Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (140)

Search Parameters:
Keywords = glioma-initiating cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 674 KB  
Review
Natural Anti-Inflammatory Agents in the Chemoprevention of Gliomas: Targeting Neuroinflammation and the Tumor Microenvironment
by Georgios S. Markopoulos, Chrissa Sioka, George A. Alexiou, Dimitrios Peschos, George Vartholomatos and Athanassios P. Kyritsis
Cancers 2025, 17(24), 3922; https://doi.org/10.3390/cancers17243922 - 8 Dec 2025
Viewed by 351
Abstract
Chronic inflammation is a well-established hallmark of cancer, playing a critical role in the initiation and progression of gliomas. Recent evidence underscores the importance of anti-inflammatory natural products as chemotherapeutic and potentially as chemopreventive agents, offering a safe and multifaceted approach to mitigate [...] Read more.
Chronic inflammation is a well-established hallmark of cancer, playing a critical role in the initiation and progression of gliomas. Recent evidence underscores the importance of anti-inflammatory natural products as chemotherapeutic and potentially as chemopreventive agents, offering a safe and multifaceted approach to mitigate tumor-promoting inflammation in the brain. This review explores the interplay between major inflammation-related pathways—such as NF-κB, COX-2, and the NLRP3 inflammasome—and key bioactive compounds derived from natural sources such as polyphenols, isothiocyanates, terpenes/lignans, and omega-3-derived mediators. We provide evidence on the effect of these compounds on the above inflammatory triangle. We discuss emerging in vitro, in vivo preclinical and translational evidence in the context of glioma biology and highlight how these compounds may pass the blood–brain barrier (BBB) and modulate the tumor microenvironment (TME), including immune cell infiltration and cytokine profiles that may act in a pro- or anti-inflammatory manner, highlighting their capacity to inhibit GBM-associated inflammation. Each substance may differentially influence the components of the inflammatory triangle. Overall, we position these agents as low-toxicity, formulation-aware adjuncts to standard care. The ultimate goal is offering novel insights on low-toxicity, inflammation-targeting interventions against malignant brain tumors. Full article
(This article belongs to the Special Issue Chemoprevention Advances in Cancer (2nd Edition))
Show Figures

Figure 1

18 pages, 3189 KB  
Article
Investigating the Limits of Predictability of Magnetic Resonance Imaging-Based Mathematical Models of Tumor Growth
by Megan F. LaMonica, Thomas E. Yankeelov and David A. Hormuth
Cancers 2025, 17(20), 3361; https://doi.org/10.3390/cancers17203361 - 18 Oct 2025
Viewed by 692
Abstract
Background/Objectives: We provide a framework for determining how far into the future the spatiotemporal dynamics of tumor growth can be accurately predicted using routinely available magnetic resonance imaging (MRI) data. Our analysis is applied to a coupled set of reaction-diffusion equations describing the [...] Read more.
Background/Objectives: We provide a framework for determining how far into the future the spatiotemporal dynamics of tumor growth can be accurately predicted using routinely available magnetic resonance imaging (MRI) data. Our analysis is applied to a coupled set of reaction-diffusion equations describing the spatiotemporal development of tumor cellularity and vascularity, initialized and constrained with diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI data, respectively. Methods: Motivated by experimentally acquired murine glioma data, the rat brain serves as the computational domain within which we seed an in silico tumor. We generate a set of 13 virtual tumors defined by different combinations of model parameters. The first parameter combination was selected as it generated a tumor with a necrotic core during our simulated ten-day experiment. We then tested 12 additional parameter combinations to study a range of high and low tumor cell proliferation and diffusion values. Each tumor is grown for ten days via our model system to establish “ground truth” spatiotemporal tumor dynamics with an infinite signal-to-noise ratio (SNR). We then systematically reduce the quality of the imaging data by decreasing the SNR, downsampling the spatial resolution (SR), and decreasing the sampling frequency, our proxy for reduced temporal resolution (TR). With each decrement in image quality, we assess the accuracy of the calibration and subsequent prediction by comparing it to the corresponding ground truth data using the concordance correlation coefficient (CCC) for both tumor and vasculature volume fractions, as well as the Dice similarity coefficient for tumor volume fraction. Results: All tumor CCC and Dice scores for each of the 13 virtual tumors are >0.9 regardless of the SNR/SR/TR combination. Vasculature CCC scores with any SR/TR combination are >0.9 provided the SNR ≥ 80 for all virtual tumors; for the special case of high-proliferating tumors (i.e., proliferation > 0.0263 day−1), any SR/TR combination yields CCC and Dice scores > 0.9 provided the SNR ≥ 40. Conclusions: Our systematic evaluation demonstrates that reaction-diffusion models can maintain acceptable longitudinal prediction accuracy—especially for tumor predictions—despite limitations in the quality and quantity of experimental data. Full article
(This article belongs to the Special Issue Mathematical Oncology: Using Mathematics to Enable Cancer Discoveries)
Show Figures

Figure 1

42 pages, 3184 KB  
Review
The β-1,4 GalT-V Interactome—Potential Therapeutic Targets and a Network of Pathways Driving Cancer and Cardiovascular and Inflammatory Diseases
by Subroto Chatterjee, Dhruv Kapila, Priya Dubey, Swathi Pasunooti, Sruthi Tatavarthi, Claire Park and Caitlyn Ramdat
Int. J. Mol. Sci. 2025, 26(16), 8088; https://doi.org/10.3390/ijms26168088 - 21 Aug 2025
Viewed by 1925
Abstract
UDP-Gal-β-1,4 galactosyltransferase-V (GalT-V) is a member of a large family of galactosyltransferases whose function is to transfer galactose from the nucleotide sugar UDP-galactose to a glycosphingolipid glucosylceramide, to generate lactosylceramide (LacCer). It also causes the N and O glycosylation of proteins in the [...] Read more.
UDP-Gal-β-1,4 galactosyltransferase-V (GalT-V) is a member of a large family of galactosyltransferases whose function is to transfer galactose from the nucleotide sugar UDP-galactose to a glycosphingolipid glucosylceramide, to generate lactosylceramide (LacCer). It also causes the N and O glycosylation of proteins in the Trans Golgi area. LacCer is a bioactive lipid second messenger that activates an “oxidative stress pathway”, leading to critical phenotypes, e.g., cell proliferation, migration angiogenesis, autophagy, and apoptosis. It also activates an “inflammatory pathway” that contributes to the progression of disease pathology. β-1,4-GalT-V gene expression is regulated by the binding of the transcription factor Sp-1, one of the most O-GlcNAcylated nuclear factors. This review elaborates the role of the Sp-1/GalT-V axis in disease phenotypes and therapeutic approaches targeting not only Sp-1 but also Notch-1, Wnt-1 frizzled, hedgehog, and β-catenin. Recent evidence suggests that β-1,4GalT-V may glycosylate Notch-1 and, thus, regulate a VEGF-independent angiogenic pathway, promoting glioma-like stem cell differentiation into endothelial cells, thus contributing to angiogenesis. These findings have significant implications for cancer and cardiovascular disease, as tumor vascularization often resumes aggressively following anti-VEGF therapy. Moreover, LacCer can induce angiogenesis independent of VEGF and its level are reported to be high in tumor tissues. Thus, targeting both VEGF-dependent and VEGF-independent pathways may offer novel therapeutic strategies. This review also presents an up-to-date therapeutic approach targeting the β-1,4-GalT-V interactome. In summary, the β-1,4-GalT-V interactome orchestrates a broad network of signaling pathways essential for maintaining cellular homeostasis. Conversely, its dysregulation can promote unchecked proliferation, angiogenesis, and inflammation, contributing to the initiation and progression of multiple diseases. Environmental factors and smoking can influence β-1,4-GalT-V expression and its interactome, whereas elevated β-1,4-GalT-V expression may serve as a diagnostic biomarker of colorectal cancer, inflammation—exacerbated by factors that may worsen pre-existing cancer malignancies, such as smoking and a Western diet—and atherosclerosis, amplifying disease progression. Increased β-1,4-GalT-V expression is frequently associated with tumor aggressiveness and chronic inflammation, underscoring its potential as both a biomarker and therapeutic target in colorectal and other β-1,4-GalT-V-driven cancers, as well as in cardiovascular and inflammatory diseases. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 2582 KB  
Article
HDAC Class I Inhibitor Domatinostat Induces Apoptosis Preferentially in Glioma Stem Cells Through p53-Dependent and -Independent Activation of BAX Expression
by Yurika Nakagawa-Saito, Yasufumi Ito, Kazuki Nakamura, Yuta Mitobe, Keita Togashi, Shuhei Suzuki, Senri Takenouchi, Asuka Sugai, Yukihiko Sonoda, Chifumi Kitanaka and Masashi Okada
Int. J. Mol. Sci. 2025, 26(16), 7803; https://doi.org/10.3390/ijms26167803 - 13 Aug 2025
Viewed by 768
Abstract
Domatinostat is an inhibitor of class I histone deacetylases, whose safety and efficacy as a cancer therapeutic has been demonstrated in a recent phase II study in patients with esophagogastric adenocarcinoma. We previously showed that domatinostat exhibited preferential cytotoxic activity against glioma stem [...] Read more.
Domatinostat is an inhibitor of class I histone deacetylases, whose safety and efficacy as a cancer therapeutic has been demonstrated in a recent phase II study in patients with esophagogastric adenocarcinoma. We previously showed that domatinostat exhibited preferential cytotoxic activity against glioma stem cells (GSCs) compared to their differentiated counterparts. However, the underlying mechanism behind the preferential cytotoxicity is yet to be elucidated. In this study, we examined the effects of domatinostat treatment, as well as those of the knockdown of p53 or BAX or of the overexpression of BAX, on the expression of p53, BAX, and cleaved caspase substrates and on cell death in GSCs and their isogenic, differentiated counterparts. The results obtained indicated that domatinostat induced caspase-dependent apoptotic cell death preferentially in GSCs, which was accompanied by increased BAX expression in GSCs, but not in their differentiated counterparts. The increased BAX expression was required for domatinostat-induced GSC death, whereas BAX overexpression was sufficient to induce cell death in both GSCs and their differentiated counterparts. Notably, the expression of BAX after domatinostat treatment showed an early, p53-independent increase followed by a late, p53-dependent one. Together, the results suggest that the unique ability of domatinostat to activate the p53-dependent and -independent programs of BAX expression selectively in GSCs could account for its preferential cytotoxicity against GSCs. Our findings may also help guide the selection of patients with glioblastoma, and possibly those with other types of cancer, who are most likely to benefit from domatinostat treatment and optimize the treatment strategy for such patients. Full article
Show Figures

Figure 1

14 pages, 2045 KB  
Case Report
Fast Evolving Glioblastoma in a Pregnant Woman: Diagnostic and Therapeutic Challenges
by Ivan Bogdanovic, Rosanda Ilic, Aleksandar Kostic, Aleksandar Miljkovic, Filip Milisavljevic, Marija M. Janjic, Ivana M. Bjelobaba, Danijela Savic and Vladimir Bascarevic
Diagnostics 2025, 15(15), 1836; https://doi.org/10.3390/diagnostics15151836 - 22 Jul 2025
Viewed by 1637
Abstract
Background and Clinical Significance: Gliomas diagnosed during pregnancy are rare, and there are no established guidelines for their management. Effective treatment requires a multidisciplinary approach to balance maternal health and pregnancy preservation. Case Presentation: We here present a case of rapidly progressing glioma [...] Read more.
Background and Clinical Significance: Gliomas diagnosed during pregnancy are rare, and there are no established guidelines for their management. Effective treatment requires a multidisciplinary approach to balance maternal health and pregnancy preservation. Case Presentation: We here present a case of rapidly progressing glioma in a 33-year-old pregnant woman. The patient initially presented with a generalized tonic–clonic seizure at 21 weeks’ gestation. Imaging revealed a tumor in the right cerebral lobe, involving both cortical and subcortical structures, while magnetic resonance spectroscopy suggested a low-grade glioma. The patient remained clinically stable for two months but then developed severe headaches; MRI showed a worsening mass effect. At 34 weeks’ gestation, an emergency and premature caesarean section was performed under general anesthesia. The patient then underwent a craniotomy for maximal tumor resection, which was histologically and molecularly diagnosed as IDH wild-type glioblastoma (GB). Using qPCR, we found that the GB tissue showed upregulated expression of genes involved in cell structure (GFAP, VIM) and immune response (SSP1, TSPO), as well as increased expression of genes related to potential hormone response (AR, CYP19A1, ESR1, GPER1). After surgery, the patient showed resistance to Stupp protocol therapy, which was substituted with lomustine and bevacizumab combination therapy. Conclusions: This case illustrates that glioma may progress rapidly during pregnancy, but a favorable obstetric outcome is achievable. Management of similar cases should respect both the need for timely treatment and the patient’s informed decision. Full article
(This article belongs to the Special Issue Brain/Neuroimaging 2025–2026)
Show Figures

Figure 1

37 pages, 1459 KB  
Review
Current Landscape of Preclinical Models for Pediatric Gliomas: Clinical Implications and Future Directions
by Syed M. Faisal, Monika Yadav, Garrett R. Gibson, Adora T. Klinestiver, Ryan M. Sorenson, Evan Cantor, Maria Ghishan, John R. Prensner, Andrea T. Franson, Kevin F. Ginn, Carl Koschmann and Viveka Nand Yadav
Cancers 2025, 17(13), 2221; https://doi.org/10.3390/cancers17132221 - 2 Jul 2025
Cited by 2 | Viewed by 3661
Abstract
Pediatric high-grade gliomas (pHGGs), particularly diffuse midline gliomas (DMGs), are among the most lethal brain tumors due to poor survival and resistance to therapies. DMGs possess a distinct genetic profile, primarily driven by hallmark mutations such as H3K27M, ACVR1, and PDGFRA mutations/amplifications and [...] Read more.
Pediatric high-grade gliomas (pHGGs), particularly diffuse midline gliomas (DMGs), are among the most lethal brain tumors due to poor survival and resistance to therapies. DMGs possess a distinct genetic profile, primarily driven by hallmark mutations such as H3K27M, ACVR1, and PDGFRA mutations/amplifications and TP53 inactivation, all of which contribute to tumor biology and therapeutic resistance. Developing physiologically relevant preclinical models that replicate both tumor biology and the tumor microenvironment (TME) is critical for advancing effective treatments. This review highlights recent progress in in vitro, ex vivo, and in vivo models, including patient-derived brain organoids, genetically engineered mouse models (GEMMs), and region-specific midline organoids incorporating SHH, BMP, and FGF2/8/19 signaling to model pontine gliomas. Key genetic alterations can now be introduced using lipofectamine-mediated transfection, PiggyBac plasmid systems, and CRISPR-Cas9, allowing the precise study of tumor initiation, progression, and therapy resistance. These models enable the investigation of TME interactions, including immune responses, neuronal infiltration, and therapeutic vulnerabilities. Future advancements involve developing immune-competent organoids, integrating vascularized networks, and applying multi-omics platforms like single-cell RNA sequencing and spatial transcriptomics to dissect tumor heterogeneity and lineage-specific vulnerabilities. These innovative approaches aim to enhance drug screening, identify new therapeutic targets, and accelerate personalized treatments for pediatric gliomas. Full article
Show Figures

Figure 1

20 pages, 3490 KB  
Article
Isocitrate Dehydrogenase-Wildtype Glioma Adapts Toward Mutant Phenotypes and Enhanced Therapy Sensitivity Under D-2-Hydroxyglutarate Exposure
by Geraldine Rocha, Clara Francés-Gómez, Javier Megías, Lisandra Muñoz-Hidalgo, Pilar Casanova, Jose F. Haro-Estevez, Vicent Teruel-Martí, Daniel Monleón and Teresa San-Miguel
Biomedicines 2025, 13(7), 1584; https://doi.org/10.3390/biomedicines13071584 - 28 Jun 2025
Viewed by 1128
Abstract
Background/Objectives: Isocitrate dehydrogenase (IDH) mutations are hallmark features in subsets of gliomas, producing the oncometabolite D-2-hydroxyglutarate (2HG). Although IDH mutations are associated with better clinical outcomes, their relationship with tumor progression is complex. This study aimed to investigate, in vitro [...] Read more.
Background/Objectives: Isocitrate dehydrogenase (IDH) mutations are hallmark features in subsets of gliomas, producing the oncometabolite D-2-hydroxyglutarate (2HG). Although IDH mutations are associated with better clinical outcomes, their relationship with tumor progression is complex. This study aimed to investigate, in vitro and in vivo, the phenotypic consequences of IDH mutation and 2HG exposure in glioblastoma (GBM) under normoxic and hypoxic conditions and under temozolomide (TMZ) and radiation exposure. Methods: Experiments were conducted using IDH-wildtype (IDH-wt) and IDH-mutant (IDH-mut) glioma cell lines under controlled oxygen conditions. Functional assays included cell viability, cell cycle analysis, apoptosis profiling, migration, and surface marker expression via flow cytometry. Orthotopic xenografts were established in immunocompromised mice to assess in vivo tumor growth and morphology, followed by MRI and histological analysis. Treatments included TMZ, radiation, and 2HG at varying concentrations. Statistical analyses were performed using SPSS and RStudio. Results:IDH-wt cells exhibited faster proliferation and greater adaptability under hypoxia, while IDH-mut cells showed cell cycle arrest and limited growth. 2HG recapitulated IDH-mut features in IDH-wt cells, including increased apoptosis under TMZ, reduced proliferation, and altered CD24/CD44 expression. In vivo, IDH-wt tumors were larger and more infiltrative, while 2HG administration reduced tumor volume and promoted compact morphology. Notably, migration was initially similar across genotypes but increased in IDH-mut and 2HG-treated IDH-wt cells over time, though suppressed under therapeutic stress. Conclusions: IDH mutation and 2HG modulate glioma cell biology, including cell cycle dynamics, proliferation rates, migration, and apoptosis. While the IDH mutation and its metabolic product confer initial growth advantages, they enhance treatment sensitivity and reduce invasiveness, highlighting potential vulnerabilities for targeted therapy. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapy of Gliomas)
Show Figures

Figure 1

16 pages, 3480 KB  
Case Report
Navigating Rarity: Pathological Challenges and Diagnostic Ambiguity in Rare Gliomas—A Case Series with a Focus on Personalized Treatment and Quality of Life
by Nadja Grübel, Anika Wickert, Felix Sahm, Bernd Schmitz, Anja Osterloh, Rebecca Kassubek, Ralph König, Christian Rainer Wirtz, Jens Engelke, Andrej Pala and Mona Laible
Onco 2025, 5(2), 28; https://doi.org/10.3390/onco5020028 - 10 Jun 2025
Viewed by 1479
Abstract
Gliomas are incurable, heterogeneous brain tumors, with rare forms often constituting diagnostic and treatment challenges. Molecular diagnostics, mainly implemented through the World Health Organization (WHO) 2021 guidelines, have refined the classification, but highlight difficulties in diagnosing rare gliomas remain. This case series analyzes [...] Read more.
Gliomas are incurable, heterogeneous brain tumors, with rare forms often constituting diagnostic and treatment challenges. Molecular diagnostics, mainly implemented through the World Health Organization (WHO) 2021 guidelines, have refined the classification, but highlight difficulties in diagnosing rare gliomas remain. This case series analyzes four patients with rare gliomas treated at the University Hospital, Ulm, between 2002 and 2024. Patients were selected based on unique histopathological features and long-term clinical follow-up. Clinical records, imaging, and histological data were reviewed. Molecular diagnostics followed WHO 2021 guidelines. Quality of life was assessed using standardized tools including the EQ-5D-5L, EQ VAS, the Distress Thermometer, and the Montreal Cognitive Assessment (MoCA). In the first case, a 51-year-old male’s diagnosis evolved from pleomorphic xanthoastrocytoma to a high-grade glioma with pleomorphic and pseudopapillary features, later identified as a neuroepithelial tumor with a PATZ1 fusion over 12 years. Despite multiple recurrences, extensive surgical interventions led to excellent outcomes. The second case involved a young female with long-term survival of astroblastoma, demonstrating significant improvements in both longevity and quality of life through personalized care. The third case involved a patient with oligodendroglioma, later transforming into glioblastoma, emphasizing the importance of continuous diagnostic reevaluation and adaptive treatment strategies, contributing to prolonged survival and quality of life improvements. Remarkably, the patient has achieved over 20 years of survival, including 10 years of being both therapy- and progression-free. The fourth case presents a young woman with neurofibromatosis type 1, initially misdiagnosed with glioblastoma based on histopathological findings. Subsequent molecular diagnostics revealed a subependymal giant cell astrocytoma-like astrocytoma, highlighting the critical role of early advanced diagnostic techniques. These cases underscore the importance of precise molecular diagnostics, individualized treatments, and ongoing diagnostic reevaluation to optimize outcomes. They also address the psychological impact of evolving diagnoses, stressing the need for comprehensive patient support. Even in complex cases, extensive surgical interventions can yield favorable results, reinforcing the value of adaptive, multidisciplinary strategies based on evolving tumor characteristics. Full article
Show Figures

Figure 1

25 pages, 2883 KB  
Article
Metabolic Reprogramming Triggered by Fluoride in U-87 Glioblastoma Cells: Implications for Tumor Progression?
by Wojciech Żwierełło, Agnieszka Maruszewska, Marta Skórka-Majewicz, Agata Wszołek and Izabela Gutowska
Cells 2025, 14(11), 800; https://doi.org/10.3390/cells14110800 - 29 May 2025
Cited by 1 | Viewed by 1167
Abstract
Chronic inflammation is a hallmark of brain tumors, especially gliomas, which exhibit elevated levels of pro-inflammatory mediators within the tumor and its microenvironment. Metabolic disturbances triggered by fluoride as a pro-oxidative agent in glioma cells, known for their high aggressiveness and resistance to [...] Read more.
Chronic inflammation is a hallmark of brain tumors, especially gliomas, which exhibit elevated levels of pro-inflammatory mediators within the tumor and its microenvironment. Metabolic disturbances triggered by fluoride as a pro-oxidative agent in glioma cells, known for their high aggressiveness and resistance to therapy—remain poorly understood. Therefore, investigating the impact of physiologically elevated fluoride concentrations on oxidative stress and pro-inflammatory responses in glioma cells represents a relevant and timely research objective. Methods: U-87 human glioblastoma cells were subjected to short-term and long-term exposure to physiologically high concentrations of NaF (0.1–10 µM). Both the cells and the culture medium were analyzed. We assessed levels of reactive oxygen species (ROS), antioxidant defenses, and a panel of cytokines and chemokines. Results: Our results demonstrated that oxidative stress and inflammatory conditions in U-87 cells varied with fluoride concentration and exposure time. This led to an increase in ROS levels and key pro-inflammatory cytokines, including IL-6 and TNF-α. Conclusions: Fluoride compounds can generate ROS and disrupt the antioxidant defense system in U-87 human glioblastoma cells, leading to the initiation and progression of inflammatory states. Furthermore, prolonged exposure to NaF may induce adaptive mechanisms in U-87 cells. Full article
(This article belongs to the Special Issue Metabolic Hallmarks in Cancer)
Show Figures

Figure 1

24 pages, 3323 KB  
Article
Aphanizomenon flos-aquae: A Biorefinery for Health and Energy—Unleashing Phycocyanin’s Power and Biogas Potential
by Pilar Águila-Carricondo, Raquel García-García, Juan Pablo de la Roche, Pedro Luis Galán, Luis Fernando Bautista, Juan J. Espada and Gemma Vicente
Mar. Drugs 2025, 23(6), 225; https://doi.org/10.3390/md23060225 - 24 May 2025
Viewed by 2315
Abstract
This study presents a biorefinery approach for Aphanizomenon flos-aquae, demonstrating its potential as a dual source for phycocyanin and biogas. The antioxidant capacity of the extract was evaluated using the ABTS•+ assay, while flow cytometry determined its cytotoxic effects on breast [...] Read more.
This study presents a biorefinery approach for Aphanizomenon flos-aquae, demonstrating its potential as a dual source for phycocyanin and biogas. The antioxidant capacity of the extract was evaluated using the ABTS•+ assay, while flow cytometry determined its cytotoxic effects on breast cancer (HCC1806) and brain glioma (U-118 MG) cell lines, comparing pure C-phycocyanin to the non-purified extract. The non-purified extract scavenged 77% of ABTS•+ radicals at 2.4 mg/mL, compared to 22% for pure C-phycocyanin. In U-118 MG cells, pure C-phycocyanin accounted for 55.5% of the 29.9 ± 6.1% total mortality observed with the non-purified extract at 0.75 mg/mL. HCC1806 cytotoxicity (80.9 ± 5.1% at 1 mg/mL) was attributed to synergistic effects of other extract components. The spent biomass was valorized through anaerobic digestion for biogas production, enhancing process sustainability. At a 2:1 inoculum-to-substrate ratio, the anaerobic digestion of the spent biomass yielded 447 ± 18 mL CH4/gVS, significantly higher than the 351 ± 19 mL CH4/gVS from the initial biomass. LCA estimated the environmental impacts of the A. flos-aquae biorefinery for phycocyanin production, targeting the cosmetic, food, and nutraceutical sectors, and highlighting the benefits of spent biomass valorization to produce biogas within a circular economy framework. This integrated approach demonstrates the potential of A. flos-aquae for the sustainable production of high-value compounds and renewable energy. Full article
(This article belongs to the Special Issue Algae-Powered Skincare: Innovations in Marine-Derived Cosmeceuticals)
Show Figures

Graphical abstract

30 pages, 2663 KB  
Review
IGFBP-2 and IGF-II: Key Components of the Neural Stem Cell Niche? Implications for Glioblastoma Pathogenesis
by Abigail J. Harland and Claire M. Perks
Int. J. Mol. Sci. 2025, 26(10), 4749; https://doi.org/10.3390/ijms26104749 - 15 May 2025
Cited by 1 | Viewed by 2826
Abstract
Glioblastoma is a fatal and aggressive cancer with no cure. It is becoming increasingly clear that glioblastoma initiation is a result of adult neural stem cell (NSC) transformation—most likely those within the subventricular zone (SVZ). Indeed, transcriptomic analysis indicates that glioblastomas are reminiscent [...] Read more.
Glioblastoma is a fatal and aggressive cancer with no cure. It is becoming increasingly clear that glioblastoma initiation is a result of adult neural stem cell (NSC) transformation—most likely those within the subventricular zone (SVZ). Indeed, transcriptomic analysis indicates that glioblastomas are reminiscent of a neurodevelopmental hierarchy, in which neural stem and progenitor markers are widely expressed by tumour stem-like cells. However, NSC fates and the cues that drive them are poorly understood. Studying the crosstalk within NSC niches may better inform our understanding of glioblastoma initiation and development. Insulin-like growth factor binding protein 2 (IGFBP-2) has a well-established prognostic role in glioblastoma, and cell-based mechanistic studies show the independent activation of downstream oncogenic pathways. However, IGFBP-2 is more commonly recognised as a modulator of insulin-like growth factors (IGFs) for receptor tyrosine kinase signal propagation or attenuation. In the adult human brain, both IGFBP-2 and IGF-II expression are retained in the choroid plexus (ChP) and secreted into the cerebral spinal fluid (CSF). Moreover, secretion by closely associated cells and NSCs themselves position IGFBP-2 and IGF-II as interesting factors within the NSC niche. In this review, we will highlight the experimental findings that show IGFBP-2 and IGF-II influence NSC behaviour. Moreover, we will link this to glioblastoma biology and demonstrate the requirement for further analysis of these factors in glioma stem cells (GSCs). Full article
(This article belongs to the Special Issue The Role of the IGF Axis in Disease, 4th Edition)
Show Figures

Figure 1

12 pages, 730 KB  
Article
Dynamics Analysis of Nonlinear Differential Equation Systems Applied to Low-Grade Gliomas and Their Treatment
by Felipe J. Carmona-Moreno, Armando Gallegos, José J. Barba-Franco, Ernesto Urenda-Cázares, Enrique V. Jiménez-Guerrero and Jorge E. Macías-Díaz
Foundations 2025, 5(1), 6; https://doi.org/10.3390/foundations5010006 - 19 Feb 2025
Viewed by 1826
Abstract
Low-grade gliomas are a group of brain tumors that mostly affect people in early adulthood. A glioma is a tumor that originates in glial cells. They are classified into four levels according to their level of proliferation, with grades 1 and 2 called [...] Read more.
Low-grade gliomas are a group of brain tumors that mostly affect people in early adulthood. A glioma is a tumor that originates in glial cells. They are classified into four levels according to their level of proliferation, with grades 1 and 2 called low-grade gliomas. In this research, we conduct an analysis focused on a mathematical model that emulates the behavior of low-grade gliomas with chemotherapy treatment based on a system of nonlinear differential equations. An analysis of the model is carried out in the absence of treatment, resulting in a predictive solution for the behavior of glioma if it left untreated for some reason. In turn, a stability analysis is carried out on the system of equations to find the critical points for treating glioma. In addition, the numerical results of the model are obtained, presenting the state variables at each instant. Finally, some simulations are presented, varying the moments of treatment initiation and the applied doses of Temozolomide. Full article
(This article belongs to the Section Mathematical Sciences)
Show Figures

Figure 1

31 pages, 2407 KB  
Review
Role of Podoplanin (PDPN) in Advancing the Progression and Metastasis of Glioblastoma Multiforme (GBM)
by Bharti Sharma, George Agriantonis, Zahra Shafaee, Kate Twelker, Navin D. Bhatia, Zachary Kuschner, Monique Arnold, Aubrey Agcon, Jasmine Dave, Juan Mestre, Shalini Arora, Hima Ghanta and Jennifer Whittington
Cancers 2024, 16(23), 4051; https://doi.org/10.3390/cancers16234051 - 3 Dec 2024
Cited by 4 | Viewed by 3994
Abstract
Glioblastoma multiforme (GBM) is a malignant primary brain tumor categorized as a Grade 4 astrocytic glioma by the World Health Organization (WHO). Some of the established risk factors of GBM include inherited genetic syndromes, body mass index, alcohol consumption, use of non-steroidal anti-inflammatory [...] Read more.
Glioblastoma multiforme (GBM) is a malignant primary brain tumor categorized as a Grade 4 astrocytic glioma by the World Health Organization (WHO). Some of the established risk factors of GBM include inherited genetic syndromes, body mass index, alcohol consumption, use of non-steroidal anti-inflammatory drugs (NSAIDs), and therapeutic ionizing radiation. Vascular anomalies, including local and peripheral thrombosis, are common features of GBM. Podoplanin (PDPN), a ligand of the C-type lectin receptor (CLEC-2), promotes platelet activation, aggregation, venous thromboembolism (VTE), lymphatic vessel formation, and tumor metastasis in GBM patients. It is regulated by Prox1 and is expressed in developing and adult mammalian brains. It was initially identified on lymphatic endothelial cells (LECs) as the E11 antigen and on fibroblastic reticular cells (FRCs) of lymphoid organs and thymic epithelial cells as gp38. In recent research studies, its expression has been linked with prognosis in GBM. PDPN-expressing cancer cells are highly pernicious, with a mutant aptitude to form stem cells. Such cells, on colocalization to the surrounding tissues, transition from epithelial to mesenchymal cells, contributing to the malignant carcinogenesis of GBM. PDPN can be used as an independent prognostic factor in GBM, and this review provides strong preclinical and clinical evidence supporting these claims. Full article
(This article belongs to the Section Cancer Metastasis)
Show Figures

Figure 1

19 pages, 1540 KB  
Review
Targeting Mitochondria in Glioma: New Hopes for a Cure
by Lidia Gatto, Vincenzo Di Nunno, Anna Ghelardini, Alicia Tosoni, Stefania Bartolini, Sofia Asioli, Stefano Ratti, Anna Luisa Di Stefano and Enrico Franceschi
Biomedicines 2024, 12(12), 2730; https://doi.org/10.3390/biomedicines12122730 - 28 Nov 2024
Cited by 5 | Viewed by 5258
Abstract
Drugs targeting mitochondrial energy metabolism are emerging as promising antitumor therapeutics. Glioma treatment is extremely challenging due to the high complexity of the tumor and the high cellular heterogeneity. From a metabolic perspective, glioma cancer cells can be classified into the oxidative metabolic [...] Read more.
Drugs targeting mitochondrial energy metabolism are emerging as promising antitumor therapeutics. Glioma treatment is extremely challenging due to the high complexity of the tumor and the high cellular heterogeneity. From a metabolic perspective, glioma cancer cells can be classified into the oxidative metabolic phenotype (mainly depending on mitochondrial respiration for energy production) and glycolytic phenotype or “Warburg effect” (mainly depending on glycolysis). Herein, we reviewed the function of novel bio-active molecules targeting oxidative phosphorylation (OXPHOS), mitochondrial membrane potential and mitochondrial dynamics. These molecules exhibit intriguing preclinical and clinical results and have been proven to be promising candidates to be further developed for glioma therapy. However, despite these initial encouraging results, it is imperative to rigorously assess the side effects of these metabolic drugs, which have a non-negligible toxicity profile. Full article
Show Figures

Figure 1

7 pages, 735 KB  
Proceeding Paper
A Novel Deep Learning Technique for Brain Tumor Detection and Classification Using Parallel CNN with Support Vector Machine
by Shaila Shanjida, Mohammad Mohiuddin and Md. Saiful Islam
Eng. Proc. 2024, 82(1), 101; https://doi.org/10.3390/ecsa-11-20505 - 26 Nov 2024
Cited by 1 | Viewed by 642
Abstract
Brain tumors (BT) are also known as intracranial diseases, which occur due to uncontrolled cell growth in the brain. Detecting and classifying the brain tumors at the initial stage is crucial to saving the patient’s life. A radiologist uses MRI scans to identify [...] Read more.
Brain tumors (BT) are also known as intracranial diseases, which occur due to uncontrolled cell growth in the brain. Detecting and classifying the brain tumors at the initial stage is crucial to saving the patient’s life. A radiologist uses MRI scans to identify and classify the various types of BT using a manual approach. However, it is inaccurate and time-consuming because of the many images. In machine learning, convolutional neural networks (CNN) are one significant algorithm that can extract features automatically with high accuracy. The drawback of this algorithm is that it can extract features without knowing micro and macro features. The proposed architecture of parallel CNN (PCNN) can extract the features by knowing the micro and macro features from two separate window sizes and, at first, augmenting the normalized data using geometric transformation to enhance the number of images. Then, micro and macro features are extracted using the proposed architecture, PCNN, alongside batch normalization to reduce the overfitting problem. Finally, three kinds of tumors—glioma, meningioma, pituitary—and a no tumor condition are classified using various classifiers like Softmax, KNN, and SVM. The proposed PCNN-SVM obtained the best accuracy of 96.1% with the special features compared with the other pertained model. Full article
Show Figures

Figure 1

Back to TopTop