was achieved with oxygen injection, while only 33.4% copper extraction was obtained without introducing oxygen. A kinetic analysis indicates that the leaching rate is limited by combined liquid film diffusion and diffusion through the product layer. A conceptual flowsheet is proposed, where chalcopyrite concentrate can be extracted by a leaching–grinding process and copper can be recovered by a solvent extraction–electrowinning circuit. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

14 pages, 1393 KB  
Review
Overview of Environmental and Health Effects Related to Glyphosate Usage
by Tomas Rivas-Garcia, Alejandro Espinosa-Calderón, Benjamin Hernández-Vázquez and Rita Schwentesius-Rindermann
Sustainability 2022, 14(11), 6868; https://doi.org/10.3390/su14116868 - 4 Jun 2022
Cited by 43 | Viewed by 13862
Abstract
Since the introduction of glyphosate (N-(phosphomethyl) glycine) in 1974, it has been the most used nonselective and broad-spectrum herbicide around the world. The widespread use of glyphosate and glyphosate-based herbicides is due to their low-cost efficiency in killing weeds, their rapid [...] Read more.
Since the introduction of glyphosate (N-(phosphomethyl) glycine) in 1974, it has been the most used nonselective and broad-spectrum herbicide around the world. The widespread use of glyphosate and glyphosate-based herbicides is due to their low-cost efficiency in killing weeds, their rapid absorption by plants, and the general mistaken perception of their low toxicity to the environment and living organisms. As a consequence of the intensive use and accumulation of glyphosate and its derivatives on environmental sources, major concerns about the harmful side effects of glyphosate and its metabolites on human, plant, and animal health, and for water and soil quality, are emerging. Glyphosate can reach water bodies by soil leaching, runoff, and sometimes by the direct application of some approved formulations. Moreover, glyphosate can reach nontarget plants by different mechanisms, such as spray application, release through the tissue of treated plants, and dead tissue from weeds. As a consequence of this nontarget exposure, glyphosate residues are being detected in the food chains of diverse products, such as bread, cereal products, wheat, vegetable oil, fruit juice, beer, wine, honey, eggs, and others. The World Health Organization reclassified glyphosate as probably carcinogenic to humans in 2015 by the IARC. Thus, many review articles concerning different glyphosate-related aspects have been published recently. The risks, disagreements, and concerns regarding glyphosate usage have led to a general controversy about whether glyphosate should be banned, restricted, or promoted. Thus, this review article makes an overview of the basis for scientists, regulatory agencies, and the public in general, with consideration to the facts on and recommendations for the future of glyphosate usage. Full article
Show Figures

Figure 1

19 pages, 1041 KB  
Article
Uncovering Pathways Highly Correlated to NUE through a Combined Metabolomics and Transcriptomics Approach in Eggplant
by Antonio Mauceri, Meriem Miyassa Aci, Laura Toppino, Sayantan Panda, Sagit Meir, Francesco Mercati, Fabrizio Araniti, Antonio Lupini, Maria Rosaria Panuccio, Giuseppe Leonardo Rotino, Asaph Aharoni, Maria Rosa Abenavoli and Francesco Sunseri
Plants 2022, 11(5), 700; https://doi.org/10.3390/plants11050700 - 4 Mar 2022
Cited by 10 | Viewed by 4203
Abstract
Nitrogen (N) fertilization is one of the main inputs to increase crop yield and food production. However, crops utilize only 30–40% of N applied; the remainder is leached into the soil, causing environmental and health damage. In this scenario, the improvement of nitrogen-use [...] Read more.
Nitrogen (N) fertilization is one of the main inputs to increase crop yield and food production. However, crops utilize only 30–40% of N applied; the remainder is leached into the soil, causing environmental and health damage. In this scenario, the improvement of nitrogen-use efficiency (NUE) will be an essential strategy for sustainable agriculture. Here, we compared two pairs of NUE-contrasting eggplant (Solanum melongena L.) genotypes, employing GC-MS and UPLC-qTOF-MS-based technologies to determine the differential profiles of primary and secondary metabolites in root and shoot tissues, under N starvation as well as at short- and long-term N-limiting resupply. Firstly, differences in the primary metabolism pathways of shoots related to alanine, aspartate and glutamate; starch, sucrose and glycine; serine and threonine; and in secondary metabolites biosynthesis were detected. An integrated analysis between differentially accumulated metabolites and expressed transcripts highlighted a key role of glycine accumulation and the related glyA transcript in the N-use-efficient genotypes to cope with N-limiting stress. Interestingly, a correlation between both sucrose synthase (SUS)- and fructokinase (scrK)-transcript abundances, as well as D-glucose and D-fructose accumulation, appeared useful to distinguish the N-use-efficient genotypes. Furthermore, increased levels of L-aspartate and L-asparagine in the N-use-efficient genotypes at short-term low-N exposure were detected. Granule-bound starch synthase (WAXY) and endoglucanase (E3.2.1.4) downregulation at long-term N stress was observed. Therefore, genes and metabolites related to these pathways could be exploited to improve NUE in eggplant. Full article
Show Figures

Figure 1

17 pages, 3844 KB  
Article
Soybean in No-Till Cover-Crop Systems
by Mosab Halwani, Moritz Reckling, Johannes Schuler, Ralf Bloch and Johann Bachinger
Agronomy 2019, 9(12), 883; https://doi.org/10.3390/agronomy9120883 - 13 Dec 2019
Cited by 11 | Viewed by 7019
Abstract
Introducing agro-ecological techniques such as no-tillage systems with cover crops in rotations with soybean (Glycine max (L.) Merr.) could provide more resilience to changing climatic conditions and, at the same time, reduce soil erosion, nitrate leaching, and weed density in the main [...] Read more.
Introducing agro-ecological techniques such as no-tillage systems with cover crops in rotations with soybean (Glycine max (L.) Merr.) could provide more resilience to changing climatic conditions and, at the same time, reduce soil erosion, nitrate leaching, and weed density in the main crop. However, there are challenges in introducing no-tillage techniques in crop systems in Europe as there is little quantitative knowledge about the agro-economic impact. The objectives of this study were to evaluate the agronomic and economic impacts of three soybean cropping systems involving a rye (Secale cereal L.) cover crop prior to soybean, i.e., two no-tillage systems; either herbicide-free with crimping the rye or herbicide-based without rye crimping and one plough-based in which rye was cut as green silage. The impacts of these cropping strategies were compared in a three-year cropping system experiment at a research station in north-eastern Germany with and without irrigation. The following parameters were measured: (1) cover crop biomass; (2) weed biomass; (3) soybean plant density; (4) soybean grain yield; and (5) gross margin of the cropping system. The results showed that all three soybean cropping systems can effectively suppress weeds. System (C), the no-tillage herbicide-based system, produced the lowest rye biomass and highest soybean yield; system (B), the no-tillage herbicide-free/crimped rye system, produced the highest rye biomass and lowest soybean yield compared to system (A), the standard cutting/plough-based system. The differences in rye biomass and soybean yield observed between the three systems could be mainly attributed to the timing of the cover crop termination and the soybean sowing date. The gross margin was highest in system (C), due to the high soybean grain yield. The low soybean grain yield in system (B) resulted in lower revenues and gross margins compared to systems (A) and (C), although system (B) could be economically attractive in organic farming with higher prices for organic soybean. In the particularly dry year 2016, gross margins were higher when soybean was irrigated compared to the rainfed cultivation, due to significantly higher grain yields. Before recommending the application of the no-tillage with cover crop technique for the conditions tested in north-eastern Germany, more investigations on the benefits and risks of this technique are needed. Further research needs to focus on maintaining a high rye biomass as well as on ensuring an early soybean planting date. Optimizing the crimping and drilling equipment is still required in order to develop good management practices for no-tillage herbicide-free systems in European conditions. Full article
(This article belongs to the Special Issue Sustainable Cropping Systems)
Show Figures

Figure 1

20 pages, 12773 KB  
Article
Immobilized Palladium Nanoparticles on Zirconium Carboxy-Aminophosphonates Nanosheets as an Efficient Recoverable Heterogeneous Catalyst for Suzuki–Miyaura and Heck Coupling
by Vadym Kozell, Tommaso Giannoni, Morena Nocchetti, Riccardo Vivani, Oriana Piermatti and Luigi Vaccaro
Catalysts 2017, 7(6), 186; https://doi.org/10.3390/catal7060186 - 9 Jun 2017
Cited by 35 | Viewed by 6378
Abstract
Zirconium phosphate glycine diphosphonate nanosheets (ZPGly) have been used as support for the preparation of solid palladium nanoparticles, namely Pd@ZPGly. Thanks to the presence of carboxy-aminophosponate groups on the layer surface, ZPGly-based materials were able to stabilize a high amount of palladium (up [...] Read more.
Zirconium phosphate glycine diphosphonate nanosheets (ZPGly) have been used as support for the preparation of solid palladium nanoparticles, namely Pd@ZPGly. Thanks to the presence of carboxy-aminophosponate groups on the layer surface, ZPGly-based materials were able to stabilize a high amount of palladium (up to 22 wt %) also minimizing the amount of metal leached in the final products of representative important cross-coupling processes selected for proving the catalysts’ efficiency. The catalytic systems have been fully characterized and used in low amounts (0.1 mol %) in the Suzuki–Miyaura and Heck cross-couplings. Moreover, the protocols were optimized for the use of recoverable azeotropic mixtures (aq. EtOH 96% or aq. CH3CN 84%, respectively) and in the flow procedure allowing one to isolate the final pure products, without any purification step, with very low residual palladium content and with a very low waste production. Full article
(This article belongs to the Special Issue Zirconium Phosphate Catalysts)
Show Figures

Graphical abstract

Back to TopTop