Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = gluten residues

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2444 KB  
Article
Gluten-Free Rice Malt Extract Powder: Pilot-Scale Production, Characterization, and Food Applications
by Yupakanit Puangwerakul, Suvimol Soithongsuk and Kanda Wongwailikhit
Molecules 2025, 30(21), 4279; https://doi.org/10.3390/molecules30214279 - 3 Nov 2025
Viewed by 914
Abstract
Background/Objectives: This study reports pilot-scale production of gluten-free rice malt extract powder from Thai Chainat 1 rice as a sustainable alternative to barley malt extract. Methods: The process combined controlled malting with sequential enzymatic hydrolysis, optimized through bench-scale validation and scaled [...] Read more.
Background/Objectives: This study reports pilot-scale production of gluten-free rice malt extract powder from Thai Chainat 1 rice as a sustainable alternative to barley malt extract. Methods: The process combined controlled malting with sequential enzymatic hydrolysis, optimized through bench-scale validation and scaled up to a 1500 L pilot system. Results: The resulting powder was rich in fermentable sugars (maltose 43.9 g/100 g, glucose 14.3 g/100 g), protein (5.2 g/100 g), γ-aminobutyric acid (GABA, 245.2 mg/100 g), and thiamine (0.64 mg/100 g), while free of detectable gluten, aflatoxins, and heavy metals. Microbiological quality met international safety standards. Shelf-life studies under ambient and accelerated conditions demonstrated chemical stability and bioactive retention for up to three years in laminated and HDPE packaging. Application trials confirmed that the rice malt extract powder supported yeast, bacterial, and mold growth comparably to commercial malt extract in culture media, with optimized yeast–mold agar formulations enabling direct substitution without supplementary glucose. The powder was further applied to a gluten-free malt beverage, yielding a beer-like product with acceptable physicochemical and nutritional quality, though residual alcohol levels exceeded the non-alcoholic threshold and required process optimization. Conclusions: Rice malt extract powder represents a safe, functional ingredient suitable for food, beverage, and industrial microbiology applications, offering opportunities to reduce import dependency and advance gluten-free innovation in emerging markets. Full article
Show Figures

Figure 1

28 pages, 4222 KB  
Article
Effect of Polyphenols Extracted from Rosa roxburghii Tartt Pomace with Different Particle Sizes on Quality and Biological Activity of Noodles: A View of Molecular Interaction
by Keying Lin, Junjie Huang, Jichun Zhao, Xiaojuan Lei, Jian Ming and Fuhua Li
Foods 2025, 14(21), 3679; https://doi.org/10.3390/foods14213679 - 28 Oct 2025
Viewed by 888
Abstract
The retention of polyphenols in thermally processed noodles is constrained by interactions with starch and glutenin, critically impacting functional properties (antioxidant activity, starch digestibility modulation) and quality attributes. Current understanding lacks quantitative links between initial pomace particle size, polyphenol behavior throughout processing, and [...] Read more.
The retention of polyphenols in thermally processed noodles is constrained by interactions with starch and glutenin, critically impacting functional properties (antioxidant activity, starch digestibility modulation) and quality attributes. Current understanding lacks quantitative links between initial pomace particle size, polyphenol behavior throughout processing, and the resulting noodle properties. This study systematically investigated how Rosa roxburghii pomace particle size (0.1–250 μm), fractionated into five ranges, governs polyphenol extractability, retention in fresh/boiled noodles, and their functional and quality outcomes. Mathematical modeling established quantitative particle size–property relationships. The results indicated that polyphenol release was maximized at the 1–10 μm particle size. Total phenolic retention in boiled noodles was highest with 0.1–1 μm pomace, while the retention of specific phenolics peaked with 60–80 μm pomace. Fresh noodle hardness and gumminess decreased significantly, particularly with extracts from 1 to 40 μm pomace, whereas boiled noodles showed increased chewiness/adhesiveness. All polyphenol-enriched noodles exhibited suppressed starch digestibility and enhanced antioxidant capacity. Robust quadratic regression models predicted key properties based on particle size. Molecular interactions (hydrogen bonding, hydrophobic contacts, π–cation stacking, salt bridges) between key phenolics (EGCG, hydroxybenzoic acid, gallic acid, quercetin, and isoquercitrin) and the gluten–starch matrix, critically involving residues Arg-86 and Arg-649, were identified as the underlying mechanism. These results demonstrate that precise control of pomace particle size regulates extract composition and molecular binding dynamics, providing a strategic approach to optimize functional noodle design. Full article
(This article belongs to the Special Issue Fruit By-Products and Their Applications in Food Industry)
Show Figures

Figure 1

16 pages, 2790 KB  
Article
Mechanism Insights in Freeze–Thaw Process Impacting Cold Denaturation of Gluten Proteins During Frozen Storage
by Yang Li, Yilin Sun, Shuya Chen, Mingfei Li, Xiaowei Zhang and Yujie Lu
Foods 2025, 14(17), 3103; https://doi.org/10.3390/foods14173103 - 5 Sep 2025
Cited by 1 | Viewed by 1458
Abstract
Cold denaturation of gluten proteins during prolonged frozen storage or repeated freeze–thaw cycles can severely affect the quality of frozen cereal products. While both processes have been studied individually, their combined effects and underlying mechanisms remain unclear. This study systematically evaluated the hydration [...] Read more.
Cold denaturation of gluten proteins during prolonged frozen storage or repeated freeze–thaw cycles can severely affect the quality of frozen cereal products. While both processes have been studied individually, their combined effects and underlying mechanisms remain unclear. This study systematically evaluated the hydration properties and conformational changes in gluten proteins stored at −73 °C and −23 °C, with or without freeze–thaw cycling. Compared to continuous storage, freeze–thaw cycles reduced water-holding capacity by 9.1–12.2% and increased oil-holding capacity by 5.3–10.3%, indicating aggravated structural damage. Ultra-low temperature storage (−73 °C) suppressed ice crystal growth, preserved hydration, and limited hydrophobic residue exposure. Spectroscopic analyses revealed a temperature-dependent shift from α-helices to β-sheets and β-turns, which was accelerated by freeze–thaw cycles. Enhanced hydrophobic interactions and tryptophan exposure further indicated destabilization. Molecular dynamics simulations showed that increased hydrogen bonding between proteins and water contributed to unfolding at low temperatures, while temperature fluctuations intensified denaturation through repeated hydrogen bond breakage and reformation. These results underscore the critical role of thermal instability in cold denaturation and offer mechanistic insights for improving cryoprotection strategies in frozen food systems. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

16 pages, 2435 KB  
Article
Nutritional, Thermal, and Energetic Characterization of Two Morphotypes of Andean Mashua (Tropaeolum tuberosum Ruiz & Pavón) Flours from Peru
by Gilmar Peña-Rojas, Vidalina Andía-Ayme, Alberto Fernández-Torres, Juan Z. Dávalos-Prado and Oscar Herrera-Calderon
Molecules 2025, 30(17), 3560; https://doi.org/10.3390/molecules30173560 - 30 Aug 2025
Viewed by 2326
Abstract
Tropaeolum tuberosum (mashua) is a native Andean tuber recognized for its high nutritional and bioactive compound content. Among the various morphotypes, the black and yellow variants show potential differences in composition and functionality. This study aimed to compare the thermo-energetic, nutritional, and physicochemical [...] Read more.
Tropaeolum tuberosum (mashua) is a native Andean tuber recognized for its high nutritional and bioactive compound content. Among the various morphotypes, the black and yellow variants show potential differences in composition and functionality. This study aimed to compare the thermo-energetic, nutritional, and physicochemical characteristics of two morphotypes (black and yellow) of Tropaeolum tuberosum flour from the Peruvian Andes. Flours were obtained from tubers harvested in Ayacucho, Peru, and analyzed using elemental analysis for carbon, hydrogen, nitrogen, and sulfur (CHNS), inductively coupled plasma optical emission spectrometry (ICP-OES), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and bomb calorimetry. The empirical formula is CH1.74O0.91N0.06S0.005 for black mashua and CH1.78O0.92N0.05S0.005 for yellow mashua. Black flour exhibited higher protein (17.6% vs. 14.8%) and fat contents (8.0% vs. 6.7%), along with nearly double the iron content. Both flours showed similar starch granule morphology and gelatinization enthalpy (~2 J/g), but the black flour had higher gelatinization temperatures. Calorimetric analysis revealed a greater net calorific value (qNCV) in black mashua flour (4157 ± 22 kcal/kg) than in yellow flour (4022 ± 19 kcal/kg). The thermogravimetric profiles indicated good thermal stability with approximately 30% residual mass. These findings suggested that black mashua flour possesses superior nutritional and energy characteristics, supporting its application in functional food formulations and energy-rich gluten-free products. Full article
Show Figures

Graphical abstract

15 pages, 4964 KB  
Article
Setting Up a “Green” Extraction Protocol for Bioactive Compounds in Buckwheat Husk
by Anna R. Speranza, Francesca G. Ghidotti, Alberto Barbiroli, Alessio Scarafoni, Sara Limbo and Stefania Iametti
Int. J. Mol. Sci. 2025, 26(15), 7407; https://doi.org/10.3390/ijms26157407 - 31 Jul 2025
Viewed by 1226
Abstract
Buckwheat, a gluten-free pseudocereal, is rich in dietary fiber, minerals, high-quality proteins, vitamins, and essential amino acids. Buckwheat husk, a by-product of dehulling, contains high levels of bioactive compounds such as polyphenols and dietary fibers. This study compares green extraction methods (ultrasound-assisted extraction, [...] Read more.
Buckwheat, a gluten-free pseudocereal, is rich in dietary fiber, minerals, high-quality proteins, vitamins, and essential amino acids. Buckwheat husk, a by-product of dehulling, contains high levels of bioactive compounds such as polyphenols and dietary fibers. This study compares green extraction methods (ultrasound-assisted extraction, UAE; and microwave-assisted extraction, MAE) for recovering polyphenols from buckwheat husk. MAE improved polyphenol yield by 43.6% compared to conventional acidified methanol extraction. Structural and chemical analyses of the residual husk material using SEM, FTIR, and fiber analysis revealed that MAE alters husk properties, enhancing polyphenol accessibility. Thus, MAE appears an efficient and sustainable alternative to acid- and solvent-based extraction techniques. Extracts obtained via “green” methods retained strong antioxidant activity and showed significant modulation of inflammatory markers in human Caco-2 cells, highlighting the potential use of “green” buckwheat husk extracts for food and pharma applications. This work supports the valorization of buckwheat husk within a circular economy framework, promoting buckwheat husk as a valuable raw material for bioactive compound recovery in diverse applications. Full article
Show Figures

Figure 1

18 pages, 1379 KB  
Article
Enzymatic Hydrolysis of Gluten in Beer: Effects of Enzyme Application on Different Brewing Stages on Beer Quality Parameters and Gluten Content
by Carolina Pedroso Partichelli, Vitor Manfroi and Rafael C. Rodrigues
Foods 2025, 14(14), 2519; https://doi.org/10.3390/foods14142519 - 18 Jul 2025
Cited by 1 | Viewed by 1768
Abstract
A rising demand for low-gluten beer fuels research into enzymatic solutions. This study optimized Aspergillus niger prolyl endopeptidase (AN-PEP) application timing during brewing to reduce gluten while preserving physicochemical quality. Ale-type beers were produced with AN-PEP (2% v/v) added at [...] Read more.
A rising demand for low-gluten beer fuels research into enzymatic solutions. This study optimized Aspergillus niger prolyl endopeptidase (AN-PEP) application timing during brewing to reduce gluten while preserving physicochemical quality. Ale-type beers were produced with AN-PEP (2% v/v) added at mashing, boiling, post-boiling, or post-fermentation, plus a control. Three mashing profiles (Mash A, B, C) were also tested. Gluten was quantified by R5 ELISA (LOQ > 270 mg/L). Color, bitterness, ABV, and foam stability were assessed. Statistical analysis involved ANOVA and Tukey’s HSD (p < 0.05). Enzyme activity and thermal inactivation were also evaluated. Initial gluten levels consistently exceeded LOQ. Significant gluten reduction occurred only post-fermentation. Mashing, boiling, and post-boiling additions effectively lowered gluten to below 20 mg/L. Post-fermentation addition resulted in significantly higher residual gluten (136.5 mg/L). Different mashing profiles (A, B, C) with early enzyme addition achieved similar low-gluten levels. AN-PEP showed optimal activity at 60–65 °C, inactivating rapidly at 100 °C. Physicochemical attributes (color, extract, bitterness, ABV) were largely unaffected. However, foam stability was significantly compromised by mashing and post-fermentation additions, while preserved with boiling and post-boiling additions. AN-PEP effectively produces low-gluten beers. Enzyme addition timing is critical: while mashing, boiling, or post-boiling additions reduce gluten to regulatory levels, only the beginning of boiling or post-boiling additions maintain desirable foam stability. These findings offer practical strategies for optimizing low-gluten beer production. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

22 pages, 1348 KB  
Article
Descriptive Sensory Analysis of Gluten-Containing and Gluten-Free Chocolate Chip Cookies Available in the Marketplace
by Eniola Ola, Victoria J. Hogan and Han-Seok Seo
Foods 2025, 14(13), 2233; https://doi.org/10.3390/foods14132233 - 25 Jun 2025
Cited by 3 | Viewed by 3163
Abstract
Limited research has systematically compared the detailed sensory profiles of commercially available gluten-containing (C) and gluten-free (F) cookies using trained panelists. This study aimed to develop a comprehensive sensory lexicon for C and F chocolate chip cookies and identify key sensory attributes that [...] Read more.
Limited research has systematically compared the detailed sensory profiles of commercially available gluten-containing (C) and gluten-free (F) cookies using trained panelists. This study aimed to develop a comprehensive sensory lexicon for C and F chocolate chip cookies and identify key sensory attributes that differentiate them. Seven professionally trained panelists created a lexicon of 33 attributes spanning aroma, flavor, basic taste, texture, and residual property. Using this lexicon, a descriptive analysis was conducted on 12 C and 12 F cookie samples. Multivariate analysis of variance revealed significant differences between the two groups across the 33 sensory attributes (p < 0.05). A mixed model analysis showed that C cookies had higher intensities of chocolate-related and sweet aroma complex notes, while F cookies exhibited stronger nutty, artificial, and off-note flavors. In terms of texture, F cookies were higher in toothpack and powdery mouthcoat, while C cookies displayed more melt-in-mouth characteristics. Principal component analysis and agglomerative hierarchical clustering revealed three distinct clusters of test samples within both crispy and chewy cookie types, with some F cookies closely aligning with C profiles. These findings, along with the developed lexicon, provide a valuable foundation for enhancing the sensory appeal and quality of gluten-free chocolate chip cookies. Full article
Show Figures

Figure 1

21 pages, 9234 KB  
Article
Effects of Aqueous Extracts from Wheat Bran Layers on the Functional Properties of Wheat Starch and Gluten
by Bingbing Wu, Chunlei Yu, Zhongwei Chen and Bin Xu
Foods 2025, 14(11), 1988; https://doi.org/10.3390/foods14111988 - 4 Jun 2025
Viewed by 1344
Abstract
Wheat bran (WB) is rich in bioactive compounds, but its incorporation into food products often negatively affects dough properties. The soluble components in WB, including polysaccharides, minerals, and proteins, exhibit significant variations across different bran layers and may dissolve and interact with flour [...] Read more.
Wheat bran (WB) is rich in bioactive compounds, but its incorporation into food products often negatively affects dough properties. The soluble components in WB, including polysaccharides, minerals, and proteins, exhibit significant variations across different bran layers and may dissolve and interact with flour components during food processing, affecting dough properties. This study aims to investigate the influence of aqueous extracts from different WB layers (aleurone layer, AL; non-aleurone layer, NAL) and their components on the functional properties of wheat starch and gluten. The results indicate that the AL-rich fraction yielded a higher extract content (30.6%) compared to the NAL-rich fraction (15.1%), attributable to the higher cellular content in the AL. Both the extracts and residues from AL and NAL significantly lowered the denaturation temperature of wheat gluten. The aqueous extracts reduced the storage (G′) and loss (G″) moduli of wheat gluten, primarily attributed to the effect of polysaccharide components, whereas the protein and ash fractions elevated the G′ and G″ at suitable dosages. The extracts elevated the gelatinization temperature of starch, but reduced enthalpy (ΔH). Moreover, the pasting viscosity of starch with WB extract decreased due to the combined effects of protein and ash fractions. These findings provide insights into the roles of water extracts from different WB layers and their components in modulating wheat-based product quality. This study also offers a theoretical basis for optimizing WB utilization in foods, thus providing a theoretical foundation for promoting whole-wheat foods or foods containing WB. Full article
Show Figures

Graphical abstract

21 pages, 4203 KB  
Article
Multiscale Characterization of Rice Starch Gelation and Retrogradation Modified by Soybean Residue (Okara) and Extracted Dietary Fiber Using Rheology, Synchrotron Wide-Angle X-Ray Scattering (WAXS), and Fourier Transform Infrared (FTIR) Spectroscopy
by Aunchalee Aussanasuwannakul and Suparat Singkammo
Foods 2025, 14(11), 1862; https://doi.org/10.3390/foods14111862 - 23 May 2025
Cited by 5 | Viewed by 2696
Abstract
Okara, the soybean residue from soy milk and tofu production, offers significant potential as a sustainable, fiber-rich ingredient for starch-based and gluten-free food systems. This study investigates the comparative effects of whole okara and its extracted dietary fiber (DF) on the retrogradation, rheological [...] Read more.
Okara, the soybean residue from soy milk and tofu production, offers significant potential as a sustainable, fiber-rich ingredient for starch-based and gluten-free food systems. This study investigates the comparative effects of whole okara and its extracted dietary fiber (DF) on the retrogradation, rheological properties, and nanostructural organization of rice starch (RS) gels. Rice starch suspensions were blended with 5–20% (dry basis) of either whole okara or DF, thermally gelatinized, and analyzed using dynamic rheology, synchrotron-based Wide-Angle X-ray Scattering (WAXS), and Fourier Transform Infrared (FTIR) spectroscopy. DF markedly reduced the gelation temperature and enhanced storage modulus (G′), indicating earlier and stronger gel network formation. WAXS analysis showed that DF more effectively disrupted long-range molecular ordering, as evidenced by suppressed crystallinity development and disrupted molecular ordering within the A-type lattice. FTIR spectra revealed intensified O–H stretching and new ester carbonyl bands, with progressively higher short-range molecular order (R1047/1022) in DF-modified gels. While whole okara provided moderate retrogradation resistance and contributed to network cohesiveness via its matrix of fiber, protein, and lipid, DF exhibited superior retrogradation inhibition and gel stiffness due to its purity and stronger fiber–starch interactions. These results highlight the functional divergence of okara-derived ingredients and support their targeted use in formulating stable, fiber-enriched, starch-based foods. Full article
Show Figures

Graphical abstract

19 pages, 9249 KB  
Article
Bioinformatics-Assisted Discovery of Antioxidant Cyclic Peptides from Corn Gluten Meal
by Hongcheng Liu, Tong Sun, He Gao, Xiaolong Liu, Shanshan Zhang, Tingting Liu, Dawei Wang, Hongxiu Fan and Yanrong Zhang
Foods 2025, 14(10), 1709; https://doi.org/10.3390/foods14101709 - 12 May 2025
Cited by 3 | Viewed by 1594
Abstract
Using a multidisciplinary approach, this paper was designed to prepare, identify, and characterize novel maize antioxidant cyclic peptides from protein hydrolysate of corn gluten meal (CGM). A bioinformatics approach was used to identify the best protease, and the results showed that papain+subtilisin was [...] Read more.
Using a multidisciplinary approach, this paper was designed to prepare, identify, and characterize novel maize antioxidant cyclic peptides from protein hydrolysate of corn gluten meal (CGM). A bioinformatics approach was used to identify the best protease, and the results showed that papain+subtilisin was most likely to produce antioxidant cyclic peptides. The result of the enzymatic hydrolysis validation experiment showed that hydrolysate by papain+subtilisin yielded the highest concentration of cyclic peptide (67.14 ± 1.88%) and remarkable DPPH, ABTS, and hydroxyl radical scavenging rates (81.06 ± 2.23%, 82.82 ± 1.83%, and 47.44 ± 2.43%, respectively) compared to other hydrolysates. Eleven antioxidant cyclic peptides were identified in the protein hydrolysate of CGM through sequential purification and mass spectrometry analysis. The results of molecular docking analysis indicated that the cyclic peptides can form stable hydrogen bonds and hydrophobic interactions with the key amino acid residues of Kelch-like ECH-associated protein 1 (Keap1). Cyclic peptides may regulate the Keap1-Nrf2 pathway by occupying the Kelch domain of Keap1, inhibiting the ubiquitination degradation of Nrf2 (nuclear factor erythroid 2-related factor 2), thereby stabilizing the Nrf2 protein and activating the antioxidant gene network. This study underlined the bioinformatics approach for antioxidant cyclic peptide discovery, which is time- and cost-effective and promotes new cyclic peptide drugs or functional food development. Full article
(This article belongs to the Special Issue Plant Proteins: Functions in Disease Prevention and Treatment)
Show Figures

Figure 1

19 pages, 4525 KB  
Article
Enhancement of Dough Processing and Steamed Bread Quality with Modified Soybean Residue Dietary Fiber
by Jun Zhao, Wenlong Xie, Zhilong Chen, Yuqian Zheng and Sheng Li
Foods 2025, 14(3), 346; https://doi.org/10.3390/foods14030346 - 21 Jan 2025
Cited by 8 | Viewed by 4549
Abstract
The effects of different modified soybean residues’ dietary fiber on the physicochemical properties of wheat dough and the quality of steamed bread were systematically analyzed in this study. The physical and chemical parameters of dough, such as texture characteristics, water distribution, secondary structure, [...] Read more.
The effects of different modified soybean residues’ dietary fiber on the physicochemical properties of wheat dough and the quality of steamed bread were systematically analyzed in this study. The physical and chemical parameters of dough, such as texture characteristics, water distribution, secondary structure, and the specific volume, color, and sensory evaluation results of steamed bread products were analyzed in detail. The results showed that adding 6% modified soybean residue dietary fiber enhanced the gluten network, increasing the S–S bond content and improving gluten stability. Notably, the inclusion of 6% residue modified by the ultrasound combined with enzyme method (UEDF) led to a 2.55% increase in the β-fold content of gluten proteins and a 3.60% rise in disulfide bond content. These changes resulted in a reduction in dough relaxation time, promoting a more uniform and compact pore structure in the dough. Additionally, steamed bread made with 6% UEDF showed a 0.3 mL/g increase in specific volume, a 4.69 point rise in L* value, and improved sensory attributes such as taste, odor, and appearance. These research results provide valuable insights and guidance for the development of soybean residue dietary fiber foods. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

14 pages, 4835 KB  
Article
Interaction Effects of Tannic Acid and Gluten on Bread-Making and Its Starch Digestion
by Seonghyeon Nam, Oguz K. Ozturk and Jongbin Lim
Foods 2025, 14(2), 233; https://doi.org/10.3390/foods14020233 - 13 Jan 2025
Cited by 4 | Viewed by 2769
Abstract
In this study, we explored the binding mechanism between tannic acid (TA) and gluten to apply TA as an ingredient in bread-making to evaluate its baking performance and starch digestion. The interaction was systematically investigated by analyzing binding affinity, binding mode, and matrix [...] Read more.
In this study, we explored the binding mechanism between tannic acid (TA) and gluten to apply TA as an ingredient in bread-making to evaluate its baking performance and starch digestion. The interaction was systematically investigated by analyzing binding affinity, binding mode, and matrix structure of the TA–gluten complex using fluorescence quenching, molecular docking, and confocal laser scanning microscopy. TA strongly interacted with gluten via non-covalent interactions, mainly hydrogen bonds, and formed the major hydrogen bonds with six different glutamines (Q32, Q108, Q313, Q317, Q317, and Q349), which play a critical role in gluten network construction among amino acid residues of gluten. Additionally, TA showed lower binding affinity toward glutenin (−10.4 kcal/mol) compared to gliadin (−8.9 kcal/mol), implying stronger binding with glutenin. Consequently, the interaction between TA and gluten created a dense and compact gluten network structure. It influenced baking performance, causing a decrease in bread loaf volume while an increase in firmness and lowering the starch digestion rate, increasing slowly digestible starch and resistant starch fractions. This study identified the binding mechanism of TA toward gluten and provides better insights into how to apply TA or perhaps other polyphenols to design functional bakery products to control starch digestion rate. Full article
Show Figures

Figure 1

26 pages, 3613 KB  
Article
Enhancing Gluten-Free Crispy Waffles with Soybean Residue (Okara) Flour: Rheological, Nutritional, and Sensory Impacts
by Aunchalee Aussanasuwannakul, Kassamaporn Puntaburt and Thidarat Pantoa
Foods 2024, 13(18), 2951; https://doi.org/10.3390/foods13182951 - 18 Sep 2024
Cited by 7 | Viewed by 5373
Abstract
The incorporation of okara, a by-product of soybean milk production, into gluten-free products such as crispy waffles poses challenges due to the absence of gluten’s viscoelastic properties and the high fiber content of okara. This study aimed to evaluate the effects of okara [...] Read more.
The incorporation of okara, a by-product of soybean milk production, into gluten-free products such as crispy waffles poses challenges due to the absence of gluten’s viscoelastic properties and the high fiber content of okara. This study aimed to evaluate the effects of okara flour on the rheological properties, physical attributes, and sensory qualities of gluten-free waffles. Waffle batters with varying levels of okara flour (10%, 20%, 30%, and 40%) were prepared, and their rheological properties were analyzed using oscillatory shear and creep-recovery tests. Physical properties, proximate composition, cholesterol and glucose adsorption capacities, storage stability, and sensory attributes were also assessed. The results demonstrated that increasing okara flour content improved batter elasticity and viscosity (with complex viscosity reaching up to 10,923 Pa·s for 40% okara flour) but decreased spread ratio by up to 45% and increased moisture content by approximately 2.7%. Higher okara content also led to a 16% decrease in brightness (L*) and increased hardness, reaching 325.26 g/s at 40% substitution. Sensory evaluation revealed that waffles with 30% okara flour were preferred for their texture and overall liking, with a score of 7.43 compared to higher substitution levels. Cholesterol and glucose adsorption capacities were high in okara flour, contributing to potential health benefits. Storage stability tests showed acceptable moisture content, water activity, and microbiological safety over 60 days, though hardness decreased by about 42%. In conclusion, okara flour enhances the nutritional profile of gluten-free waffles, but its impact on texture and flavor requires careful formulation adjustments to optimize consumer acceptance. Full article
(This article belongs to the Special Issue Utilization of Value-Added Products from Food Residues and Waste)
Show Figures

Graphical abstract

16 pages, 1902 KB  
Article
IV-Range Carrot Waste Flour Enhances Nutritional and Functional Properties of Rice-Based Gluten-Free Muffins
by Claudia Bas-Bellver, Cristina Barrera, Noelia Betoret, Lucía Seguí and Joanna Harasym
Foods 2024, 13(9), 1312; https://doi.org/10.3390/foods13091312 - 24 Apr 2024
Cited by 11 | Viewed by 3674
Abstract
Fortification of bakery products with plant-based functional ingredients has gained interest in recent years. Low-cost fruit and vegetable waste has been proposed to replace wheat flour, but less research has been conducted on gluten-free flours. Rice is generally accepted as a gluten-free alternative [...] Read more.
Fortification of bakery products with plant-based functional ingredients has gained interest in recent years. Low-cost fruit and vegetable waste has been proposed to replace wheat flour, but less research has been conducted on gluten-free flours. Rice is generally accepted as a gluten-free alternative to wheat flour but is poor in bioactive constituents; thus, the addition of vegetable-based functional ingredients could improve the nutritive value of gluten-free products. In the present work, IV-range carrot waste powder (CP) was incorporated into rice-based gluten-free muffin formulations in different proportions (5, 10, 20, and 30% w/w). The impact of CP addition on physicochemical and antioxidant properties was evaluated in flour blends, doughs, and baked products. Products were also evaluated in terms of water activity, hardness, and colour before and after a one-week storage period under fridge conditions. The results showed that water and oil absorption capacities increased in flour blends with CP addition, whereas the pasting properties of flour blends were affected when adding CP. Rheological measurements revealed an increase of G’ and G’’ modulus values with CP addition. Colour was also significantly modified by CP addition, since CP provided an orangish and brownish colour, but also due to intensified Maillard reactions during baking. Muffin hardness was reduced in enriched formulations compared to control ones, which was attributed to the fibre being incorporated with CP. It was confirmed that CP addition improved the antioxidant properties of both flour blends and muffins, with the higher the replacement, the better the antioxidant properties. The quality of gluten-free muffins was hindered after one week stored under cold conditions, so that colour was affected, hardness increased, and the antioxidant properties diminished. In conclusion, this work presents an interesting approach for the use of carrot waste flour as a functional food ingredient to improve the nutritional value of new gluten-free rice-based muffins, thus contributing to the circularity of food systems and to the development of healthier and more sustainable diets. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

15 pages, 1256 KB  
Article
Reducing Immunoreactivity of Gluten Peptides by Probiotic Lactic Acid Bacteria for Dietary Management of Gluten-Related Diseases
by Joanna Leszczyńska, Agnieszka K. Szczepankowska, Iwona Majak, Dorota Mańkowska, Beata Smolińska, Sylwia Ścieszka, Anna Diowksz, Bożena Cukrowska and Tamara Aleksandrzak-Piekarczyk
Nutrients 2024, 16(7), 976; https://doi.org/10.3390/nu16070976 - 27 Mar 2024
Cited by 13 | Viewed by 5324
Abstract
Immunoreactive gluten peptides that are not digested by peptidases produced by humans can trigger celiac disease, allergy and non-celiac gluten hypersensitivity. The aim of this study was to evaluate the ability of selected probiotic strains to hydrolyze immunoreactive gliadin peptides and to identify [...] Read more.
Immunoreactive gluten peptides that are not digested by peptidases produced by humans can trigger celiac disease, allergy and non-celiac gluten hypersensitivity. The aim of this study was to evaluate the ability of selected probiotic strains to hydrolyze immunoreactive gliadin peptides and to identify peptidase-encoding genes in the genomes of the most efficient strains. Residual gliadin immunoreactivity was measured after one- or two-step hydrolysis using commercial enzymes and bacterial peptidase preparations by G12 and R5 immunoenzymatic assays. Peptidase preparations from Lacticaseibacillus casei LC130, Lacticaseibacillus paracasei LPC100 and Streptococcus thermophilus ST250 strains significantly reduced the immunoreactivity of gliadin peptides, including 33-mer, and this effect was markedly higher when a mixture of these strains was used. In silico genome analyses of L. casei LC130 and L. paracasei LPC100 revealed the presence of genes encoding peptidases with the potential to hydrolyze bonds in proline-rich peptides. This suggests that L. casei LC130, L. paracasei LPC100 and S. thermophilus ST250, especially when used as a mixture, have the ability to hydrolyze immunoreactive gliadin peptides and could be administered to patients on a restricted gluten-free diet to help treat gluten-related diseases. Full article
(This article belongs to the Special Issue Celiac Disease and Gluten-Related Disorders: Nutritional Solutions)
Show Figures

Figure 1

Back to TopTop