Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,321)

Search Parameters:
Keywords = glucose concentration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4772 KB  
Article
Deep Eutectic Solvent Ultrasonic-Assisted Extraction of Polysaccharides from Red Alga Asparagopsis taxiformis: Optimization, Characterization, Mechanism, and Immunological Activity in RAW264.7 Cells
by Kun Yang, Yuxin Wang, Wentao Zou, Qin Liu, Riming Huang, Qianwang Zheng and Saiyi Zhong
Foods 2026, 15(3), 438; https://doi.org/10.3390/foods15030438 (registering DOI) - 25 Jan 2026
Abstract
Traditional polysaccharide extraction suffers from low efficiency and high energy consumption, while deep eutectic solvents (DESs) are promising sustainable solvents. This study used DES ChCl-LA (1:2) with ultrasonic assistance to extract polysaccharides from red alga A.taxiformis. Optimized via single-factor experiments and [...] Read more.
Traditional polysaccharide extraction suffers from low efficiency and high energy consumption, while deep eutectic solvents (DESs) are promising sustainable solvents. This study used DES ChCl-LA (1:2) with ultrasonic assistance to extract polysaccharides from red alga A.taxiformis. Optimized via single-factor experiments and response surface methodology (350 W, 1:30 g/mL, 75 °C), the yield reached 11.28% ± 0.50% (1.5 times higher than that obtained by water extraction). Structural characterization revealed that the DES extract was an acidic polysaccharide, mainly composed of galactose (89.2%), glucose (4.9%), xylose (4.9%), and glucuronic acid (1.0%), with a weight-average molecular weight of 99.88 kDa. Density functional theory and molecular dynamics simulations showed that ChCl-LA enhanced galactose solubility via stronger hydrogen bonding (−25.33 vs. −5.06 kcal/mol for water). Notably, the immunological activity of the DES-extracted polysaccharide was significantly compromised compared to the water-extracted counterpart (p < 0.05). At a concentration of 0.25 mg/mL, the water-extracted polysaccharide-treated group exhibited a 33.98% higher neutral red phagocytosis rate in macrophages, a nitric oxide (NO) secretion level of 34.14 μmol/L (94.98% higher) compared with the DES-extracted polysaccharide group, as well as significantly higher secretion levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). The observed disparity in bioactivity is likely due to the distinct chemical profiles resulting from the two extraction methods, including the significantly reduced molecular weight and potential alterations of sulfation degree, monosaccharide composition, and protein content in the DES-extracted polysaccharide. This mechanistic perspective is supported by the relevant literature on the structure–activity relationships of polysaccharides. This study demonstrates the potential of ChCl-LA and elucidates the complex effects of extraction methods on polysaccharide’s structure and function, thereby informing the high-value utilization of A. taxiformis in functional foods. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

12 pages, 749 KB  
Article
Lower Selenoprotein P Is Independently Associated with Peripheral Arterial Disease in Peritoneal Dialysis
by I-Min Su, Chung-Jen Lee, Chiu-Huang Kuo, Chih-Hsien Wang and Bang-Gee Hsu
Diagnostics 2026, 16(3), 375; https://doi.org/10.3390/diagnostics16030375 - 23 Jan 2026
Viewed by 15
Abstract
Background/Objectives: Peripheral arterial disease (PAD) is a common yet often unrecognized complication in patients receiving peritoneal dialysis (PD). Considering that ankle–brachial index (ABI) can be difficult to interpret in this population, additional vascular biomarkers are needed. Selenoprotein P (SePP) is a major [...] Read more.
Background/Objectives: Peripheral arterial disease (PAD) is a common yet often unrecognized complication in patients receiving peritoneal dialysis (PD). Considering that ankle–brachial index (ABI) can be difficult to interpret in this population, additional vascular biomarkers are needed. Selenoprotein P (SePP) is a major selenium transport protein with antioxidant and metabolic regulatory functions and may reflect vascular stress relevant to PAD. We investigated the association of circulating SePP levels with ABI-defined PAD in patients on PD. Methods: In this cross-sectional analysis of 98 patients on PD, ABI was assessed using an automated oscillometric device, and ABI < 0.9 was defined as ABI-defined PAD. Serum SePP levels were measured using enzyme-linked immunosorbent assay. Results: ABI-defined PAD was identified in 20 patients (20.4%). Compared with patients with normal ABI, those with ABI-defined PAD were older (p = 0.014) and had significantly higher prevalence of diabetes mellitus (p = 0.033), longer PD vintage (p = 0.036), higher fasting glucose (p = 0.005) and C-reactive protein (p = 0.003) levels, and lower SePP concentrations (p < 0.001). Low SePP level remained independently associated with ABI-defined PAD after multivariate adjustment (odds ratio 0.930, 95% confidence interval 0.771–0.997; p = 0.032) and consistently across reinforced bootstrap resampling. SePP correlated positively with ABI on the left (p = 0.001) and right (p = 0.002) sides. Conclusions: Among patients undergoing PD, a low serum SePP level was independently associated with ABI-defined PAD and positively associated with ABI, suggesting that SePP may serve as an associative biomarker reflecting vascular vulnerability rather than a diagnostic indicator in this population. Full article
(This article belongs to the Special Issue Diagnosis of Peripheral Vascular Diseases)
Show Figures

Figure 1

19 pages, 1099 KB  
Article
Growth, Health and Physiological Responses of Freshwater-Reared Atlantic Salmon (Salmo salar) Fed Graded Dietary Lipid Levels
by Byoungyoon Lee, Junoh Lee, Saeyeon Lim, Gwanghyeok Kim, Minjae Seong, Dahyun Jeong, Sijun Han, Byung-Hwa Min, Kang-Woong Kim, Seong-Mok Jeong, Mun Chang Park, Woo Seok Hong, Se Ryun Kwon and Youngjin Park
Animals 2026, 16(3), 356; https://doi.org/10.3390/ani16030356 - 23 Jan 2026
Viewed by 31
Abstract
This study evaluated the optimal dietary lipid level for Atlantic salmon (Salmo salar) reared in freshwater, aiming to provide foundational knowledge for the development of cost-effective and nutritionally balanced aquafeeds. Four experimental diets were formulated to contain comparable crude protein levels [...] Read more.
This study evaluated the optimal dietary lipid level for Atlantic salmon (Salmo salar) reared in freshwater, aiming to provide foundational knowledge for the development of cost-effective and nutritionally balanced aquafeeds. Four experimental diets were formulated to contain comparable crude protein levels (47%) but graded lipid levels of 14% (L14), 16% (L16), 18% (L18), and 20% (L20), and were fed to salmon with an initial mean body weight of 241.5 ± 9.7 g during a 12-week feeding trial. Fish in the L16 group exhibited the highest weight gain (WG) and feed efficiency (FE), whereas those in the L14 group showed significantly reduced growth performance. Antioxidant analysis revealed that glutathione peroxidase (GPx) activity was lowest in the L14 group (p < 0.05), while plasma glucose concentration was minimized in the L16 group (p < 0.05). Transcriptomic profiling of liver tissue from the L14 and L16 groups identified 2117 differentially expressed genes (DEGs). Genes associated with lipid metabolism were more highly expressed in the L16 group, whereas immune- and inflammation-related genes were upregulated in the L14 group. These findings suggest that a dietary lipid level of approximately 16% is most favorable for promoting growth, metabolic stability, and overall health in freshwater-reared Atlantic salmon, thereby providing practical guidance for optimizing feed formulation and improving the economic efficiency of freshwater salmon aquaculture. Full article
(This article belongs to the Special Issue Advances in Nutrition, Sustainability and Ecology of Salmonids)
Show Figures

Figure 1

14 pages, 553 KB  
Article
Comparative Metabolic and Stress-Related Responses to Adrenaline in Iberian and Landrace Pigs
by Manuel Lachica, Andreea Román, José Miguel Rodríguez-López, Lucrecia González-Valero, Consolación García-Contreras, Rosa Nieto and Ignacio Fernández-Fígares
Animals 2026, 16(3), 354; https://doi.org/10.3390/ani16030354 - 23 Jan 2026
Viewed by 22
Abstract
Differences in metabolic traits between traditional and modern pig breeds may influence their physiological responses to stress hormones. This study evaluated the in vivo metabolic effects of an acute adrenaline challenge in Iberian (obese, slow-growing) and Landrace (lean, fast-growing) pigs (Sus scrofa [...] Read more.
Differences in metabolic traits between traditional and modern pig breeds may influence their physiological responses to stress hormones. This study evaluated the in vivo metabolic effects of an acute adrenaline challenge in Iberian (obese, slow-growing) and Landrace (lean, fast-growing) pigs (Sus scrofa domesticus). Four Iberian and five Landrace barrows (≈50 kg body weight; BW) fitted with a carotid catheter received an injection of adrenaline (3 µg/kg BW), and serial blood samples were collected for 105 min. Adrenaline transiently increased plasma glucose (p < 0.001) and lactate (p < 0.001) concentrations, both peaking at 5 min post-injection. Iberian pigs showed higher plasma lactate (1.26 vs. 1.03 mM; p = 0.002), triglycerides (0.34 vs. 0.27 mM; p < 0.001), and non-esterified fatty acids (NEFA; 0.38 vs. 0.29 mM; p = 0.021), but lower glucose (4.80 vs. 5.03 mM; p = 0.010) than Landrace pigs, while cholesterol remained unaffected (p > 0.10). No breed × time interaction was detected for any metabolite. The relative increase in glucose reached +47% in Iberian and +27% in Landrace pigs, whereas lactate rose +140% and +113%, respectively, indicating stronger glycolytic activation in Iberian pigs. Despite the limited sample size, the results provide physiologically relevant evidence supporting increased metabolic flexibility in Iberian pigs, characterized by a heightened sensitivity to adrenergic stimulation and associated with enhanced lipolytic and glycolytic responses; however, these conclusions should be interpreted within the specific experimental conditions under which the study was conducted. These findings demonstrate that Iberian pigs have higher metabolic sensitivity to adrenergic stimulation, with enhanced lipolytic and glycolytic activity. In conclusion, breed-dependent differences in stress-related metabolism suggest that Iberian pigs are furnished with increased metabolic flexibility to face short-term stress. Full article
Show Figures

Figure 1

17 pages, 4910 KB  
Article
Proteomic Variation in Two Genotypes of Bitter Gourd During Cold Acclimation
by Kai Yan, Yu Ning, Lihong Su, Hai Xu, Zhenlu Lv, Yang Wang, Longzheng Chen and Huashan Lian
Horticulturae 2026, 12(1), 123; https://doi.org/10.3390/horticulturae12010123 - 22 Jan 2026
Viewed by 9
Abstract
Bitter gourd (Momordica charantia L.) is widely consumed worldwide due to its unique flavor and medicinal value. In subtropical regions, low spring temperatures limit bitter gourd growth, leading to plant mortality and yield loss. Thus, elucidating the mechanisms of cold tolerance in [...] Read more.
Bitter gourd (Momordica charantia L.) is widely consumed worldwide due to its unique flavor and medicinal value. In subtropical regions, low spring temperatures limit bitter gourd growth, leading to plant mortality and yield loss. Thus, elucidating the mechanisms of cold tolerance in bitter gourd could facilitate the development of cold-resistant cultivars via genetic engineering or molecular breeding. In this study, a cold-tolerant (CT) and a cold-sensitive (CS) inbred line of bitter gourd were used to investigate proteomic differences under cold stress. Before cold stress, 504 differentially accumulated proteins (DAPs) were identified, with 123 up-accumulated in CT plants compared to CS plants. Upon exposure to cold stress, these numbers changed to 388 DAPs (259 up-accumulated in CT) at 6 h and further to 649 DAPs (415 up-accumulated in CT) at 24 h. K-means cluster analysis identified 65 cold-stress response proteins that may contribute to cold tolerance in CT plants, including evm.TU.chr4.3733 (Proline dehydrogenase 1), evm.TU.chr10.115 (Delta(1)-pyrroline-2-carboxylate reductase), and evm.TU.chr10.815 (Calcium-dependent protein kinase 3). Glucose and starch levels remained stable in both CS and CT plants during cold stress, and the baseline concentration of glucose was consistently and significantly higher in CT plants than in CS plants. Before cold stress, proline content was similar in both CT and CS plants. Following 6 h of cold stress, CS plants accumulated significantly higher proline levels than CT plants. This trend, however, reversed after 24 h, with proline content becoming significantly lower in CS plants. Differential protein accumulation between CT and CS plants under cold stress reflects their distinct responses, with core DAPs serving as key functional determinants of enhanced cold tolerance in the CT genotype. This study revealed important proteomic data underlying the cold stress response in bitter gourd. Full article
(This article belongs to the Special Issue Tolerance of Horticultural Plants to Abiotic Stresses)
Show Figures

Figure 1

18 pages, 785 KB  
Article
Effect of Water Extract of Artemisia annua L. on Growth Performance, Blood Biochemical Parameters and Intestinal-Related Indices in Mutton Sheep
by Gen Gang, Ruiheng Gao, Manman Tong, Shangxiong Zhang, Shiwei Guo, Xiao Jin, Yuanyuan Xing, Sumei Yan, Yuanqing Xu and Binlin Shi
Animals 2026, 16(2), 340; https://doi.org/10.3390/ani16020340 - 22 Jan 2026
Viewed by 15
Abstract
Objective: This experiment aimed to explore the effects of water extract of Artemisia annua L. (WEAA) on growth performance, blood parameters, and intestinal-related indices in mutton sheep, so as to evaluate its potential as a natural growth promoter. Methods: The experiment was conducted [...] Read more.
Objective: This experiment aimed to explore the effects of water extract of Artemisia annua L. (WEAA) on growth performance, blood parameters, and intestinal-related indices in mutton sheep, so as to evaluate its potential as a natural growth promoter. Methods: The experiment was conducted using a completely randomized design. Thirty-two 3-month-old Dorper × Han mutton sheep were randomly assigned to 4 groups (n = 8). The control group was fed only the basal diet, while the other groups were fed the basal diet supplemented with, respectively, 500, 1000, and 1500 mg/kg WEAA. The adaptation period lasted 15 days, followed by a 60-day experimental period. Results: Results showed that dietary supplementation of WEAA significantly reduced average daily feed intake (ADFI) and feed-to-gain ratio (F:G) of mutton sheep, significantly improved the apparent digestibility of crude protein (CP) and phosphorus (P), and optimized blood biochemical indices, such as significantly increasing the concentrations of total protein (TP), albumin (ALB), high-density lipoprotein cholesterol (HDL-C), and glucose (GLU), while significantly decreasing blood urea nitrogen (BUN) level (p < 0.05). Additionally, WEAA significantly improved intestinal morphology by reducing the crypt depth (CD) of the duodenum, jejunum, and ileum, increasing jejunal villus height (VH), and elevating the villus-to-crypt ratio (VH/CD) across intestinal segments (p < 0.05). It also significantly enhanced the activity of intestinal digestive enzymes, including α-amylase and trypsin in the duodenum, lipase and chymotrypsin in the jejunum, and α-amylase and chymotrypsin in the ileum, with the 500 mg/kg and 1000 mg/kg WEAA groups reaching better activity (p < 0.05). Furthermore, WEAA supplementation significantly increased the counts of beneficial bacteria (Bifidobacteria and Lactobacilli) and decreased the count of harmful bacteria (Escherichia coli) in rectal fecal samples (p < 0.05). Notably, most of these beneficial effects were dosage-dependent, with overall optimal performance observed in the 1000 mg/kg WEAA group. Conclusion: In conclusion, supplementing the diet with 1000 mg/kg WEAA exerted significant positive effects on the feed efficiency, nutrient digestibility, and intestinal health status of mutton sheep. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

14 pages, 1033 KB  
Article
The Effect of Organic Production on the Sugar and Organic Acid Concentration in Different Sour Cherry Cultivars
by Alicja Ponder, Renata Kazimierczak, Małgorzata Żebrowska-Krasuska, Dominika Średnicka-Tober, Agnieszka Głowacka and Ewelina Hallmann
Appl. Sci. 2026, 16(2), 1092; https://doi.org/10.3390/app16021092 - 21 Jan 2026
Viewed by 56
Abstract
Sour cherry is one of the most popular stone fruits in Poland. In the organic production system of sour cherries, no artificial pesticides and fertilizers are allowed, which is one of the organic production requirements increasingly appreciated by producers and consumers. The taste [...] Read more.
Sour cherry is one of the most popular stone fruits in Poland. In the organic production system of sour cherries, no artificial pesticides and fertilizers are allowed, which is one of the organic production requirements increasingly appreciated by producers and consumers. The taste of fruits is created by the sugar and organic acid content and their ratio. Vitamin C is known for its health-promoting properties. The aim of the present study was to analyze and compare the concentrations of vitamin C, sugars, and organic acids and their profiles in organic vs. conventional sour cherry fruits representing different cultivars, in a three-year experiment. In the presented experiment, four sour cherry cultivars, ‘Kelleris’ 16, ‘Oblacińska’, ‘Pandy 103’, and ‘Debreceni Bötermö’, were cultivated in two horticultural systems, organic and conventional, and the content of sugars and organic acids was analyzed in the fruit with HPLC methods. Organically cultivated sour cherry fruits were characterized by significantly higher concentrations of sugars and vitamin C only in the first year of the experiment, when the mean concentrations of fructose, glucose, and sucrose in these fruits reached 4.15 g/100 g F.W., 0.37 g/100 g F.W., and 0.27 g/100 g F.W., respectively, and the concentration of vitamin C reached 17.28 mg/100 g F.W. In the two subsequent years, conventional cherries were more abundant in these compounds. Among the tested sour cherry cultivars, ‘Oblačińska’ performed the best in terms of sugar content. The mean value for total sugars for ‘Oblačińska’ cv. was 5.53 g/100 g F.W. In the case of vitamin C, the highest levels (av. 28.13 mg/100 g F.W.) were noted in the fruits of ‘Pandy 103’ cv. The strong year-to-year variability underscores the need for multi-year experiments and, where possible, multi-site trials, to disentangle cultivar × system × environment interactions. Because the quality of sour cherry for fresh consumption and for processing depends mostly on sugar content, for organic production, ‘Oblačińska’ cv. is strongly recommended. Full article
Show Figures

Figure 1

18 pages, 2067 KB  
Article
Lithocholic Acid Restores Gut Microbiota and Bile Acid Homeostasis to Improve Type 2 Diabetes
by Han Ge, Mengxiao Guo, Xin Chen, Lu Chen, Xin Yang, Dingzuo Ge, Liqiang Guo, Yue Luo, Guangbo Ge, Lei Zhang and Ruirui Wang
Nutrients 2026, 18(2), 341; https://doi.org/10.3390/nu18020341 - 21 Jan 2026
Viewed by 100
Abstract
Background: Bile acids participate in several metabolic processes, and disturbances in their circulating profiles are commonly observed in type 2 diabetes. In a cohort of older adults, individuals with diabetes exhibited markedly lower concentrations of metabolites derived from lithocholic acid. These findings prompted [...] Read more.
Background: Bile acids participate in several metabolic processes, and disturbances in their circulating profiles are commonly observed in type 2 diabetes. In a cohort of older adults, individuals with diabetes exhibited markedly lower concentrations of metabolites derived from lithocholic acid. These findings prompted further evaluation of the metabolic effects of lithocholic acid. Methods: We assessed the actions of lithocholic acid in a mouse model of diabetes induced by a high-fat diet and streptozotocin. Fasting glucose, insulin levels, lipid parameters, and measures of insulin resistance were evaluated. Gut microbial composition, short-chain fatty acids, fecal enzyme activities, intestinal barrier markers, and bile acid patterns were analyzed. In vitro assays examined the direct effects of lithocholic acid on A. muciniphila and bile acid metabolism. Results: Lithocholic acid supplementation lowered fasting glucose and insulin levels and improved insulin resistance. It shifted the gut microbial community toward a healthier structure, increased the abundance of A. muciniphila, and raised short-chain fatty acid concentrations. Fecal bile salt hydrolase and β-glucuronidase activity declined, and intestinal barrier markers improved. Lithocholic acid enhanced TGR5 expression and reduced FXR signaling in the ileum. In vitro, physiologically relevant concentrations promoted A. muciniphila growth and altered microbial bile acid metabolism. Conclusions: Lithocholic acid influences the interactions among gut microbes, bile acid pathways, and host metabolic regulation. These findings suggest that this compound may have value as a dietary component that supports metabolic health in type 2 diabetes. Full article
(This article belongs to the Section Nutrition and Diabetes)
Show Figures

Figure 1

13 pages, 926 KB  
Article
Dependency of Glucose Homeostasis on Pancreatic Enzymes with Special Reference to Amylase; Study on Healthy and Exocrine Pancreatic Insufficient Pigs
by Piotr Wychowański, Stefan G. Pierzynowski, Kamil Zaworski, Robert Gallotto, Dominika Szkopek, Jarosław Woliński, Janine Donaldson, Tomasz Jacek and Kateryna Pierzynowska
Biomolecules 2026, 16(1), 172; https://doi.org/10.3390/biom16010172 - 20 Jan 2026
Viewed by 158
Abstract
We aimed to highlight the roles of the pancreatic enzymes, with special reference to amylase, on glucose homeostasis in healthy pigs and in pigs with exocrine pancreatic insufficiency (EPI). Healthy pigs fed a high-fat diet (HFD) were subjected to mixed meal tolerance tests [...] Read more.
We aimed to highlight the roles of the pancreatic enzymes, with special reference to amylase, on glucose homeostasis in healthy pigs and in pigs with exocrine pancreatic insufficiency (EPI). Healthy pigs fed a high-fat diet (HFD) were subjected to mixed meal tolerance tests (MMTTs) and pancreatic enzyme treatments, and then blood glucose and insulin concentrations were determined. Following the development of surgically induced EPI, the same experiment was then repeated on the pigs. A significantly lower net postprandial glycemic response was observed in pigs with EPI compared to healthy pigs. Net postprandial glycemic response was not affected by enzyme supplementation during the MMTTs in healthy pigs, but it was affected by adaptation to macronutrient components of the MMTT test meal, both in healthy and EPI pigs. Net postprandial glycemic response and insulin release curves reached higher levels in Creon-treated EPI pigs compared to amylase-treated EPI pigs. In summary, glucose homeostasis mechanisms in EPI pigs were downregulated compared to healthy animals. Creon supplementation during EPI significantly increased postprandial glucose level, while amylase treatment had the opposite effect, which could be explained by its metabolic actions. Full article
(This article belongs to the Special Issue Digestive Enzymes in Health and Disease)
Show Figures

Figure 1

16 pages, 20049 KB  
Article
A New Hybrid Sensor Design Based on a Patch Antenna with an Enhanced Sensitivity Using Frequency-Selective Surfaces (FSS) in the Microwave Region for Non-Invasive Glucose Concentration Level Monitoring
by Umut Kose, Guliz Sili, Bora Doken, Emre Sedar Saygili, Funda Akleman and Mesut Kartal
Electronics 2026, 15(2), 427; https://doi.org/10.3390/electronics15020427 - 19 Jan 2026
Viewed by 147
Abstract
In this study, a hybrid sensor based on a defective square-truncated patch antenna (STPA) and a frequency-selective surface (FSS) was analyzed numerically and experimentally for different glucose–distilled water solutions. Here, an FSS was employed to enhance the sensitivity of the hybrid sensor. The [...] Read more.
In this study, a hybrid sensor based on a defective square-truncated patch antenna (STPA) and a frequency-selective surface (FSS) was analyzed numerically and experimentally for different glucose–distilled water solutions. Here, an FSS was employed to enhance the sensitivity of the hybrid sensor. The sensing principle relies on monitoring variations in the loss tangent (tanδ) and relative permittivity (εr) caused by different glucose concentrations applied to the sample under test (SUT). An open-ended coaxial probe was used to measure the complex permittivity of the solutions, which was then fitted to the Debye relaxation model. The simulated and experimental results of the novel sensor showed good agreement in a glucose concentration monitoring application. The sensor spanned the glucose range from 0 mg/dL to 5000 mg/dL, exhibiting a sensitivity of 55.44 kHz/mgdL−1 and a figure of merit (FOM) of 6.23 × 104 (1/mgdL−1) in the experiments and 53.60 kHz/mgdL−1 and 1.71 × 104 (1/mgdL−1) FOM in the simulations. When solutions with different concentrations were tested in the SUT, the resonance frequency of the antenna (f0, in GHz) changed. To further characterize the sensor response, the relationship between the glucose concentration (C, in mg/dL) and f0 was examined. A regression-based prediction model was constructed to map the measured scattering parameters to the glucose concentration, yielding a coefficient of determination (R2) of 0.976. The high sensitivity, compact size, and compatibility with planar fabrication suggest that the proposed hybrid sensor has the potential to contribute to the development of non-invasive glucose-monitoring systems. Full article
Show Figures

Figure 1

13 pages, 1179 KB  
Article
The Yeast Saccharomyces cerevisiae as a Model to Study the Anti-Aging Activity of Phycocyanin
by Donata Cassamagnaghi, Stefania Citterio, Enzo Martegani and Sonia Colombo
Int. J. Mol. Sci. 2026, 27(2), 960; https://doi.org/10.3390/ijms27020960 - 18 Jan 2026
Viewed by 145
Abstract
We recently published that phycocyanin, a phycobiliprotein which accounts for up to 20% of Arthrospira platensis dry weight, has a powerful anti-aging effect, greatly extending the chronological life span (CLS) of yeast cells grown in synthetic-defined medium, both under caloric restriction (CR) conditions [...] Read more.
We recently published that phycocyanin, a phycobiliprotein which accounts for up to 20% of Arthrospira platensis dry weight, has a powerful anti-aging effect, greatly extending the chronological life span (CLS) of yeast cells grown in synthetic-defined medium, both under caloric restriction (CR) conditions (0.2% glucose) or under non-CR conditions (2% glucose). In this study, to explore the molecular mechanisms underlying the effects of phycocyanin, we investigated its impact on key signaling pathways involved in aging. Specifically, we performed CLS experiments using ras2Δ and snf1Δ yeast mutants. The Snf1 pathway is known to promote longevity (anti-aging), whereas the Ras2/PKA pathway accelerates aging (pro-aging). We show that, while in the snf1Δ mutant the anti-aging effect of phycocyanin was still evident, in the ras2Δ mutant, phycocyanin did not appear to exert any anti-aging activity, leading us to hypothesize that the Ras2/PKA pathway may be essential to mediate the anti-aging effect of phycocyanin. To evaluate the activity of phycocyanin under different nutritional conditions, we performed the CLS experiment in a YPDA-rich medium. We show that in this medium, phycocyanin accelerated the chronological aging process of yeast cells, greatly decreasing the CLS, both when glucose was present at low (0.2%) or at high (2%) concentration. Our data suggest that Saccharomyces cerevisiae could serve as a model not only to investigate the anti-aging properties and targets of phycocyanin, but also its potential side effects, which are possibly present in higher eukaryotes under certain conditions. Full article
(This article belongs to the Special Issue Recent Research of Natural Products from Microalgae and Cyanobacteria)
23 pages, 1460 KB  
Article
Potent Nrf2-Inducing C6-Isothiocyanate Glucose Derivatives with Dual Antioxidant and Antitumor Activity
by Luis Alberto Prieto, Nora Khiar-Fernández, Rocío Calderón-Ruiz, Emelyne Giraud, José Manuel Calderón-Montaño, Jesús Lucia-Tamudo, Rafael León, José Antonio Pérez-Simón, Miguel López-Lázaro, Rocío Recio, Elena de la Torre, Victoria Valdivia and Inmaculada Fernández
Antioxidants 2026, 15(1), 123; https://doi.org/10.3390/antiox15010123 - 18 Jan 2026
Viewed by 231
Abstract
Isothiocyanates (ITCs) are well-known electrophilic agents with antioxidant and anticancer properties, largely attributed to their ability to activate the Nrf2/ARE pathway. Building on previous work with C1-ITC glycosyl derivatives, we designed and synthesized a new series of S-glycosyl isothiocyanates in which the ITC [...] Read more.
Isothiocyanates (ITCs) are well-known electrophilic agents with antioxidant and anticancer properties, largely attributed to their ability to activate the Nrf2/ARE pathway. Building on previous work with C1-ITC glycosyl derivatives, we designed and synthesized a new series of S-glycosyl isothiocyanates in which the ITC group was repositioned to the C6 carbon of the glucose scaffold. This structural rearrangement yielded stable and synthetically accessible derivatives with markedly enhanced biological profiles. Several compounds showed potent Nrf2 activation at non-cytotoxic concentrations, with CD values comparable to or exceeding those of natural ITCs. In parallel, the new C6-ITC derivatives displayed significant antiproliferative activity against leukemia and solid tumor cell lines. Among them, the phenylsulfone derivative 13 emerged as a particularly promising dual-action molecule, combining strong Nrf2 induction with low-micromolar cytotoxicity. Molecular docking was used as a hypothesis-generating approach and suggested a possible interaction with the STAT3 SH2 domain, although further studies are needed to validate this target. Overall, these results support glucose-based ITCs as a versatile platform for the development of multifunctional antioxidants with complementary anticancer properties. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

16 pages, 3289 KB  
Article
Genipin as an Effective Crosslinker for High-Performance and Flexible Direct-Printed Bioelectrodes
by Kornelia Bobrowska, Marcin Urbanowicz, Agnieszka Paziewska-Nowak, Marek Dawgul and Kamila Sadowska
Molecules 2026, 31(2), 327; https://doi.org/10.3390/molecules31020327 - 17 Jan 2026
Viewed by 194
Abstract
The development of efficient bioelectrodes requires suitable fabrication strategies, starting with the electrode material, which affects the electron transfer between the biocatalyst and the electrode surface. Then, selection and adjustment of the enzyme immobilization conditions are essential to enhance the performance of the [...] Read more.
The development of efficient bioelectrodes requires suitable fabrication strategies, starting with the electrode material, which affects the electron transfer between the biocatalyst and the electrode surface. Then, selection and adjustment of the enzyme immobilization conditions are essential to enhance the performance of the bioelectrodes for their desirable utility. In this study, we report the fabrication of a high-performance bioelectrode using a one-step crosslinking of FAD-dependent glucose dehydrogenase (FAD-GDH) and thionine acetate as a redox mediator, with genipin serving as a natural, biocompatible crosslinker. Electrodes were manufactured on flexible polyester substrates using a direct printing technique, enabling reproducible and low-cost production. Among the tested crosslinkers, genipin significantly enhanced the catalytic performance of bioelectrodes. Comparative studies on graphite, silver, and gold electrode materials identified graphite as the most suitable due to its extended electroactive surface area. The developed bioelectrodes applied to glucose biosensing demonstrated a linear amperometric response to glucose in the range of 0.02–2 mM and 0.048–30 mM, covering clinically relevant concentrations. The application of artificial sweat confirmed high detection accuracy. These findings highlight the potential integration of genipin-based enzyme–mediator networks for future non-invasive sweat glucose monitoring platforms. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Electrochemistry)
Show Figures

Graphical abstract

15 pages, 666 KB  
Article
Serum Chemerin Levels in Polish Women with PCOS-Phenotype D
by Justyna Kuliczkowska-Płaksej, Jowita Halupczok-Żyła, Łukasz Gojny, Agnieszka Zembska, Aneta Zimoch, Monika Skrzypiec-Spring, Marek Bolanowski and Aleksandra Jawiarczyk-Przybyłowska
J. Clin. Med. 2026, 15(2), 772; https://doi.org/10.3390/jcm15020772 - 17 Jan 2026
Viewed by 266
Abstract
Objectives: Polycystic ovary syndrome (PCOS) is a heterogeneous disorder with diverse pathogenetic mechanisms and clinical manifestations. Phenotype D PCOS is characterized by oligomenorrhoea and polycystic ovaries without hyperandrogenism. Altered adipokine profiles may contribute to reproductive and metabolic disturbances. Chemerin is an adipokine involved [...] Read more.
Objectives: Polycystic ovary syndrome (PCOS) is a heterogeneous disorder with diverse pathogenetic mechanisms and clinical manifestations. Phenotype D PCOS is characterized by oligomenorrhoea and polycystic ovaries without hyperandrogenism. Altered adipokine profiles may contribute to reproductive and metabolic disturbances. Chemerin is an adipokine involved in inflammatory and metabolic processes. It remains unclear whether altered chemerin levels in PCOS reflect metabolic dysfunction alone or are directly associated with hyperandrogenism. The aim of this study was to compare serum chemerin levels in women with normoandrogenic PCOS and a control group. Methods: This cross-sectional preliminary study included 49 women with phenotype D PCOS and 40 healthy, age- and body mass index (BMI)-matched controls. Anthropometric, biochemical, hormonal parameters, and serum chemerin concentrations were assessed. Results: Serum chemerin concentrations did not differ significantly between the groups. In the PCOS group, the 95% confidence interval ranged from 198.61 to 234.37, while in the controls, it ranged from 187.13 to 216.21. In women with PCOS, chemerin showed significant positive correlations with weight, BMI, waist and hip circumference, total adipose tissue, and both gynoid and android fat content. Positive correlations were also observed with highly sensitive C-reactive protein (hs-CRP), insulin, glucose, triglycerides, and Homeostasis Model Assessment of Insulin Resistance (HOMA-IR), and a negative correlation was found with high-density lipoprotein (HDL) cholesterol. Chemerin was weakly negatively correlated with sex hormone binding globulin (SHBG) and positively correlated with the free androgen index (FAI). In the control group, chemerin correlated positively with CRP, insulin, triglycerides, total and gynoid adipose tissue, and negatively correlated with HDL cholesterol and SHBG. Conclusions Although chemerin levels did not differ from controls, chemerin was associated with metabolic and inflammatory markers in both groups. These findings should be considered preliminary due to the limited sample size. Chemerin may reflect metabolic and inflammatory status rather than hyperandrogenism in normoandrogenic PCOS. Full article
(This article belongs to the Topic Gynecological Endocrinology Updates)
Show Figures

Figure 1

20 pages, 3346 KB  
Article
Theoretical Analysis of MIR-Based Differential Photoacoustic Spectroscopy for Noninvasive Glucose Sensing
by Tasnim Ahmed, Khan Mahmud, Md Rejvi Kaysir, Shazzad Rassel and Dayan Ban
Chemosensors 2026, 14(1), 26; https://doi.org/10.3390/chemosensors14010026 - 16 Jan 2026
Viewed by 193
Abstract
Diabetes is a developing global health concern that cannot be cured, necessitating frequent blood glucose monitoring and dietary management. Photoacoustic Spectroscopy (PAS) in the mid-infrared (MIR) region has recently emerged as a viable noninvasive blood glucose monitoring technique. However, MIR-PAS confronts significant challenges: [...] Read more.
Diabetes is a developing global health concern that cannot be cured, necessitating frequent blood glucose monitoring and dietary management. Photoacoustic Spectroscopy (PAS) in the mid-infrared (MIR) region has recently emerged as a viable noninvasive blood glucose monitoring technique. However, MIR-PAS confronts significant challenges: (i) Water absorption, which reduces light penetration, and (ii) interference from other blood components. This paper systematically analyzes the background of photoacoustic signal generation and proposes a differential PAS (DPAS) in the MIR region for removing the background signals arising from water and other interfering components of blood, which improves the overall detection sensitivity. A detailed mathematical model with an explanation for choosing two suitable MIR quantum cascade lasers for this differential scheme is presented here. For single-wavelength PAS (SPAS), a detection sensitivity of 1.537 µPa mg−1 dL was obtained from the proposed model. Alternatively, 2.333 µPa mg−1 dL detection sensitivity was found by implementing the DPAS scheme, which is about 1.5 times higher than SPAS. Moreover, DPAS facilitates an additional parameter, a differential phase shift between two laser responses, that has an effective correlation with the glucose concentration variation. Thus, MIR-based DPAS could be an effective way of monitoring blood glucose levels noninvasively in the near future. Full article
(This article belongs to the Section Optical Chemical Sensors)
Show Figures

Figure 1

Back to TopTop