Extraction of Copper from Chalcopyrite Using Alkaline Glycine–Ammonia Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Procedures
2.3. Kinetic Model
3. Results
3.1. Thermodynamic Consideration
Complexing with Glycine | Complexing with Ammonia | |||||||
---|---|---|---|---|---|---|---|---|
logKML | logKML2 | logKML3 | logKML | logKML2 | logKML3 | logKML4 | logKML5 | |
Cu+ | - | 10.0 | - | 5.93 | 10.86 | - | - | - |
Cu2+ | 8.60 | 15.54 | 16.27 | 4.31 | 7.98 | 11.02 | 13.32 | 12.86 |
3.2. Effects of pH Modifier
3.3. Effects of Adding Ceramic Beads
3.4. Effects of Gly:Cu Molar Ratio
3.5. Effects of pH
3.6. Effects of Adding Lime
3.7. Leachability at 10% Solid
3.8. Kinetic Rate Equation Analysis
3.9. Conceptual Flowsheet
4. Conclusions
- The leached Cu is mainly complexed with glycine as Cu(Gly)2 in a glycine–ammonia lixiviant system according to the Eh-pH diagram and the cumulative formation constant log K.
- The glycine–ammonia system shows much higher Cu extraction (91.5%) than the glycine–NaOH and ammonia-only systems.
- The addition of ceramic beads significantly improved the Cu extraction by reducing particle size and by refreshing the particle surface.
- Higher Cu extraction was achieved at a higher pH, but a higher dosage of ammonia solution was required.
- Adding lime can reduce sulfur accumulation from the final leachate without decreasing the amount of Cu extraction.
- High solid content leaching required oxygen, where a Cu extraction of 95.4% was achieved at solid content of 10% with O2 injected at a flowrate of 0.1 L/min.
- A kinetic rate equation analysis shows that the leaching rate of the glycine–ammonia lixiviant system is controlled by diffusion through film and diffusion through product layer.
- A conceptual flowsheet for the glycine–ammonia lixiviant system was proposed, which consists of leaching-grinding process for Cu extraction and the SX-EW circuit for Cu recovery.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, F.; Wang, S. Chapter 7—Bioleaching of electronic waste using extreme acidophiles. In Electronic Waste Management and Treatment Technology; Prasad, M.N.V., Vithanage, M., Eds.; Butterworth-Heinemann: Oxford, UK, 2019; pp. 153–174. [Google Scholar]
- Baba, A.A.; Ghosh, M.K.; Pradhan, S.R.; Rao, D.S.; Baral, A.; Adekola, F.A. Characterization and kinetic study on ammonia leaching of complex copper ore. Trans. Nonferrous Met. Soc. China 2014, 24, 1587–1595. [Google Scholar] [CrossRef]
- Watling, H.R. Chalcopyrite hydrometallurgy at atmospheric pressure: 2. Review of acidic chloride process options. Hydrometallurgy 2014, 146, 96–110. [Google Scholar] [CrossRef]
- Watling, H.R. Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfate–chloride and sulfate–nitrate process options. Hydrometallurgy 2013, 140, 163–180. [Google Scholar] [CrossRef]
- Beckstead, L.W.; Miller, J.D. Ammonia, oxidation leaching of chalcopyrite —Surface deposit effects. Metall. Trans. B 1977, 8, 31–38. [Google Scholar] [CrossRef]
- O’Connor, G.M.; Eksteen, J.J. A critical review of the passivation and semiconductor mechanisms of chalcopyrite leaching. Miner. Eng. 2020, 154, 106401. [Google Scholar] [CrossRef]
- Meng, X.; Han, K.N. The principles and applications of ammonia leaching of metals—A review. Miner. Process. Extr. Metall. Rev. 1996, 16, 23–61. [Google Scholar] [CrossRef]
- Reilly, I.G.; Scott, D.S. The leaching of a chalcopyrite concentrate in ammonia. Can. J. Chem. Eng. 1977, 55, 527–533. [Google Scholar] [CrossRef]
- Cattarin, S. Interfacial Reactivity and Oscillating Behavior of Chalcopyrite Cathodes during H2O2 Reduction. J. Electrochem. Soc. 1990, 137, 3484. [Google Scholar] [CrossRef]
- Warren, G.W.; Wadsworth, M.E. The electrochemical oxidation of chalcopyrite in ammoniacal solutions. Metall. Trans. B 1984, 15, 289–297. [Google Scholar] [CrossRef]
- Deng, Z.; Oraby, E.A.; Eksteen, J.J. Sulfide precipitation of copper from alkaline glycine-cyanide solutions: Precipitate characterisation. Miner. Eng. 2020, 145, 106102. [Google Scholar] [CrossRef]
- Eksteen, J.J.; Oraby, E.A. The leaching and adsorption of gold using low concentration amino acids and hydrogen peroxide: Effect of catalytic ions, sulphide minerals and amino acid type. Miner. Eng. 2015, 70, 36–42. [Google Scholar] [CrossRef]
- Eksteen, J.J.; Oraby, E.A.; Tanda, B.C. A conceptual process for copper extraction from chalcopyrite in alkaline glycinate solutions. Miner. Eng. 2017, 108, 53–66. [Google Scholar] [CrossRef]
- Li, H.; Oraby, E.; Eksteen, J. Extraction of copper and the co-leaching behaviour of other metals from waste printed circuit boards using alkaline glycine solutions. Resour. Conserv. Recycl. 2020, 154, 104624. [Google Scholar] [CrossRef]
- Oraby, E.A. Gold leaching in Thiosulfate Solutions and Its Environmental Effects Compared with Cyanide. Ph.D. Thesis, Curtin University, Perth, Australia, 2009. [Google Scholar]
- Oraby, E.A.; Eksteen, J.J. The selective leaching of copper from a gold– copper concentrate in glycine solutions. Hydrometallurgy 2014, 150, 14–19. [Google Scholar] [CrossRef]
- Oraby, E.A.; Eksteen, J.J. Gold leaching in cyanide-starved copper solutions in the presence of glycine. Hydrometallurgy 2015, 156, 81–88. [Google Scholar] [CrossRef]
- Oraby, E.A.; Eksteen, J.J. The leaching of gold, silver and their alloys in alkaline glycine–peroxide solutions and their adsorption on carbon. Hydrometallurgy 2015, 152, 199–203. [Google Scholar] [CrossRef]
- Oraby, E.A.; Eksteen, J.J.; Tanda, B.C. Gold and copper leaching from gold-copper ores and concentrates using a synergistic lixiviant mixture of glycine and cyanide. Hydrometallurgy 2017, 169, 339–345. [Google Scholar] [CrossRef]
- Oraby, E.A.; Li, H.; Eksteen, J.J. An Alkaline Glycine-Based Leach Process of Base and Precious Metals from Powdered Waste Printed Circuit Boards. Waste Biomass Valorization 2019, 11, 3897–3909. [Google Scholar] [CrossRef]
- Tanda, B.C.; Oraby, E.A.; Eksteen, J.J. Recovery of copper from alkaline glycine leach solution using solvent extraction. Sep. Purif. Technol. 2017, 187, 389–396. [Google Scholar] [CrossRef]
- Deng, Z.; Oraby, E.A.; Eksteen, J.J. The sulfide precipitation behaviour of Cu and Au from their aqueous alkaline glycinate and cyanide complexes. Sep. Purif. Technol. 2019, 218, 181–190. [Google Scholar] [CrossRef]
- Deng, Z.; Oraby, E.A.; Eksteen, J.J. Cu adsorption behaviours onto chelating resins from glycine-cyanide solutions: Isotherms, kinetics and regeneration studies. Sep. Purif. Technology 2020, 236, 116280. [Google Scholar] [CrossRef]
- Deng, Z.; Oraby, E.A.; Eksteen, J.J. Gold recovery from cyanide-starved glycine solutions in the presence of Cu using a molecularly imprinted resin (IXOS-AuC). Hydrometallurgy 2020, 196, 105425. [Google Scholar] [CrossRef]
- Tauetsile, P.J.; Oraby, E.A.; Eksteen, J.J. Adsorption behaviour of copper and gold glycinates in alkaline media onto activated carbon. Part 1: Isotherms. Hydrometallurgy 2018, 178, 202–208. [Google Scholar] [CrossRef]
- Tauetsile, P.J.; Oraby, E.A.; Eksteen, J.J. Adsorption behaviour of copper and gold Glycinates in alkaline media onto activated carbon. Part 2: Kinetics. Hydrometallurgy 2018, 178, 195–201. [Google Scholar] [CrossRef]
- Tauetsile, P.J.; Oraby, E.A.; Eksteen, J.J. Activated carbon adsorption of gold from cyanide-starved glycine solutions containing copper. Part 1: Isotherms. Sep. Purif. Technol. 2019, 211, 594–601. [Google Scholar] [CrossRef]
- Tauetsile, P.J.; Oraby, E.A.; Eksteen, J.J. Activated carbon adsorption of gold from cyanide-starved glycine solutions containing copper. Part 2: Kinetics. Sep. Purif. Technol. 2019, 211, 290–297. [Google Scholar] [CrossRef]
- Tanda, B.C.; Eksteen, J.J.; Oraby, E.A.; O’Connor, G.M. The kinetics of chalcopyrite leaching in alkaline glycine/glycinate solutions. Miner. Eng. 2019, 135, 118–128. [Google Scholar] [CrossRef]
- O’Connor, G.M.; Lepkova, K.; Eksteen, J.J.; Oraby, E.A. Electrochemical behaviour and surface analysis of chalcopyrite in alkaline glycine solutions. Hydrometallurgy 2018, 182, 32–43. [Google Scholar] [CrossRef]
- Moyo, T.; Petersen, J. New Mining and Metallurgy Findings from University of Cape Town Reported (Study of the dissolution of chalcopyrite in solutions of different ammonium salts). Chem. Chem. 2016, 116, 509–516. [Google Scholar]
- Khezri, M.; Rezai, B.; Akbar Abdollahzadeh, A.; Molaeinasab, M.; Wilson, B.P.; Lundström, M. Glycine leaching of Sarcheshmeh chalcopyrite concentrate at high pulp densities in a stirred tank reactor. Miner. Eng. 2020, 157, 106555. [Google Scholar] [CrossRef]
- Delf, B.W.; Gillard, R.D.; O’Brien, P. ChemInform Abstract: The isomers of α-amino acids with copper(ii). Part 5. the cis and trans s isomers of bis(glycinato)Copper(II), and their novel thermal isomerization. J. Chem. Soc. Dalton Trans. 1979, 10, 1301–1305. [Google Scholar] [CrossRef]
- Hobart, D.B.; Berg, M.A.G.; Merola, J.S. Bis-glycinato complexes of palladium(II): Synthesis, structural determination, and hydrogen bonding interactions. Inorg. Chim. Acta 2014, 423, 21–30. [Google Scholar] [CrossRef]
- Li, M.; Zheng, S.; Liu, B.; Du, H.; Dreisinger, D.B.; Tafaghodi, L.; Zhang, Y. The leaching kinetics of cadmium from hazardous Cu-Cd zinc plant residues. Waste Manag. 2017, 65, 128–138. [Google Scholar] [CrossRef]
- Li, N.; Zhang, Y.; Kong, D.; Zhou, Q.; Chen, X.; Hui, S. Fluid particle group reaction model and experimental verification. Adv. Powder Technol. 2013, 24, 200–206. [Google Scholar] [CrossRef]
- Moyo, T.; Petersen, J.; Nicol, M. The electrochemistry and kinetics of the oxidative dissolution of chalcopyrite in ammoniacal solutions. Part II–Cathodic reactions. Hydrometallurgy 2019, 184, 67–74. [Google Scholar] [CrossRef]
- Nabizadeh, A.; Aghazadeh, V. Dissolution study of chalcopyrite concentrate in oxidative ammonia/ammonium carbonate solutions at moderate temperature and ambient pressure. Hydrometallurgy 2015, 152, 61–68. [Google Scholar] [CrossRef]
- Moyo, T.; Petersen, J.; Nicol, M. The electrochemistry and kinetics of the oxidative dissolution of chalcopyrite in ammoniacal solutions: Part I–Anodic Reactions. Hydrometallurgy 2018, 182, 97–103. [Google Scholar] [CrossRef]
- Tanda, B.C.; Eksteen, J.J.; Oraby, E.A. An investigation into the leaching behaviour of copper oxide minerals in aqueous alkaline glycine solutions. Hydrometallurgy 2017, 167, 153–162. [Google Scholar] [CrossRef]
- Radmehr, V.; Koleini, S.; Khalesi, M.; Tavakoli Mohammadi, R. Ammonia leaching in the copper industry: A review. In Proceedings of the XXVI International Mineral Processing Congress (IMPC) Proceedings, New Delhi, India, 24–28 September 2012; pp. 02512–02523. [Google Scholar]
- Radmehr, V.; Koleini, S.M.J.; Khalesi, M.R.; Mohammadi, M.R.T. Ammonia Leaching: A new approach of copper industry in hydrometallurgical processes. J. Inst. Eng. Ser. D 2013, 94, 95–104. [Google Scholar] [CrossRef]
- Dean, J.A. Lange’s Handbook of Chemistry, 15th ed.; McGraw-Hill Inc.: New York, NY, USA, 1999. [Google Scholar]
- Kiss, T.; Sovago, I.; Gergely, A. Critical survey of stability constants of complexes of glycine. Pure Appl. Chem. 1991, 63, 597–638. [Google Scholar] [CrossRef]
- Li, Y.; Yao, Y.; Wang, B.; Qian, G.; Li, Z.; Zhu, Y. New insights into chalcopyrite leaching enhanced by mechanical activation. Hydrometallurgy 2019, 189, 105131. [Google Scholar] [CrossRef]
- Levenspiel, O.A. Chemical Reaction Engineering; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Nazemi, M.K.; Rashchi, F.; Mostoufi, N. A new approach for identifying the rate controlling step applied to the leaching of nickel from spent catalyst. Int. J. Miner. Process. 2011, 100, 21–26. [Google Scholar] [CrossRef]
- Tanda, B.C.; Oraby, E.A.; Eksteen, J.J. Kinetics of malachite leaching in alkaline glycine solutions. Miner. Process. Extr. Metall. 2021, 130, 16–24. [Google Scholar] [CrossRef]
- Li, H.; Oraby, E.; Eksteen, J. Recovery of copper and the deportment of other base metals from alkaline glycine leachates derived from waste printed circuit boards (WPCBs). Hydrometallurgy 2021, 199, 105540. [Google Scholar] [CrossRef]
Minerals | Chalcopyrite | Pyrite | Talc | Stilpnomelane | Quartz | Gypsum |
---|---|---|---|---|---|---|
Fraction, % | 64.0 | 8.0 | 23.0 | 3.0 | 1.0 | <1.0 |
Elements | Cu | Ni | Fe | Al | Ca | S | Zn | Pb | As | Mn | Co |
---|---|---|---|---|---|---|---|---|---|---|---|
Fraction, % | 23.1 | 0.002 | 26.9 | 0.18 | 0.26 | 28.5 | 0.54 | 0.117 | 0.058 | 0.02 | 0.026 |
Test No. | Glycine, M | NH3, M | NaOH, M | Copper Concentration in Leachate, g/L | Cu Extraction at 72 h (XRF) | Cu Extraction at 72 h (ICP + XRF) | Accountability, % |
---|---|---|---|---|---|---|---|
T1 | 0.14 | - | 0.12 | 0.687 | 29.45 | 30.6 | 96.24 |
T2 | - | 0.48 | - | 1.490 | 92.26 | 91.80 | 100.50 |
T3 | 0.14 | 0.71 | - | 2.090 | 63.79 | 65.35 | 97.62 |
Gly:Cu | Glycine, M | NH3, M | Cu Extraction at 72 h (XRF), % | Cu Extraction at 72 h (ICP + XRF), % | Accountability, % |
---|---|---|---|---|---|
2:1 | 0.07 | 0.53 | 85.05 | 84.1 | 101.09 |
4:1 | 0.14 | 0.71 | 92.26 | 91.80 | 100.50 |
8:1 | 0.28 | 0.90 | 94.07 | 93.63 | 100.47 |
pH | Glycine, M | NH3, M | Cu Extraction at 72 h (XRF) | Cu Extraction at 72 h (ICP + XRF) | Accountability, % |
---|---|---|---|---|---|
9.0 | 0.14 | 0.06 | 24.42 | 25.1 | 97.41 |
10.5 | 0.14 | 0.71 | 92.26 | 91.80 | 100.50 |
11.5 | 0.14 | 1.93 | 92.24 | 92.33 | 99.90 |
Conditions | Unit | Cu | S | Ca | Fe | Zn | Ni |
---|---|---|---|---|---|---|---|
With Lime | mg/L | 1970 | 2060 | 9.5 | 4.5 | 33.5 | 1.5 |
No lime | mg/L | 2090 | 4050 | 5 | 2 | 18.2 | 0.2 |
Elements | Au (As Glycinate) | Cu (As Glycinate) | S (As Sulfate) | Fe (As Ferric Hydroxide) | Ni | Ca | Pb | Zn |
---|---|---|---|---|---|---|---|---|
Concentration, mg/L | 0.122 | 17,900 | 17,400 | 2.4 | 0.6 | 31.6 | BDL * | 258 |
Variables | Coefficient of Variation for the Investigated Models: R2 | ||
---|---|---|---|
Diffusion through Film Control x | Diffusion through Product Layer Control 1 − 3 (1 − x)2/3 + 2(1 − x) | Chemical Reaction Control 1 − (1 − x)1/3 | |
Ceramic: solid | |||
0 | 0.9149 | 0.9739 | 0.9496 |
1:5 | 0.9261 | 0.9937 | 0.9695 |
3:5 | 0.9760 | 0.9546 | 0.9972 |
Gly:Cu | |||
2:1 | 0.9770 | 0.9568 | 0.9952 |
4:1 | 0.9780 | 0.9546 | 0.9972 |
8:1 | 0.9878 | 0.9279 | 0.9908 |
pH | |||
9.0 | 0.8209 | 0.9672 | 0.8367 |
10.5 | 0.9760 | 0.9546 | 0.9972 |
11.5 | 0.9196 | 0.9932 | 0.9765 |
Gly:Cu | kl | kd | kr | R2 |
---|---|---|---|---|
2:1 | 45.04 | 80.90 | 0 | 0.9951 |
4:1 | 41.96 | 57.12 | 0 | 0.9949 |
8:1 | 50.12 | 39.80 | 0 | 0.9949 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Z.; Oraby, E.; Li, H.; Eksteen, J. Extraction of Copper from Chalcopyrite Using Alkaline Glycine–Ammonia Solutions. Minerals 2022, 12, 1507. https://doi.org/10.3390/min12121507
Deng Z, Oraby E, Li H, Eksteen J. Extraction of Copper from Chalcopyrite Using Alkaline Glycine–Ammonia Solutions. Minerals. 2022; 12(12):1507. https://doi.org/10.3390/min12121507
Chicago/Turabian StyleDeng, Zixian, Elsayed Oraby, Huan Li, and Jacques Eksteen. 2022. "Extraction of Copper from Chalcopyrite Using Alkaline Glycine–Ammonia Solutions" Minerals 12, no. 12: 1507. https://doi.org/10.3390/min12121507
APA StyleDeng, Z., Oraby, E., Li, H., & Eksteen, J. (2022). Extraction of Copper from Chalcopyrite Using Alkaline Glycine–Ammonia Solutions. Minerals, 12(12), 1507. https://doi.org/10.3390/min12121507