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Abstract: Nitrogen (N) fertilization is one of the main inputs to increase crop yield and food produc-
tion. However, crops utilize only 30–40% of N applied; the remainder is leached into the soil, causing
environmental and health damage. In this scenario, the improvement of nitrogen-use efficiency
(NUE) will be an essential strategy for sustainable agriculture. Here, we compared two pairs of
NUE-contrasting eggplant (Solanum melongena L.) genotypes, employing GC-MS and UPLC-qTOF-
MS-based technologies to determine the differential profiles of primary and secondary metabolites in
root and shoot tissues, under N starvation as well as at short- and long-term N-limiting resupply.
Firstly, differences in the primary metabolism pathways of shoots related to alanine, aspartate and
glutamate; starch, sucrose and glycine; serine and threonine; and in secondary metabolites biosyn-
thesis were detected. An integrated analysis between differentially accumulated metabolites and
expressed transcripts highlighted a key role of glycine accumulation and the related glyA transcript
in the N-use-efficient genotypes to cope with N-limiting stress. Interestingly, a correlation between
both sucrose synthase (SUS)- and fructokinase (scrK)-transcript abundances, as well as D-glucose and
D-fructose accumulation, appeared useful to distinguish the N-use-efficient genotypes. Furthermore,
increased levels of L-aspartate and L-asparagine in the N-use-efficient genotypes at short-term low-
N exposure were detected. Granule-bound starch synthase (WAXY) and endoglucanase (E3.2.1.4)
downregulation at long-term N stress was observed. Therefore, genes and metabolites related to
these pathways could be exploited to improve NUE in eggplant.

Keywords: Solanum melongena L.; primary metabolites; GC-MS; glycoalkaloids; UPLC-qTOF-MS;
RNA-seq; nitrogen-use efficiency

1. Introduction

Soil-N availability is one of the most important factors limiting worldwide plant
growth and productivity. Nitrogen limitation leads to many functional damages, inducing
alterations in physiological, biochemical, and molecular processes such as photosynthesis,
respiration, ion uptake and translocation, carbon metabolism, and senescence [1,2]. Over
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the last four decades, N employed in fertilization has dramatically increased in order to
maximize crop yield and consequently meet food demands [3]. However, excessive use of
N determines negative effects on the environment, economy, and human health [4]. Thus,
nitrogen-use-efficiency (NUE) improvement in crop plants, together with low-N-fertilizer
input and best-management practices, could represent strategies to limit the negative
impact of agriculture on the environment and human health [5].

NUE, defined as “the grain yield per unit of N available in the soil”, is a complex
trait under physiological, biochemical, and genetic control [6,7]. Efforts have been made
to identify molecular mechanisms underlying NUE to improve this complex trait by con-
ventional breeding programs in several crops [8]. Recently, metabolomics, transcriptomics,
and proteomics are becoming valuable tools in model and crop species to understand
changes in biological processes, genes, and chemical composition of primary and secondary
metabolites involved in stress responses, including N deficiency [9–11].

NUE has been mainly explored in several crop plants, such as rice, wheat, and
maize [12], but should be relevant also for Solanaceae crops due to their high dependence in
N fertilizers [13]. Limited information on NUE is available on eggplant (Solanum melongena
L.), the third most important vegetable crop (following tomato and potato) that is cultivated
worldwide, mainly in Asian territories [13]. Recently, two NUE-contrasting genotypes have
been identified in hydroponic and greenhouse experiments, under low-N conditions [14].
Transcriptome analysis, in both shoot and root tissues, highlighted differentially expressed
genes (DEGs) related to NUE traits after short- and long-term N-stress exposure. In detail,
DEGs involved in the light-reaction pathway, the response to inorganic substances, abiotic
stimulus, and cellular response to N starvation, together with several putative transcription
factors (TFs) were upregulated in the N-use-efficient genotypes [15].

Here, we use a metabolomics approach to examine the metabolic profiles of NUE-
contrasting genotypes [14], with particular emphasis to organic acids, amino acids, sugars,
and secondary metabolites, mainly on nitrogen-containing ones such as glycoalkaloids that
previously have been considered. In particular, glycoalkaloids (GAs), a class of nitrogen-
containing secondary metabolites, commonly occur in the Solanaceae family (tomato, potato,
and eggplant). Although considered toxic for human health, they exhibit a wide range of
pharmacological properties, including anticancer activity; whereas in plants, they play an
important defense role against pests [16,17]. Interestingly, plants change their metabolic
profiles under N stress, according to the starvation period, genotypes, and tissues [18,19]. In
particular, N- and C-containing metabolites (including organic acids) are strictly correlated
with plant biomass and growth [20].

To identify key pathways involved in N metabolism in eggplant, an integration
between metabolomics and transcriptomics data was carried out. Our findings shed
light on genes and metabolites reprogrammed in N-use-efficient genotypes compared to
inefficient genotypes under N-limiting resupply, providing valuable knowledge to develop
strategies for improving NUE in eggplant.

2. Results
2.1. Metabolite Detection in Contrasting NUE Genotypes at Different Resupply Time Intervals

Root and shoot extracts derived from high (AM222 and 67-3)- and low (305E40
and AM22)-NUE eggplant genotypes were profiled using GC-MS (mainly primary, polar
metabolites) and high-resolution MS (HRMS; UPLC-qTOF-MS; mainly secondary, semi-
polar metabolites) to examine the plant response to N starvation as well as short- and
long-term N-limited resupply. In both tissues, collected at T0 (after 2 days N-free solution),
T1 and T2 (1 and 16 days after NO3

− resupply), 33 (through GC-MS) and 29 (through UPLC-
qTOF-MS) metabolites were annotated in high confidence. GC-MS analysis results in the
identification of three main primary metabolite classes including amino acids (17), organic
acids (11), and sugars (5) (Supplementary Table S1A). In HRMS analysis, we focused on
nitrogen-containing metabolites, mainly glycoalkaloids (Supplementary Table S1B).
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2.2. Multivariate Statistical Analysis of Eggplant Metabolite

The PCA model performed on root data took into account the two main components,
PC1 vs. PC2, which explained 31.6% and 9.4% of the total variance (41%), respectively. The
analysis did not clearly separate the samples (Figure 1A). Loading plots of metabolites
according to different times and genotypes in root are shown in Supplementary Table S2A.
Conversely, in shoot, PC1 and PC2 explained 20.4% and 15% of the total variance (35.4%),
respectively, pointing out proximity between time sampling T0 and T1, while T2 appeared
more distinguished (Figure 1B). The more N-use-efficient genotypes, AM222, 305E40, and
67-3, showed distinct metabolic profiles (in T2); by contrast, the AM22 did not show any
significant difference across the time of sampling (Figure 1B, Supplementary Table S2B).

Figure 1. Two-dimensional plot of principal component analysis (PCA) of eggplant metabolites for
root (A) and shoot (B). The dots represent accessions with 95% confidence regions as ellipses. (A) In
root, PC1 and PC2 explained 41% of total variation; time sampling and accessions are not clearly
distinguished. (B) In shoot, PC1 and PC2 explained 35.4% of total variations; AM22 do not respond
to N limitation, while the other genotypes are clearly distinguished by treatments (time).

To maximize the variance, a partial least-squares discriminant analysis (PLS-DA)
was performed on the same datasets. In root, the PLS-DA permutation test showed an
empirical p-value ≥ 0.05; therefore it was not considered. In shoot, the PLS-DA model
defined a clearer separation, on which components 1 and 2 explained 13.9% and 12.1%
of the total variance, respectively. At all sampling times, the replicates of each genotype
were closely grouped (apart from the AM222 samples at T1; Figure 2). AM22 displayed
reduced metabolic changes across sampling times (T0, T1, and T2) compared to the other
genotypes. Notably, at T2, the high-NUE genotypes (i.e., AM222 and 67-3), appeared
well-separated from 305E40 and AM22 (the lower-NUE genotypes; Figure 2A). The variable
importance in projection (VIP) indicated L-glutamine, L-isoleucine, L-cysteine, myo-inositol,
L-phenylalanine, solamargine isomer (M869T830), shikimic, L-glutamic, oxalic, and succinic
acids as the most discriminant metabolites among the genotype-profile scores (Figure 2B,
Supplementary Table S3B). More specifically, at T0, the low-NUE genotype AM22 showed
high levels of L-glutamic acid, L-cysteine, and L-isoleucine, while 305E40 showed high
levels of L-glutamine. Conversely, in the high-NUE genotypes, 67-3 exhibited high levels of
the unknown glycoalkaloid M1003T1070, while AM222 the solamargine isomer (M869T830).
At T1, AM22, and 305E40 accumulated shikimic acid and L-phenylalanine, respectively.
Furthermore, 67-3 and AM222 showed high levels of oxalic acid and the solamargine
isomer (M869T830), as well as L-cysteine. Finally, at T2, AM22 accumulated succinic acid,
L-glutamic acid, and myo-inositol, while 305E40 exhibited high levels of solamargine
isomer (M869T830), L-isoleucine, and L-leucine (Figure 2B, Supplementary Table S3B).
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Figure 2. Partial least-squares discriminant analysis (PLS-DA) in shoot. (A) 2D scores plot of PLS-DA;
the dots represent accessions with 95% confidence regions as ellipses. (B) The importance measures
used in PLS-DA are VIP scores (variable importance in projection). The colored boxes on the right
indicate the relative concentrations of the corresponding metabolite in each group.

2.3. Root and Shoot Metabolites in Eggplant Genotypes under Low N Supply

The analysis of variance (ANOVA), comparing the overall variation among the identi-
fied metabolites (p < 0.05), is provided in Supplementary Table S4A,B. In the root tissue,
differences were mainly observed in secondary metabolites while only the myo-inositol
was changed among the primary ones. In particular, at T0, the N-use-inefficient geno-
type AM22 showed significant accumulation of secondary metabolites, mainly furostanol
and the soladulcine A, together with myo-inositol (Figure 3A), while at T1 and T2, the
secondary metabolites were gradually reduced. Interestingly, at T1, the efficient geno-
type AM222 displayed an increase in solasonine (S) (M885T1016), solamargine isomer
(M869T830), solasonine isomer (M885T1031), and hydroxy dihydro solasonine (M903T687)
(Figure 3B). In contrast to root, the shoot tissue showed differences in both primary and
secondary metabolites (Figure 4). D-glucose and D-fructose showed the highest levels
among sugars, while L-aspartic and L-glutamic acids, L-isoleucine, L-proline, L-glutamine,
L-phenylalanine, L-asparagine, L-threonine, L-cysteine, and glycine showed highest levels
among the amino acids. Finally, L-malic, oxalic, succinic, shikimic, glyceric, and fumaric
acids appeared significantly variable among the organic acids comparing sampling times
and genotypes (Figure 4). The glycoalkaloids solamargine isomer (M869T830), hydroxy
dihydro solamargine (M887T705), hydroxy-solamargine isomer 1 (M885T703), unsaturated
unidentified glycoalkaloid (UGA; M862T924), and unsaturated malonyl furostanol type
saponin (M1118T1173) were differentially accumulated (Figure 4).

More specifically, the N-use-efficient genotype AM222 showed the highest levels of
L-malic and shikimic acids as well as D-glucose at N starvation (T0); conversely the N-use-
inefficient AM22 exhibited the highest levels of fumaric and glyceric acids, several amino
acids, and secondary metabolites (Figure 4A). At T1, AM222 showed the highest level
of L-serine, L-valine, and L-leucine, while AM22 showed the highest levels of D-glucose
and D-fructose as well as fumaric and shikimic acids (Figure 4B). Finally, at T2, AM222
exhibited the highest level of shikimic acid and D-glucose as well as secondary metabolites,
while oxalic, succinic, L-aspartic, and L-glutamic acids accumulated more in AM22 than
AM222 (Figure 4C).
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Figure 3. Heatmap of metabolites significantly differentially abundant among genotypes in root
(one-way ANOVA and post hoc with p ≤ 0.05). Each column and row represent a sample and a
metabolite, respectively. Comparison among genotypes shows that the main differences are in the
secondary metabolites at T0 (A), T1 (B), and T2 (C).

Figure 4. Heatmap of metabolites significantly differentially abundant among genotypes in shoot
(one-way ANOVA and post hoc with p ≤ 0.05). Each column and row represent a sample and a
metabolite, respectively. Comparison among genotypes shows that the main differences are in the
primary metabolites at T0 (A), T1 (B), and T2 (C).

2.4. Comparative Changes in the Primary Metabolite Pathways in Shoot

Significant different metabolic pathways (p < 0.05, FDR < 0.05, and impact >0.2) were
identified by pairwise comparisons among genotypes at the same sampling time, among
which are alanine, aspartate and glutamate (impact 0.65); glycine, serine and threonine
(impact 0.54); phenylalanine (impact 0.47); starch and sucrose (impact 0.39); and glyoxylate
and dicarboxylate (impact 0.28) (Table 1).
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Table 1. Comparative changes in the primary metabolite pathways in shoot. Metabolic pathways with FDR < 0.05 and higher impact values are highlighted.
Pairwise comparison between genotypes. Total Cmpd represents the total compound number in the pathway; Hits is the actual matched number from the uploaded
data; Raw p is the original p value calculated from the enrichment analysis; Holm p is the p value adjusted by Holm–Bonferroni method; FDR p is the p value
adjusted using false discovery rate; Impact is the pathway impact value calculated from pathway topology analysis.

Pairwise Comparison in Shoot Pathway Analysis Total Cmpd Hits Raw p −log(p) Holm Adjust FDR Impact

T0_67-3_vs_AM22

Alanine, aspartate, and
glutamate metabolism 22 7

0.020155 1.6956 0.50388 0.047029

0.64748

T0_305E40_vs_AM22 0.002014 2.6959 0.068486 0.0094

T1_AM222_vs_AM22 0.00278 2.5559 0.088969 0.010616

T1_67-3_vs_AM22 1.99 × 10−5 4.7012 0.00077607 0.000209

T1_305E40_vs_AM22 2.3 × 10−5 4.6388 0.00094188 0.00029

T2_AM222_vs_AM22 Starch and sucrose
metabolism 22 2 0.003484 2.458 0.13935 0.038299 0.39104

T2_67-3_vs_AM22 Alanine, aspartate, and
glutamate metabolism 22 7 0.000618 3.2088 0.021642 0.003246 0.64748

T2_305E40_vs_AM22 Glycine, serine, and
threonine metabolism 33 5 0.000335 3.4751 0.013731 0.00559 0.53598

T0_305E40_vs_AM222 Aminoacyl-tRNA
biosynthesis 46 14 0.00032 3.4948 0.013443 0.013443 0.11111

T1_305E40_vs_AM222 Alanine, aspartate, and
glutamate metabolism 22 7

4.37 × 10−5 4.3594 0.0016609 0.000367
0.64748

T2_305E40_vs_AM222 0.007058 2.1513 0.26116 0.049408

T1_67-3_vs_AM222 Alanine, aspartate, and
glutamate metabolism 22 7 0.001201 2.9203 0.043252 0.007209 0.64748

T2_67-3_vs_AM222 Phenylalanine
metabolism 11 1 9.78 × 10−5 4.0098 0.0040085 0.000851 0.47059

T0_67-3_vs_305E40 Glyoxylate and
dicarboxylate metabolism 29 9 0.002673 2.5731 0.10691 0.037417 0.28209

T1_67-3_vs_305E40 Alanine, aspartate, and
glutamate metabolism 22 7

2.06 × 10−5 4.6871 0.00078109 0.000173
0.64748

T2_67-3_vs_305E40 0.001274 2.8949 0.033116 0.003147
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To identify differently accumulated metabolites in each pathway, a comparison be-
tween AM22, the most N-use-inefficient, and all other genotypes was performed (Sup-
plementary Figure S1; all the other comparisons are given in Supplementary Table S5).
At T0, 67-3 showed a significant reduction in L-aspartate, while 305E40 exhibited a sig-
nificant lower L-glutamate and succinate content compared to AM22 (Supplementary
Figure S1A,B). At T1, AM222 and 67-3 showed a higher content in L-aspartate and a lower
level in L-glutamate; by contrast, 305E40 evidenced a decrease in L-glutamine, L-glutamate,
and succinate content compared to AM22 (Supplementary Figure S1C–E). At T2, AM222
significantly differed in starch and sucrose metabolism compared to AM22, with a higher
content in sucrose and D-glucose (Supplementary Figure S1G). By contrast, 67-3 showed a
reduction in L-asparagine, L-alanine, L-glutamate, and succinate content (Supplementary
Figure S1G). Finally, 305E40 displayed an increase in D-glycerate and L-threonine content,
as well as a decrease in glycine as compared to AM22 (Supplementary Figure S1H).

2.5. Metabolite- and Transcript-Correlation Analysis

To investigate the pathways most significantly affected by N-limiting condition in the
NUE-contrasting eggplants, we performed an integrated analysis of metabolomics and
transcriptomics datasets [15] obtained by the same experimental setup. KEGG database
was used to annotate the eggplant genes in the same pathway. Thus, 121 genes including
17, 13, 33, 21, 7, 26, and 4 genes, respectively, from the aminoacyl-tRNA biosynthesis
(ko00970); the alanine, aspartate, and glutamate metabolism (ko00250); the starch and
sucrose metabolism (ko00500); the glycine, serine, and threonine metabolism (ko00260);
the phenylalanine metabolism (ko00360); the glyoxylate and dicarboxylate metabolism
(ko00630); and the isoquinoline alkaloid biosynthesis (ko00950, related to the secondary
metabolism), were identified (Supplementary Table S6).

To build a correlation network between metabolites and gene transcripts, a Pearson’s
correlation on a 121-genes and 39-metabolite dataset from both tissues was performed. Sev-
enty (70) correlated variables (Supplementary Table S7) were highlighted with a correlation
coefficient ≥0.70 and ≤−0.70 and a p-value < 0.05 (Supplementary Figure S2A,B). These 70
correlated variables were then subjected to pathway-enrichment analysis, which identified
the most significant metabolic pathway (impact ≥0.6) affected by treatments in the glycine,
serine, and threonine; starch and sucrose; and glyoxylate and dicarboxylate metabolism
pathways (Supplementary Figure S2C). Metabolite and gene differences and their correla-
tions were visualized through a heatmap for each genotype and time sampling (T0, T1 and
T2). The N-use-efficient (AM222 and 67-3) and inefficient (305E40 and AM22) genotypes
clustered separately in shoot at T0 and T1, while a clustering between NUE-contrasting
genotypes was also observed in root at T1. At T2, in both tissues, AM222 and AM22, the
more contrasting genotypes for NUE clustered distinctly (Supplementary Figures S3–S5,
Table S8).

2.6. Genotype Clustering and Responses to Nitrogen Starvation

At T0, in shoot the N-use-efficient genotypes, AM222 and 67-3, clustered due to
differences in transcript abundances of sucrose synthase (SUS; SMEL_007g277290.1), a
component of starch and sucrose metabolism; glycine hydroxy methyltransferase (glyA;
SMEL_005g228290.1; synonym of shmt1, serine hydroxymethyltransferase 1) and dihy-
drolipoamide dehydrogenase (DLD; SMEL_005g227630.1) components of glycine, serine,
and threonine metabolism; and malate dehydrogenase (MDH1; SMEL_009g332450.1) and
isocitrate lyase (aceA; SMEL_007g288630.1) which are involved in glyoxylate and dicarboxy-
late metabolism. A higher accumulation in D-fructose in AM222 was also observed (Supple-
mentary Figure S3A). By contrast, AM22 and 305E40, the N-use-inefficient genotypes, accu-
mulated more transcripts of the polyphenol oxidase (PPO; SMEL_000g064350.1, isoquinoline
alkaloid biosynthesis), two different sucrose synthase isoforms (SUS; SMEL_007g277310.1
and SMEL_012g382160.1), and 4-alpha-glucanotransferase (malQ; SMEL_007g279110.1).
They further showed an upregulation in the phenylalanine decarboxylase (AADC;
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SMEL_008g301360.1) and phenylalanine ammonia-lyase (PAL; SMEL_005g230690.1) in-
volved into phenylalanine metabolism. AM22 and 305E40 showed also a higher accumula-
tion of fumaric acid as well as all the glycoalkaloids (Supplementary Figure S3A).

At T0, in root, the glyoxylate/succinic semialdehyde reductase (GLYR; SMEL_000g004100.1),
granule-bound starch synthase (WAXY; SMEL_000g036450.1) and glutamate decarboxylase
(GAD; SMEL_001g150880.1) appeared upregulated in AM22 together with a higher accumulation
in myo-inositol compared to the other genotypes; by contrast in 305E40, the amidophosphori-
bosyltransferase (purF; SMEL_001g116660.1), threonine synthase (thrC; SMEL_003g 197730.1), glu-
can endo-1,3-beta-glucosidase 4 (GN4; SMEL_001g152910.1) and isocitrate lyase (aceA;
SMEL_007g288630.1) were upregulated compared to the others, accompanied by a higher accu-
mulation of secondary metabolites. Furthermore, a strong downregulation of starch synthase
(glgA; SMEL_000g085440.1) and a lower accumulation of L-alanine was exhibited (Supplementary
Figure S3B).

2.7. Genotype Clustering and Short-Term Responses to Low Nitrogen Supply

At T1, in shoot, two distinguishable clusters between the N-use-efficient genotypes
and the inefficient ones were generated (Supplementary Figure S4). The AM222 and 67-3
showed an upregulation of the granule-bound starch synthase (WAXY; SMEL_000g036450.1)
and endoglucanase (E3.2.1.4; SMEL_003g177010.1) involved in the starch and sucrose
metabolism, as well as phenylalanine decarboxylase (AADC; SMEL_005g228290.1) and
glycine hydroxy methyltransferase (glyA; SMEL_000g004730.1) comprised in the glyoxylate
and dicarboxylate metabolism (Supplementary Figure S4A).

Otherwise, the AM22 and 305E40 evidenced an upregulation of many genes involved
in different pathways (Supplementary Figure S4A). In particular, the glycine dehydroge-
nase (GLDC; SMEL_008g307820.1; glyoxylate and dicarboxylate metabolism) transcripts
appeared more expressed together with a higher accumulation in D-glucose and sucrose;
the isocitrate lyase (aceA; SMEL_007g288630.1; glyoxylate and dicarboxylate metabolism)
was upregulated together with myo-inositol; the alanyl-tRNA and aspartyl-tRNA syn-
thetases (AARS; SMEL_001g115360.1 and DARS2; SMEL_000g033540.1 in the aminoacyl-
tRNA biosynthesis) were upregulated, accompanied by a higher accumulation in fumaric
acid and L-alanine. Interestingly, these genotypes confirmed a higher accumulation of all
the glycoalkaloids compared to the N-use-efficient genotypes as already observed at T0
(Supplementary Figure S4A).

At T1, two distinct clusters between the NUE-contrasting genotypes were confirmed
in root. The efficient genotypes showed a significant upregulation of the endoglucanase
(E3.2.1.4; SMEL_003g177010.1) and sucrose synthase isoform (SUS; SMEL_003g277290.1) in-
volved in the starch and sucrose metabolism (Supplementary Figure S4B). By contrast,
the (S)-2-hydroxy-acid oxidase (HAO; SMEL_004g202790.1; glyoxylate and dicarboxy-
late metabolism) resulted down-regulated. In the N-use-inefficient genotype 305E40, an-
other sucrose synthase isoform (SUS; SMEL_012g382160.1), and trehalose 6-phosphate
synthase/phosphatase (TPS; SMEL_001g151160.1), involved into the starch and sucrose
metabolism, were upregulated concurrently with a higher accumulation of several sec-
ondary metabolites (Supplementary Figure S4B). It also exhibited a higher glucan endo-
1,3-beta-glucosidase 4 (GN4; SMEL_001g152910.1) and 4-alpha-glucano transferase (malQ;
SMEL_007g279110.1) transcripts abundances in the starch and sucrose metabolism as well as
the aspartate-semialdehyde dehydrogenase (asd; SMEL_001g151200.1; glycine, serine, and
threonine metabolism) and amidophosphoribosyl-transferase (purF; SMEL_001g116660.1;
alanine, aspartate, and glutamate metabolism) (Supplementary Figure S4B).

2.8. Genotype Clustering and Long-Term Responses to Low Nitrogen Supply

At T2, in shoot, AM222 distinctly clustered from the other genotypes. It included
higher granule-bound starch synthase (WAXY; SMEL_000g036450.1) transcript levels to-
gether with a significant higher D-glucose accumulation; by contrast, a downregulation of
(S)-2-hydroxy-acid oxidase (HAO; SMEL_007g292380.1) histidyl-tRNA synthetase (HARS;
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SMEL_003g195740.1), which correlated with a high accumulation in the primary metabo-
lites D-fructose, shikimic, and quinic acids was observed. In addition, AM222 showed a
high polyphenol oxidase (PPO; SMEL_008g312510.1) and phenyl alanine ammonia-lyase
(PAL; SMEL_005g230690.1) expression in the phenylalanine metabolism as well as two
and three genes in the glyoxylate and dicarboxylate and starch and sucrose metabolisms,
respectively. In this last pathway, two sucrose synthase (SUS; SMEL_007g277310.1 and
SMEL_007g277290.1) isoforms and the fructokinase (scrK; SMEL_006g265210.1) appeared
upregulated in AM222 and 67-3 (Supplementary Figure S5A).

AM22 and 305E40 were mainly distinguishable from the N-use-efficient genotypes
for a large cluster of correlation, in which a higher catalase (CAT; SMEL_000g061370.1),
(S)-2-hydroxy-acid oxidase (HAO; SMEL_007g292380.1), glycine dehydrogenase (GLDC;
SMEL_008g307820.1), and isocitrate lyase (aceA; SMEL_007g288630.1) transcript abun-
dances belonging to the glyoxylate and dicarboxylate metabolism were observed, together
with a higher accumulation in the fumaric and dehydroascorbic acids as well as in L-serine,
L-alanine, and L-asparagine (Supplementary Figure S5A).

At T2, in root, AM222 showed an upregulation of the aspartyl-tRNA synthetase (DARS2;
SMEL_000g033540.1), glucose-1-phosphate adenylyl transferase (glgC; SMEL_ 007g292070.1)
and glyoxylate/succinic semialdehyde reductase (GLYR; SMEL_000g004100.1), accompanied
by a higher accumulation in sucrose and amino acids L-alanine and glycine. It also showed a
higher expression in the phenylalanine ammonia-lyase (PAL; SMEL_ 005g230690.1) sucrose
synthase (SUS; SMEL_007g277290.1), two glycine hydroxy methyltransferase isoforms
(glyA; SMEL_005g228290.1 and SMEL_005g241460.1), and a glycine cleavage system H
protein (gcvH; SMEL_000g091530.1) belonging to glycine, serine, and threonine metabolism,
accompanied by a higher accumulation in the amino acid L-asparagine compared to the
other genotypes (Supplementary Figure S5B).

Otherwise, AM22 showed a distinguishable cluster of correlation including a strong
downregulation of the starch synthase (glgA; SMEL_000g085440.1) and aspartyl-tRNA
synthetase (DARS2; SMEL_ 000g033540.1) together with a very low sucrose accumulation.
It also displayed a higher threonine synthase (thrC; SMEL_003g197730.1) and amidophos-
phoribosyltransferase (purF; SMEL_001g116660.1) transcript abundance compared to the
other genotypes (Supplementary Figure S5B).

2.9. Implementing a Simplified Modeling Scheme

Overall, genes and metabolites that allowed for discrimination of the N-use-efficient
vs. inefficient genotypes mainly belonged to the glycine, serine, and threonine (Supplemen-
tary Figure S6); glyoxylate and dicarboxylate (Supplementary Figure S7); and the starch
and sucrose metabolism pathways (Supplementary Figure S8). In particular, at T0, N-
use-efficient genotypes showed a higher asd (i.e., aspartate-semialdehyde dehydrogenase)
transcript abundance in the glycine, serine, and threonine metabolism. This gene forms
a branch with the metabolic pathway making lysine, methionine, leucine, and isoleucine
from aspartate. The same genotypes also showed a glycine hydroxymethyltransferase (glyA;
SMEL_005g228290.1) downregulation, useful for the concurrent conversions of L-serine
to glycine and tetrahydrofolate (THF) to 5,10-methylenetetrahydrofolate (Supplementary
Figure S6A). Conversely, at T1 and T2, asd and glyA showed an inverted expression trend
in the efficient genotypes, resulting in a higher glyA and lower asd expression compared
to the inefficient ones (Supplementary Figure S6B,C). As a consequence, a higher level of
glycine as well as of the glycine-cleavage-system H protein (gcvH) and dihydrolipoamide
dehydrogenase (DLD) expression that regulates the glycine concentration and cell energy
metabolism, respectively, was observed. By contrast, a higher accumulation of serine
and glyceric acid, together with the upregulation of AGXT (alanine-glyoxylate transami-
nase) and GLCD (glycine dehydrogenase) was detected in the N-use-inefficient genotypes
(Supplementary Figure S6B,C).

In the glyoxylate and dicarboxylate metabolism, the N-use-efficient genotypes showed
aceA (isocitrate lyase) upregulation in the glyoxylate cycle, as well as a higher accumulation
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in HAO [(S)-2-hydroxy-acid oxidase] and CAT (catalase) transcripts involved in the pho-
torespiration cycle, and a low accumulation of glyA compared to the inefficient ones at N
starvation (T0) (Supplementary Figure S7A). At T1, the N-use-efficient genotypes showed
a significant downregulation of some transcripts involved in the glyoxylate cycle, such
as CS (citrate synthase), ACO (aconitate hydratase), and aceA (isocitrate lyase), as well
as AGXT (alanine-glyoxylate transaminase) and HPR2_3 (glyoxylate/hydroxypyruvate
reductase) involved in the photorespiration cycle; by contrast, CAT (catalase) and glyA
(glycine hydroxymethyltransferase) resulted in upregulation (Supplementary Figure S7B).

Otherwise, at T2, the N-use-efficient genotypes exhibited a significant upregulation
of ACO and glyA transcripts and a higher accumulation in glycine; by contrast, a down-
regulation of MDH (malate dehydrogenase) and aceA involved in the glyoxylate cycle, as
well as HAO, CAT, AGXT, rbcL (ribulose-bisphosphate carboxylase large chain), and GLDC
(glycine dehydrogenase) in the photorespiration cycle, together with a consistent reduction
of glyceric acid, were observed (Supplementary Figure S7C). In the starch and sucrose
metabolism, at T0, the N-use-efficient compared to the inefficient genotypes showed a signif-
icantly higher expression of SUS (sucrose synthase) and E3.2.1.4 (endoglucanase), while the
INV (invertase), GN4 (glucan endo-1,3-beta-glucosidase 4) and TPS (trehalose 6-phosphate
synthase/phosphatase) resulted in downregulation (Supplementary Figure S8A). At T1,
the N-use-efficient genotypes exhibited a higher transcript accumulation in the WAXY and
endoglucanase, which are upstream amylose and cellobiose biosynthesis, together with the
downregulation of SUS, scrK (fructokinase), and TPS genes, which resulted in a lower
accumulation of sucrose (Supplementary Figure S8B). Conversely, at T2, in the N-use-
efficient genotypes we observed an upregulation of SUS and scrK, as well as a higher
accumulation of D-glucose and D-fructose; meanwhile, WAXY, endoglucanase, and glgC
(glucose-1-phosphate adenyltransferase) appeared strongly downregulated (Supplemen-
tary Figure S8C).

3. Discussion

In this study, combined metabolomics and transcriptomics analysis in two pairs of
NUE-contrasting eggplant genotypes, AM222, 67-3 (high NUE); and 305E40, AM22 (low
NUE) was performed, in root and shoot, under short- and long-term N-limiting conditions.
Plant responses to low N resupply in NUE-contrasting genotypes are of particular interest
to dissect the key molecular mechanisms underlying this complex trait, to identify the
critical steps controlling NUE, and to provide new insights for breeding programs to
improve NUE. Here, the base for deciphering metabolites and gene-correlation networks
to facilitate NUE improvement in eggplant was provided, as previously reported in other
crops [21,22].

3.1. Variance and Pathway Analysis

At all the sampling times, root showed similar primary metabolite profiles regardless
of genotype, while variations were mostly detected in the secondary metabolites. By
contrast, in shoot, variations in primary metabolites were revealed across sampling times
(except for the genotype AM22) and between genotypes when compared at the same
sampling time. To explore these differences, all the possible pairwise comparisons were
performed between the most N-use-inefficient genotype, AM22, and the other genotypes,
allowing us to highlight the affected pathways in this tissue.

Under N starvation (T0), the content of most amino acids was reduced in the N-use-
efficient genotypes, mainly L-glutamine. Low levels of N-containing metabolites, such as
glutamate and glutamine, and C-containing compounds were already observed under N
starvation together with an elevated level of organic acids, suggesting their utilization to
build macromolecules [20]. At T1, L-aspartate and L-asparagine, belonging to the alanine,
aspartate, and glutamate pathway, resulted in an increase in N-use-efficient genotypes.
In detail, L-asparagine, the amino acid with the highest N:C ratio, plays an important
role in N transport and storage through the vascular system, or alternatively accumulates
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in response to stress, contributing to osmotic-pressure maintenance [23]. Finally, after a
long-term N-limiting condition (T2), AM222 showed a higher accumulation in D-glucose
and sucrose (starch and sucrose metabolism), while 67-3 evidenced a reduction in all the
metabolites in the alanine, aspartate, and glutamate metabolism, but a slight L-glutamine
accumulation. Sugars frequently play an important role as osmoprotectors, as membrane
stabilizers, in stress buffering [24], as well as in the regulation of growth, photosynthesis,
carbon partitioning, carbohydrate and lipid metabolism, protein synthesis, and gene ex-
pression [25]. Interestingly, the most N-use-efficient genotype AM222 compared to the
other genotypes showed higher accumulation of phenylalanine and citric acid that were
reported to confer tolerance to abiotic stress, improving growth and yield in many crop
species [26]. By contrast, an increase in proline and alanine in the N-use-inefficient geno-
type AM22 could indicate prolonged stress due to the unbalanced N supply [27]. Indeed, it
is well-known that proline accumulates in plants subjected to environmental stress [28],
maintaining osmotic balance and protecting cells against ROS under salt stress [29]. The
biological significance of the alanine accumulation in plants is still controversial; indeed,
its accumulation may be a N-storage mechanism, before restoring to an N-normal condi-
tion [30]. Thus, it is more difficult to explain the alanine increase in the N-use-inefficient
genotypes. In the last decade, many efforts have been carried out to improve NUE through
genetic engineering by overexpressing N-assimilation genes, among which includes the
alanine aminotransferase (AlaAT) [31]. However, inconsistent results were obtained from
transgenic plants evaluated under field conditions, suggesting that the overexpression of
N-assimilation genes may cause metabolic imbalances [32,33].

3.2. Metabolite and Transcript Correlation Analysis

Metabolomics and transcriptomic data were analyzed by Pearson correlation analysis
to identify genes and metabolites that concurrently distinguished N-use-efficient and in-
efficient eggplant genotypes. In accordance to Cavill et al. [34], our analyses integrated a
subset of 121 genes and 39 metabolites (primary and secondary), resulting into 70 variables
(47 transcripts and 23 metabolites). The correlation heatmaps between genes and metabo-
lites showed different clusters in which AM222 and AM22 (the extreme NUE-contrasting
genotypes) were always well-distinguished in both shoot and root.

Our findings suggest that differences between the two pairs of NUE-contrasting geno-
types in secondary-metabolite biosynthesis; glyoxylate and dicarboxylate; glycine, serine,
and threonine; and starch and sucrose metabolism pathways could be crucial for N-use
efficiency in eggplant, in both the short and long term (T1 and T2). In agreement, DEGs and
metabolic changes in amino acid, carbon, and nitrogen metabolism pathways were observed
between two NUE-contrasting cotton genotypes in response to N starvation and resupply
treatments [35]. These results showed an enrichment in the starch and sucrose metabolism,
glycolysis/gluconeogenesis, and pentose phosphate pathways in N-use-efficient cotton
genotypes, underlying that plant-energy budget as well as carbon and nitrogen metabolism
and their balance are involved in the different NUE performances [35,36]. By contrast,
in our experiments the N-use-inefficient genotypes showed a significant higher fumaric
acid accumulation, previously observed in a starchless pgm1 mutant [37]. This implied
that fumaric acid and starch should serve as alternative carbon sinks for photosynthate,
resulting in an effective higher N assimilation and Arabidopsis growth only when high N is
available [38].

Interestingly, a significant PPOs upregulation at long-term low-N stress in AM222,
the high-NUE genotype, was observed. Phenol-oxidizing enzymes are responsible of
browning enzymatic reaction in post-harvest fruits and vegetables; although the PPOs’
native physiological functions in intact and undamaged plant cells are not still understood
to date [39]. Recently, PPOs were reported to play different roles in response to plant
stress in several species and may have an indirect role in photosynthesis [40]. By contrast,
two different polyphenol oxidases (PPOs), an unsaturated malonyl solamargine and an
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unknown steroidal saponin, resulted in upregulation/accumulation in the N-use-inefficient
eggplant genotypes, at both N-starvation (T0) and short-term low-N stress (T1).

3.3. Glycine, Serine, and Threonine Metabolism

Glycine is the main player of this pathway, which also includes the serine and be-
taine biosynthesis, which have been reported to be involved in plant responses to abiotic
stress [41–43]. At T0, we observed in the N-use-efficient genotypes a very low level of glyA
transcript encoding the enzyme, converting L-serine to glycine and tetrahydrofolate (THF).
Furthermore, a higher aspartate-semialdehyde dehydrogenase (ASD) gene expression in
trehalose biosynthesis sustains the formation of lysine and other amino acids from aspartate.
Interestingly, under short- and long-term low-N stress (at T1 and T2), glyA (also named
shmt1) inverted the expression trend, resulting in an increase in both AM222 and 67-3
compared to the N-use-inefficient genotypes. A high shmt1 transcript level was reported,
correlating with a reduced sensitivity to abiotic stress in Arabidopsis [42]. The higher glyA
expression in the N-use-efficient genotypes resulted in very high glycine accumulation,
mainly at T2, which could sustain the betaine formation, two primary metabolites that were
reported to accumulate under abiotic stress in rice and several other plants [41,43]. More
interestingly, the regulation of the glycine-concentration and the cell-energy metabolism
appeared to be further guaranteed by a higher glycine-cleavage-system H protein (gcvH)
and dihydrolipoamide dehydrogenase (DLD) expression in these genotypes.

By contrast, a higher accumulation of serine and glyceric acid (instead of glycine) in
the N-use-inefficient genotypes appeared sustained by the glyA (=shmt1) downregulation
together with a significant upregulation of AGXT (alanine-glyoxylate transaminase).

3.4. Glyoxylate and Dicarboxylate Metabolism

In plants, glyoxysomes frequently store lipids, and through the glyoxylate cycle, they
are involved in the conversion of acetyl-CoA to succinate for the synthesis of carbohydrates.
Under N starvation (T0), the N-use-efficient compared to inefficient genotypes exhibited a
higher aceA transcript abundance. AceA encodes for isocitrate lyase, a key enzyme in the
glyoxylate cycle that could play a pivotal role in energy metabolism for facing up stress as
described by Yuenyong et al. [44]. The HAO (S)-2-hydroxy-acid oxidase) and CAT (catalase)
upregulation in the same genotypes could also act on the glycolate–glyoxylate conversion
for preventing the accumulation of glycolate and hydrogen peroxide at toxic levels as
reported in maize [45].

Afterwards, at short low-N stress (T1), in the N-use-efficient genotypes an upregula-
tion of glyA (shmt1), involved in the photorespiration cycle, was observed. The encoded
enzyme catalyzes the interconversion of glycine (glyoxylate-derived) to serine and tetrahy-
drofolate (THF) acting as a carbon carrier. These compounds, accompanied to a higher CAT
expression, could mitigate oxidative stress, driving an abiotic stress tolerance as already
observed in Arabidopsis [46]. By contrast, CS, ACO, and aceA were downregulated in the
efficient genotypes, and in particular, the inhibition of ACO activity was useful for plants
to cope with oxidative stress, also correlating with cell death [47].

At the long-term N-stress (T2), glyA resulted in upregulation, together with a higher
glycine accumulation in the N-use-efficient genotypes. Interestingly, this amino acid
and its derivative, glycinbetaine, were more accumulated under abiotic stress in rice
and other plant species [41,43]. By contrast, aceA and the malate dehydrogenase (MDH)
genes downregulation resulted in an efficient redox activity of the mitochondrial matrix as
reported in Arabidopsis [48]. Furthermore, among the major players in the photorespiration
pathway, a central role is attributed to HAO, CAT, rbcL, GLDC, AGXT, and glyceric acid,
which were highly accumulated in the N-use-inefficient genotypes under low N exposure,
suggesting that they consumed more energy in photorespiration compared to the N-use-
efficient ones.
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3.5. Starch and Sucrose Metabolism

Sucrose is a raw material for many metabolic pathways, providing energy and carbon
skeletons to macromolecules. Otherwise, starch plays a dual role in carbon allocation,
acting as both a source, releasing carbon reserves in leaves for growth and development;
and a sink, either as a dedicated starch store (seeds) or a temporary reserve of carbon
contributing to sink strength in reproductive organs (flowers and fruits) [49].

In this pathway, different behaviors between the two pairs of NUE-contrasting geno-
types were observed. Under N starvation (T0), the genes upstream of the fructose, glucose,
and trehalose synthesis (INV, GN4, and TPS, respectively) were downregulated in the
N-use-efficient compared to the inefficient genotypes, while sucrose synthase (SUS) and
endoglucanase resulted in higher transcripts. Thus, the N-use-efficient genotypes utilized
SUS to synthesize sucrose, while the inefficient ones hydrolyzed sucrose by invertase
(encoded by INV) to produce glucose and fructose.

At T1, N-use-efficient genotypes exhibited a WAXY and endoglucanase (E3.2.1.4) up-
regulation, both playing a central role in the starch and amylose biosynthesis [50]. En-
doglucanase contributes to the cellulose catabolic process during tissue development
and cellulose degradation, making available the monosaccharides for consumption in
chemical reactions [51]. By contrast, N-use-inefficient genotypes showed a higher sucrose
accumulation, as well as scrK, SUS, and TPS transcript abundances. In detail, a high TPS-
transcript abundance suggested a plant response to abiotic stress, causing a reduction in
plant growth [52]. By contrast, the long-term low N exposure (T2) determined a WAXY
and endoglucanase downregulation in the N-use efficient genotypes that in turns showed a
SUS and fructokinase up-regulation as well as a higher fructose and glucose accumulation.
It appears that the N-use-inefficient genotypes turn to cellulose degradation and starch
biosynthesis (higher WAXY, glgC, and endoglucanase transcript accumulation was observed).

4. Materials and Methods
4.1. Plant Materials, Experimental Design, Tissue Sampling, and Sample Preparation

Two pairs of NUE-contrasting eggplants, named AM22, AM222, 67-3, and 305E40
were selected through hydroponic and greenhouse experiments [14]. In detail, AM222 and
67-3 were the N-use-efficient genotypes, while 305E40 and AM22 were the inefficient ones.
Seeds, surface-sterilized with NaClO 5% (v/v) for 15 min and rinsed with deionized water,
were germinated in Petri dishes (Ø 90 mm) on filter paper enriched with 0.1 mM CaSO4.
After 10 days, seedlings with fully expanded cotyledons were selected and transferred to
hydroponic tanks (4 L, ten seedlings per tank) containing 2.5 mM K2SO4, 2 mM MgSO4,
1 mM KH2PO4, 46 µM H3BO3, 9 µM MnCl2, 0.76 µM ZnSO4, 0.32 µM CuSO4, 0.11 µM
Na2MoO4, 20 µM Fe-EDTA, and 4.75 mM CaSO4. The growing units were then transferred
to a growth chamber at 24 ◦C, 65% relative humidity, and 14 h photoperiod with photon flux
density of 350 µmol m−2 s−1 at plant height generated by high-pressure sodium discharge
lamps. After two additional days, 0.5 mM NO3

− (as CaNO3) was added to the solution,
and seedlings were grown for further 16 d. The nutrient solution was renewed every
three days, and the pH was adjusted to 5.8 with 1 N KOH. Each genotype and tissue (root
and shoot) were collected at T0 (before N supply), T1 and T2 (1 and 16 days after NO3

−

resupply). Three biological replicates, consisting of eight bulked plants per replication for
each tissue (root and shoot) after four hours of exposure to light were collected. The stored
tissues were then powdered using an ice-cold mortar and pestle with liquid nitrogen for
extraction of metabolites.

4.2. Metabolite Extraction and Annotation

The polar-metabolite extraction and derivatization for untargeted analysis by Gas
Chromatography–Mass Spectrometry (GC-MS) using the method from Korenblum et al. [53]
were carried out. The annotation was made by matching retention index and mass-spectrum
data to the commercial Mass Spectral Library, NIST (www.nist.gov, 8 January 2022). The
extraction of semipolar compounds for LCMS analysis by an ultra-high-performance liquid

www.nist.gov
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chromatography-quadrupole time-of-flight mass spectrometry (UPLC-qTOF-MS) (HDMS
Synapt; Waters) was performed according to Itkin et al. [54] and the analyses were made
according to Korenblum et al. [53]. Metabolites, comparing the retention times and the
mass fragments to those of standard compounds injected at the same LCMS conditions,
were identified. Compounds were putatively identified by comparing their retention times,
elemental composition, and fragmentation pattern (MSE or ms/ms) with the home-made
library, or as described in the literature when corresponding standards were not available.

4.3. RNAseq Analysis Data Validation by qRT-PCR

RNAseq analysis was previously carried out, and the most interesting identified DEGs
validated by qRT-PCR [15]. Briefly, total RNA was isolated and purified using the Mini
RNeasy Plant kit (QIAGEN, Milano, Italy), and 500 ng of total RNA per sample was used
to construct cDNA libraries following the Transeq library procedures reported in Tzfadia
et al. [55]. Libraries were sequenced on six lanes of HiSeq 2500 System (Illumina, San Diego,
CA, USA), using the SR60 protocol. The Transeq output was ~3 million reads per sample.
Resulting reads shorter than 30 bp were discarded and mapped to eggplant reference
genome SMEL_V3.2016_11_01 from the Italian Consortium [56] using STAR vers. 2.4.2a
(with EndToEnd option and outFilterMismatchNoverLmax was set to 0.04) [57]. RNAseq
data were validated by using qRT-PCR analysis performed on a StepOnePlus Real-Time
PCR System (Applied Biosystems, Life Technologies Corporation, Foster City, CA, USA),
following the procedures reported by Mauceri et al. [14,15].

4.4. Statistical Analysis for Metabolite Profiling

Metabolomic analyses were performed in triplicate using a completely randomized
experimental design, as reported in Section 4.1, and analyzed through the open-source
software MetaboAnalyst 4.0 (www.metaboanalyst.ca, 9 January 2022) web [58]. Missing
values were replaced by a small positive value (half of the minimum positive number
detected in the data) and features with >50% missing values were removed. Then, raw
data were normalized by a reference metabolite (ribitol), log10-transformed, and Pareto
scaled [59]. The datasets were reduced by performing principal component analysis (PCA)
and the partial least-squares discriminant analysis (PLS-DA). The model was validated
and classified based on Q2 = 0.719 and R2 = 0.906. Twenty permutations with the p-value
test < 0.05 were carried out. The score plots visualized the contrast between samples
and the loading plots to explain the cluster separation with the variable importance of
projection (VIP) score as cutoff ≥1. Data analyses were performed through the ANOVA
univariate analysis using the least-significant difference (Fisher’s LSD) (p≤ 0.05) as post hoc
tests adjusted p-value (FDR) cutoff (≤0.05). To create a graphical heatmap with complete
pairwise, a hierarchical clustering algorithm was adopted, and a Pearson correlation as
distance measure was calculated.

4.5. KEGG Orthology (KO) Annotation and Transcriptomics and Metabolomics Integrated
Correlation Network Analysis

RNAseq transcripts were functionally annotated using the Kyoto Encyclopaedia of
Genes and Genomes (KEGG) database, and the R statistical package ‘Hmisc’v4.4-2 with
Functions “rcorr” to estimate the Pearson Correlation Coefficient was used. Genes and
metabolite-network analysis was carried out using MetScape v3.1 and Cytoscape v3.8.1,
respectively. Correlation thresholds were defined using Pearson correlation coefficient
(PCC) ≥0.70 and ≤−0.70 with p-value < 0.05. To obtain ENTREZ ID from symbol Arabidop-
sis ortholog of eggplant gene, a R-statistical package ‘org.At.tair.db’ v3.13 was employed.
The integrated metabolic-pathway analysis among metabolomics and gene expressions
was conducted by the Joint Pathway Analysis module (MetaboAnalyst 4.0). A graphical
heatmap by the function “pheatmap” (package pheatmap) with the pairwise complete and
Pearson method was created [60]. Pair comparisons were performed using volcano plot

www.metaboanalyst.ca


Plants 2022, 11, 700 15 of 19

with FDR p-adjusted < 0.05) with LOG2 (FC) ≥ ±1 through statistical analysis module of
the open-source software MetaboAnalyst 4.0 (www.metaboanalyst.ca, 9 Juanary 2022).

5. Conclusions

Multivariate analyses of primary and secondary metabolites contributed to a better
understanding of NUE-contrasting eggplant plant responses. These approaches indicated
that primary and secondary metabolites were affected by N stress in shoot and root,
respectively. The analysis of these metabolites and their roles in each pathway showed
that short- and long-term low N availability impacted the number and accumulation of
specific classes of primary metabolites such as amino acids, sugars, and organic acids in
the N-use-efficient genotypes.

Our study displayed differences among genotypes mainly in the shoot than in root; in
detail, six different pathways appeared the most affected. Moreover, an integrated analysis
between differential accumulated metabolites and expressed transcripts highlighted a
central role of the glycine, serine, and threonine; glyoxylate and dicarboxylate; as well
as starch and sucrose metabolisms. In the first two pathways, glycine and the related
enzyme glyA seem to play a significant role in plant N-stress responses in the N-use-
efficient genotypes. After two days of N starvation, an alternative higher accumulation of
serine and glyceric acid in the N-use-inefficient genotypes was observed. A correlation
between SUS and fructokinase transcript abundances and the D-glucose and D-fructose
accumulation appeared useful to distinguish N-use-efficient and inefficient genotypes in
starch and sucrose metabolism. Interestingly, at long-term low N exposure, a WAXY and
endoglucanase downregulation in the N-use-efficient genotypes was evident, together with
a SUS and fructokinase upregulation. By contrast, the N-use-inefficient genotypes turn
towards cellulose degradation and starch synthesis (higher WAXY, glgC, and endoglucanase
transcript accumulation was observed).

The responses observed in the N-use-efficient compared to the most inefficient geno-
type AM22 could represent a starting point for a deeper understanding of the mechanisms
of eggplant adaptation to low N. Therefore, key transcripts and metabolites and their path-
ways unveiled in this study could be used as potential candidate targets for eggplant-NUE
improvement.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11050700/s1. Figure S1—Interactive visualization system
and detailed results from the pathway analysis in shoot are presented graphically for AM222, 67-3,
and 305E40 vs. AM22: (A) and (B) to T0; (C–E) to T1; (F–H) to T2. Paths with FDR < 0.05 and with a
higher Impact value were highlighted. A p-value of less than 0.05, 0.01, and 0.001 was designated
with one (*), two (**), or three (***) asterisks, respectively. Figure S2—Correlation network between
regulatory genes and related metabolites. The networks between metabolites and transcripts was
performed with MetScape, bioinformatics framework for the visualization and interpretation of
metabolomic data using Cytoscape software (version 3.8.1). Positive correlation is marked with red
(A) and inverse correlation is marked with blue (B). Pathway-enrichment analysis and pathway
impact for both metabolites and metabolic genes (C). Figure S3—Heatmap of correlations in eggplant
accession between metabolites and transcripts by the Pearson’s correlation coefficient (p < 0.05) at
T0. Correlations between eggplant metabolites and transcripts are based on 70 variables in shoot
(A) and root (B). Figure S4—Heatmap of correlations in eggplant accession between metabolites and
transcripts by the Pearson’s correlation coefficient (p < 0.05) at T1. Correlations between eggplant
metabolites and transcripts are based on 70 variables in shoot (A) and root (B); Figure S5. Heatmap of
correlations in eggplant accession between metabolites and transcripts by the Pearson’s correlation
coefficient (p < 0.05) at T2. Correlations between eggplant metabolites and transcripts are based
on 70 variables in shoot (A) and root (B). Figure S6—Exemplary scheme of glycine, serine, and
threonine metabolism between efficient vs. inefficient genotypes in shoots: A, T0; B, T1; and C.
T2. In gray, the metabolites and metabolic genes identified and not statistically different; in green,
the upregulated; and in yellow, the downregulated. Figure S7—Exemplary scheme of glyoxylate
and dicarboxylate metabolism between efficient vs. inefficient genotypes in shoots: A, T0; B, T1;
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C, T2. In gray, the metabolites and metabolic genes identified and not statistically different; in
green, the upregulated; and in yellow, the downregulated. In red, the pathway modules relating
to the glyoxylate cycle and photorespiration. Figure S8—Exemplary scheme of starch and sucrose
metabolism between efficient vs. inefficient genotypes in shoots: A, T0; B, T1; C, T2. In gray, the
metabolites and metabolic genes identified and not statistically different; in green, the upregulated;
and in yellow, the downregulated. In red, the pathway modules relating to the glycogen biosynthesis
and trehalose biosynthesis. Table S1—A: Putative metabolites identified from eggplant roots and
shoots by GC–MS; B: Putative metabolites identified from eggplant roots and shoots by UPLC-
QTOF-MS analysis. Table S2—(A) Loading plot root and (B) Loading plot shoot. Marked in yellow,
variable with cutoff +/−0.14. Table S3—Partial least-squares discriminant analysis (PLS-DA) based
on variable importance in projection (VIP) measure for each single metabolite. They are taken into
consideration starting from a VIP score of 1 in shoot. Table S4—(A) root and (B) shoot metabolites.
One-way ANOVA and post hoc tests adjusted p-value (FDR) cutoff: 0.05 Post hoc analysis: Fisher’s
LSD. Differences between genotypes at the same time marked in yellow. Marked in green, the
differences for the same genotype at different times. No marked differences between genotypes at
different times. Table S5—Results from pathway analysis are presented in a detailed table, from letter
“A–F” the pairwise comparison about genotypes. Table S6—KEGG reference pathways, a subset
of 121 genes were obtained overall. Table S7—Pearson’s correlation coefficient (A) and p-value (B)
of accession-specific metabolites and metabolic genes. Table S8—Pair comparisons: variables with
significantly altered levels are indicated in detailed data table (FDR p-adjusted < 0.05). Variables with
LOG2 (FC) ≥ ±1 are marked in yellow. (A) T0, (B) T1, and (C) T2.
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