Natural Anti-Inflammatory Agents in the Chemoprevention of Gliomas: Targeting Neuroinflammation and the Tumor Microenvironment
Simple Summary
Abstract
1. Introduction
1.1. Introduction on Cancer, Brain Cancer, and Inflammatory Response
1.2. Problem Definition and Scope
1.3. Methods—Scope of the Literature Survey
2. Inflammation in Glioma: Core Components
2.1. NF-κB Signaling: A Central Inflammatory Integrator in Glioma
2.2. COX-2/PGE2: Prostaglandin Signaling and Immune Evasion
2.3. NLRP3 Inflammasome: IL-1 Family Signaling and Myeloid Cell Populations
2.4. Crosstalk and Positive-Feedback Loops Across NF-κB, COX-2/PGE2, and NLRP3
2.5. Cell-Death and Stress Programs Relevant to Resistance
3. Tumor Microenvironment (TME)
4. Natural Anti-Inflammatory Compounds in Glioma and the TME
4.1. Polyphenols
4.2. Isothiocyanates and Organosulfur Compounds
4.3. Terpenes, Lignans, and Saponins
4.4. Fatty Acids and Specialized Pro-Resolving Mediators (SPMs)
4.5. Isoquinoline Alkaloids
4.6. Converging Mechanisms
5. Conclusions
Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Force, L.M.; Kocarnik, J.M.; May, M.L.; Bhangdia, K.; Crist, A.; Penberthy, L.; Pritchett, N.; Acheson, A.; Deitesfeld, L.; Bhoomadevi, A.; et al. The global, regional, and national burden of cancer, 1990–2023, with forecasts to 2050: A systematic analysis for the Global Burden of Disease Study 2023. Lancet 2025, 406, 1565–1586. [Google Scholar] [CrossRef] [PubMed]
- Giannopoulos, S.; Kyritsis, A.P. Diagnosis and management of multifocal gliomas. Oncology 2011, 79, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Sharma, A.; Pitz, M.; Loewen, S.; Quon, H.; Poulin, A.; Essig, M. High-grade glioma management and response assessment—Recent advances and current challenges. Curr. Oncol. 2016, 23, e383. [Google Scholar] [CrossRef]
- Price, M.; Ballard, C.; Benedetti, J.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S.; Ostrom, Q.T. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2017–2021. Neuro-Oncology 2024, 26, vi1–vi85. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Price, M.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2016–2020. Neuro-Oncology 2023, 25, iv1–iv99. [Google Scholar] [CrossRef]
- Weller, M.; van den Bent, M.; Preusser, M.; Le Rhun, E.; Tonn, J.C.; Minniti, G.; Bendszus, M.; Balana, C.; Chinot, O.; Dirven, L.; et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat. Rev. Clin. Oncol. 2021, 18, 170–186. [Google Scholar] [CrossRef]
- Baumert, B.G.; Jaspers, J.P.M.; Keil, V.C.; Galldiks, N.; Izycka-Swieszewska, E.; Timmermann, B.; Grosu, A.L.; Minniti, G.; Ricardi, U.; Dhermain, F.; et al. ESTRO-EANO guideline on target delineation and radiotherapy for IDH-mutant WHO CNS grade 2 and 3 diffuse glioma. Radiother. Oncol. 2025, 202, 110594. [Google Scholar] [CrossRef]
- Galldiks, N.; Lohmann, P.; Aboian, M.; Barajas, R.F., Jr.; Breen, W.G.; Ivanidze, J.; Johnson, D.R.; Kaufmann, T.J.; Kim, M.M.; Mair, M.J.; et al. Update to the RANO working group and EANO recommendations for the clinical use of PET imaging in gliomas. Lancet Oncol. 2025, 26, e436–e447. [Google Scholar] [CrossRef]
- Horbinski, C.; Nabors, L.B.; Portnow, J.; Baehring, J.; Bhatia, A.; Bloch, O.; Brem, S.; Butowski, N.; Cannon, D.M.; Chao, S. NCCN guidelines® insights: Central nervous system cancers, version 2.2022: Featured updates to the NCCN guidelines. J. Natl. Compr. Cancer Netw. 2023, 21, 12–20. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct. Target. Ther. 2024, 9, 53. [Google Scholar] [CrossRef]
- Pietzsch, J.; Toussaint, M.; Donat, C.K.; Doctor, A.; Meister, S.; Wodtke, J.; Laube, M.; Hofheinz, F.; Rix, J.; Deuther-Conrad, W.; et al. Exploring the Role of Peripheral Macrophages in Glioma Progression: The Metabolic Significance of Cyclooxygenase-2 (COX-2). Int. J. Mol. Sci. 2025, 26, 6198. [Google Scholar] [CrossRef]
- Zhuo, Z.; Xie, Y.; Zou, H.; Tan, B.; Dong, Q.; Dong, B.; Zhu, C. Review: Progress of the NLRP3 inflammasome in tumours and perspectives for cholangiocarcinoma. Cell Commun. Signal. 2025, 23, 405. [Google Scholar] [CrossRef]
- Khan, F.; Pang, L.; Dunterman, M.; Lesniak, M.S.; Heimberger, A.B.; Chen, P. Macrophages and microglia in glioblastoma: Heterogeneity, plasticity, and therapy. J. Clin. Investig. 2023, 133, e163446. [Google Scholar] [CrossRef] [PubMed]
- Pouyan, A.; Ghorbanlo, M.; Eslami, M.; Jahanshahi, M.; Ziaei, E.; Salami, A.; Mokhtari, K.; Shahpasand, K.; Farahani, N.; Meybodi, T.E.; et al. Glioblastoma multiforme: Insights into pathogenesis, key signaling pathways, and therapeutic strategies. Mol. Cancer 2025, 24, 58. [Google Scholar] [CrossRef] [PubMed]
- Vartholomatos, E.; Mantziou, S.; Alexiou, G.A.; Lazari, D.; Sioka, C.; Kyritsis, A.; Markopoulos, G.S. An NF-κB-and therapy-related regulatory network in glioma: A potential mechanism of action for natural antiglioma agents. Biomedicines 2022, 10, 935. [Google Scholar] [CrossRef] [PubMed]
- Augello, F.R.; Lombardi, F.; Ciummo, V.; Ciafarone, A.; Cifone, M.G.; Cinque, B.; Palumbo, P. COX-2 Inhibition in Glioblastoma Cells Counteracts Resistance to Temozolomide by Inducing Oxidative Stress. Antioxidants 2025, 14, 459. [Google Scholar] [CrossRef]
- van den Bent, M.J.; Franceschi, E.; Touat, M.; French, P.J.; Idbaih, A.; Lombardi, G.; Rudà, R.; Schweizer, L.; Capper, D.; Sanson, M.; et al. Updated EANO guideline on rational molecular testing of gliomas, glioneuronal, and neuronal tumors in adults for targeted therapy selection-Update 1. Neuro-Oncology 2025, 27, 331–337. [Google Scholar] [CrossRef]
- Uddin, M.S.; Kabir, M.T.; Mamun, A.A.; Sarwar, M.S.; Nasrin, F.; Emran, T.B.; Alanazi, I.S.; Rauf, A.; Albadrani, G.M.; Sayed, A.A.; et al. Natural Small Molecules Targeting NF-κB Signaling in Glioblastoma. Front. Pharmacol. 2021, 12, 703761. [Google Scholar] [CrossRef]
- Kyritsis, A.P.; Bondy, M.L.; Levin, V.A. Modulation of glioma risk and progression by dietary nutrients and antiinflammatory agents. Nutr. Cancer 2011, 63, 174–184. [Google Scholar] [CrossRef]
- Jalali, A.M.; Mitchell, K.J.; Pompoco, C.; Poludasu, S.; Tran, S.; Ramana, K.V. Therapeutic Significance of NLRP3 Inflammasome in Cancer: Friend or Foe? Int. J. Mol. Sci. 2024, 25, 13689. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, G.; Valeri, F.; Burattini, B.; Bruzzaniti, P.; Sturiale, C.L.; Talacchi, A.; Papacci, F.; Olivi, A.; Della Pepa, G.M. Targeting Macrophages in Glioblastoma: Current Therapies and Future Directions. Cancers 2025, 17, 2687. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhang, Z.; Xie, M.; Ding, F.; Zheng, X.; Sun, S.; Du, J. Exploring tumor-associated macrophages in glioblastoma: From diversity to therapy. npj Precis. Oncol. 2025, 9, 126. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, D.K.; Panda, L.P.; Biswal, S.; Barhwal, K. Insights into the glioblastoma tumor microenvironment: Current and emerging therapeutic approaches. Front. Pharmacol. 2024, 15, 1355242. [Google Scholar] [CrossRef]
- Keane, L.; Cryan, J.F.; Gleeson, J.P. Exploiting the gut microbiome for brain tumour treatment. Trends Mol. Med. 2025, 31, 213–223. [Google Scholar] [CrossRef]
- BharathwajChetty, B.; Kumar, A.; Deevi, P.; Abbas, M.; Alqahtani, A.; Liang, L.; Sethi, G.; Liu, L.; Kunnumakkara, A.B. Gut microbiota and their influence in brain cancer milieu. J. Neuroinflamm. 2025, 22, 129. [Google Scholar] [CrossRef]
- Shu, L.; Yu, D.; Jin, F. Healthy dietary patterns, foods, and risk of glioma: A systematic review and meta-analysis of observational studies. Front. Nutr. 2023, 9, 1077452. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, J.; Li, X.; He, Y.; Chen, F.; Li, W. Dietary Factors and Risk of Glioma in Adults: A Systematic Review and Dose-Response Meta-Analysis of Observational Studies. Front. Nutr. 2022, 9, 834258. [Google Scholar] [CrossRef]
- Nemati, M.; Shayanfar, M.; Almasi, F.; Mohammad-Shirazi, M.; Sharifi, G.; Aminianfar, A.; Esmaillzadeh, A. Dietary patterns in relation to glioma: A case–control study. Cancer Metab. 2024, 12, 8. [Google Scholar] [CrossRef]
- Zhao, J.; He, C.; Xie, H.; Zou, Y.; Yan, Z.; Deng, J.; Du, Y.; Yang, W.; Zhang, X. Latent Association Between Diets and Glioma Risk: A Mendelian Randomization Analysis. Nutrients 2025, 17, 582. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, Y.; Yang, Y.; Jin, M.; Ma, A.; Wang, X.; Zhao, Q.; Zhang, X.; Zheng, J.; Zheng, X. Lipid metabolism: The potential therapeutic targets in glioblastoma. Cell Death Discov. 2025, 11, 107. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.W.; Kim, H.-J.; Kang, I.; Ku, K.B.; Kim, Y.; Park, J.H.; Lim, J.; Kang, B.H.; Park, W.H.; La, J.; et al. Gut dysbiosis from high-salt diet promotes glioma via propionate-mediated TGF-β activation. J. Exp. Med. 2025, 222, e20241135. [Google Scholar] [CrossRef]
- Zeng, L.; Yang, T.; Yang, K.; Yu, G.; Li, J.; Xiang, W.; Chen, H. Efficacy and Safety of Curcumin and Curcuma longa Extract in the Treatment of Arthritis: A Systematic Review and Meta-Analysis of Randomized Controlled Trial. Front. Immunol. 2022, 13, 891822. [Google Scholar] [CrossRef]
- Godos, J.; Romano, G.L.; Gozzo, L.; Laudani, S.; Paladino, N.; Dominguez Azpíroz, I.; Martínez López, N.M.; Giampieri, F.; Quiles, J.L.; Battino, M.; et al. Resveratrol and vascular health: Evidence from clinical studies and mechanisms of actions related to its metabolites produced by gut microbiota. Front. Pharmacol. 2024, 15, 1368949. [Google Scholar] [CrossRef] [PubMed]
- Ameer, S.F.; Mohamed, M.Y.; Elzubair, Q.A.; Sharif, E.A.M.; Ibrahim, W.N. Curcumin as a novel therapeutic candidate for cancer: Can this natural compound revolutionize cancer treatment? Front. Oncol. 2024, 14, 1438040. [Google Scholar] [CrossRef]
- Alorfi, N.M.; Ashour, A.M.; Alharbi, A.S.; Alshehri, F.S. Targeting inflammation in glioblastoma: An updated review from pathophysiology to novel therapeutic approaches. Medicine 2024, 103, e38245. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, F.; Ali, H.; Lathia, J.D.; Chen, P. Immunotherapy for glioblastoma: Current state, challenges, and future perspectives. Cell. Mol. Immunol. 2024, 21, 1354–1375. [Google Scholar] [CrossRef]
- Mao, H.; Zhao, X.; Sun, S.-c. NF-κB in inflammation and cancer. Cell. Mol. Immunol. 2025, 22, 811–839. [Google Scholar] [CrossRef]
- Khabibov, M.; Garifullin, A.; Boumber, Y.; Khaddour, K.; Fernandez, M.; Khamitov, F.; Khalikova, L.; Kuznetsova, N.; Kit, O.; Kharin, L. Signaling pathways and therapeutic approaches in glioblastoma multiforme (Review). Int. J. Oncol. 2022, 60, 69. [Google Scholar] [CrossRef]
- Ramar, V.; Guo, S.; Wang, G.; Liu, M. The Pivotal Role of NF-κB in Glioblastoma: Mechanisms of Activation and Therapeutic Implications. Int. J. Mol. Sci. 2025, 26, 7883. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, X.; Zhao, L.; Wu, J.; Wang, X.; Hu, Y. RIP2/NF-κB/PD-L1 signaling pathway is involved in temozolomide resistance by inducing autophagy in glioblastoma cells. Transl. Oncol. 2025, 58, 102424. [Google Scholar] [CrossRef]
- Lazari, D.; Alexiou, G.A.; Markopoulos, G.S.; Vartholomatos, E.; Hodaj, E.; Chousidis, I.; Leonardos, I.; Galani, V.; Kyritsis, A.P. N-(p-coumaroyl) serotonin inhibits glioblastoma cells growth through triggering S-phase arrest and apoptosis. J. Neuro-Oncol. 2017, 132, 373–381. [Google Scholar] [CrossRef]
- Hodaj, E.; Tsiftsoglou, O.; Abazi, S.; Hadjipavlou-Litina, D.; Lazari, D. Lignans and indole alkaloids from the seeds of Centaurea vlachorum Hartvig (Asteraceae), growing wild in Albania and their biological activity. Nat. Prod. Res. 2017, 31, 1195–1200. [Google Scholar] [CrossRef]
- Alexiou, G.A.; Lazari, D.; Markopoulos, G.; Vartholomatos, E.; Hodaj, E.; Galani, V.; Kyritsis, A.P. Moschamine inhibits proliferation of glioblastoma cells via cell cycle arrest and apoptosis. Tumor Biol. 2017, 39, 1010428317705744. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.; Qian, C.; Lin, J.; Liu, B. Cyclooxygenase-2-Prostaglandin E2 pathway: A key player in tumor-associated immune cells. Front. Oncol. 2023, 13, 1099811. [Google Scholar] [CrossRef]
- Dean, P.T.; Hooks, S.B. Pleiotropic effects of the COX-2/PGE2 axis in the glioblastoma tumor microenvironment. Front. Oncol. 2022, 12, 1116014. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Li, Q.; Li, J.; Zhou, F.; Sang, P.; Xia, Z.; Wang, W.; Wang, L.; Yu, Y.; Jiang, J. Complementary roles of EP2 and EP4 receptors in malignant glioma. Br. J. Pharmacol. 2023, 180, 2623–2640. [Google Scholar] [CrossRef] [PubMed]
- Cuenca-Escalona, J.; Subtil, B.; Garcia-Perez, A.; Cambi, A.; de Vries, I.J.M.; Flórez-Grau, G. EP2 and EP4 blockade prevents tumor-induced suppressive features in human monocytic myeloid-derived suppressor cells. Front. Immunol. 2024, 15, 1355769. [Google Scholar] [CrossRef]
- Elguindy, M.; Young, J.S.; Mondal, I.; Lu, R.O.; Ho, W.S. Glioma–Immune Cell Crosstalk in Tumor Progression. Cancers 2024, 16, 308. [Google Scholar] [CrossRef]
- Xu, W.; Huang, Y.; Zhou, R. NLRP3 inflammasome in neuroinflammation and central nervous system diseases. Cell. Mol. Immunol. 2025, 22, 341–355. [Google Scholar] [CrossRef]
- Gong, L.L.; Zhou, H.J.; Zhao, Q.M.; Xu, N.; Huang, F.C.; Su, L.Y.; Li, W.L. Molecular Mechanism of NLRP3 Inflammasome in Inflammatory Diseases and Tumors. Immun. Inflamm. Dis. 2025, 13, e70213. [Google Scholar] [CrossRef]
- Lea, S.T.; Chen, C.-H.; Wei, J.; William, I.; Lopez Del Castillo, I.; Curran, M.A. NLRP3 Inflammasome Activation Expands the Immunosuppressive Myeloid Stroma and Antagonizes the Therapeutic Benefit of STING Activation in Glioblastoma. Cancer Res. Commun. 2025, 5, 960–972. [Google Scholar] [CrossRef]
- Liang, H.; Yang, Q.; Zhong, B.; Li, D.; Wu, F.; Zhang, J.; Guo, C.; Zhu, Z.; Feng, M.; Zhang, Y.; et al. IL-1β+ tumor-associated macrophages accelerate glioblastoma progression by amplifying the PGE2-EP4 signaling. J. Neuroinflamm. 2025, 22, 233. [Google Scholar] [CrossRef]
- Zheng, Y.; Fuse, H.; Alzoubi, I.; Graeber, M.B. Microglia-Derived Brain Macrophages Associate with Glioblastoma Stem Cells: A Potential Mechanism for Tumor Progression Revealed by AI-Assisted Analysis. Cells 2025, 14, 413. [Google Scholar] [CrossRef]
- Zhang, G.; Hu, J.; Li, A.; Zhang, H.; Guo, Z.; Li, X.; You, Z.; Wang, Y.; Jing, Z. Ginsenoside Rg5 inhibits glioblastoma by activating ferroptosis via NR3C1/HSPB1/NCOA4. Phytomedicine 2024, 129, 155631. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Li, X.; Wang, Y.; Deng, W.; Sun, G.; Zhang, D.; Hao, J.; Liu, X. Berberine pharmacological properties and therapeutic potential across cancer, digestive, metabolic, cardiovascular, and neurological diseases: An update review. EXCLI J. 2025, 24, 1225–1261. [Google Scholar] [CrossRef]
- Coy, S.; Wang, S.; Stopka, S.A.; Lin, J.-R.; Yapp, C.; Ritch, C.C.; Salhi, L.; Baker, G.J.; Rashid, R.; Baquer, G.; et al. Single cell spatial analysis reveals the topology of immunomodulatory purinergic signaling in glioblastoma. Nat. Commun. 2022, 13, 4814. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Cai, K.; Qin, Y.; Wang, X.; Zhang, B.; Shi, L.; He, Z.; Wang, J.; Long, J.; et al. Interactions between glioblastoma and myeloid cells. Front. Cell Dev. Biol. 2025, 13, 1632122. [Google Scholar] [CrossRef]
- Takacs, G.P.; Kreiger, C.J.; Luo, D.; Tian, G.; Garcia, J.S.; Deleyrolle, L.P.; Mitchell, D.A.; Harrison, J.K. Glioma-derived CCL2 and CCL7 mediate migration of immune suppressive CCR2+/CX3CR1+ M-MDSCs into the tumor microenvironment in a redundant manner. Front. Immunol. 2023, 13, 993444. [Google Scholar] [CrossRef] [PubMed]
- Golán-Cancela, I.; Caja, L. The TGF-β Family in Glioblastoma. Int. J. Mol. Sci. 2024, 25, 1067. [Google Scholar] [CrossRef] [PubMed]
- Amoozgar, Z.; Kloepper, J.; Ren, J.; Tay, R.E.; Kazer, S.W.; Kiner, E.; Krishnan, S.; Posada, J.M.; Ghosh, M.; Mamessier, E.; et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat. Commun. 2021, 12, 2582. [Google Scholar] [CrossRef]
- Wu, J.; Li, R.; Wang, J.; Zhu, H.; Ma, Y.; You, C.; Shu, K. Reactive Astrocytes in Glioma: Emerging Opportunities and Challenges. Int. J. Mol. Sci. 2025, 26, 2907. [Google Scholar] [CrossRef]
- Malone, K.; Dugas, M.; Earl, N.; Alain, T.; LaCasse, E.C.; Beug, S.T. Astrocytes and the tumor microenvironment inflammatory state dictate the killing of glioblastoma cells by Smac mimetic compounds. Cell Death Dis. 2024, 15, 592. [Google Scholar] [CrossRef]
- Catalano, M.; Limatola, C.; Trettel, F. Non-neoplastic astrocytes: Key players for brain tumor progression. Front. Cell. Neurosci. 2024, 17, 1352130. [Google Scholar] [CrossRef]
- Hovis, G.; Chandra, N.; Kejriwal, N.; Hsieh, K.J.; Chu, A.; Yang, I.; Wadehra, M. Understanding the Role of Endothelial Cells in Glioblastoma: Mechanisms and Novel Treatments. Int. J. Mol. Sci. 2024, 25, 6118. [Google Scholar] [CrossRef]
- Ramachandran, R.; Jeans, A.F. Breaking Down Glioma-Microenvironment Crosstalk. Neuroscientist 2025, 31, 177–194. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Li, X.; Xiong, H.; Fan, H.; Gao, X.; Vemireddy, V.; Margolis, R.; Li, J.; Ge, X.; Giannotta, M.; et al. Optical blood-brain-tumor barrier modulation expands therapeutic options for glioblastoma treatment. Nat. Commun. 2023, 14, 4934. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.; Cao, R.; Yang, Y.; Chen, X.; Liu, L.; Ren, B.; Wang, L.; Goh, B.-C. Blood–Brain Barrier Conquest in Glioblastoma Nanomedicine: Strategies, Clinical Advances, and Emerging Challenges. Cancers 2024, 16, 3300. [Google Scholar] [CrossRef]
- Richardson, L.G.; Miller, J.J.; Kitagawa, Y.; Wakimoto, H.; Choi, B.D.; Curry, W.T. Implications of IDH mutations on immunotherapeutic strategies for malignant glioma. Neurosurg. Focus 2022, 52, E6. [Google Scholar] [CrossRef] [PubMed]
- Elguindy, M.M.; Young, J.S.; Ho, W.S.; Lu, R.O. Co-evolution of glioma and immune microenvironment. J. Immunother. Cancer 2024, 12, e009175. [Google Scholar] [CrossRef]
- ter Linden, E.; Abels, E.R.; van Solinge, T.S.; Neefjes, J.; Broekman, M.L.D. Overcoming Barriers in Glioblastoma—Advances in Drug Delivery Strategies. Cells 2024, 13, 998. [Google Scholar] [CrossRef]
- Wu, D.; Chen, Q.; Chen, X.; Han, F.; Chen, Z.; Wang, Y. The blood–brain barrier: Structure, regulation and drug delivery. Signal Transduct. Target. Ther. 2023, 8, 217. [Google Scholar] [CrossRef]
- Beylerli, O.; Beilerli, A.; Shumadalova, A.; Wang, X.; Yang, M.; Sun, H.; Teng, L. Therapeutic effect of natural polyphenols against glioblastoma. Front. Cell Dev. Biol. 2022, 10, 1036809. [Google Scholar] [CrossRef] [PubMed]
- Zoi, V.; Galani, V.; Lianos, G.D.; Voulgaris, S.; Kyritsis, A.P.; Alexiou, G.A. The role of curcumin in cancer treatment. Biomedicines 2021, 9, 1086. [Google Scholar] [CrossRef]
- Moldoveanu, C.A.; Tomoaia-Cotisel, M.; Sevastre-Berghian, A.; Tomoaia, G.; Mocanu, A.; Pal-Racz, C.; Toma, V.A.; Roman, I.; Ujica, M.A.; Pop, L.C. A Review on Current Aspects of Curcumin-Based Effects in Relation to Neurodegenerative, Neuroinflammatory and Cerebrovascular Diseases. Molecules 2024, 30, 43. [Google Scholar] [CrossRef]
- Luís, Â.; Amaral, L.; Domingues, F.; Pereira, L.; Cascalheira, J.F. Action of Curcumin on Glioblastoma Growth: A Systematic Review with Meta-Analysis of Animal Model Studies. Biomedicines 2024, 12, 268. [Google Scholar] [CrossRef]
- Nowacka, A.; Ziółkowska, E.; Smuczyński, W.; Bożiłow, D.; Śniegocki, M. Potential of Curcumin and Its Analogs in Glioblastoma Therapy. Antioxidants 2025, 14, 351. [Google Scholar] [CrossRef] [PubMed]
- Zoi, V.; Galani, V.; Vartholomatos, E.; Zacharopoulou, N.; Tsoumeleka, E.; Gkizas, G.; Bozios, G.; Tsekeris, P.; Chousidis, I.; Leonardos, I.; et al. Curcumin and Radiotherapy Exert Synergistic Anti-Glioma Effect In Vitro. Biomedicines 2021, 9, 1562. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-Y.; Jung, C.-W.; Lee, W.S.; Kim, H.-J.; Jeong, H.-J.; Park, M.-J.; Jang, W.I.; Kim, E.H. Interaction of curcumin with glioblastoma cells via high and low linear energy transfer radiation therapy inducing radiosensitization effects. J. Radiat. Res. 2022, 63, 342–353. [Google Scholar] [CrossRef]
- Meng, X.; Cai, J.; Liu, J.; Han, B.; Gao, F.; Gao, W.; Zhang, Y.; Zhang, J.; Zhao, Z.; Jiang, C. Curcumin increases efficiency of γ-irradiation in gliomas by inhibiting Hedgehog signaling pathway. Cell Cycle 2017, 16, 1181–1192. [Google Scholar] [CrossRef]
- Xu, Q.; Lian, H.; Zhou, R.; Gu, Z.; Wu, J.; Wu, Y.; Li, Z. Curcumin and multiple health outcomes: Critical umbrella review of intervention meta-analyses. Front. Pharmacol. 2025, 16, 1601204. [Google Scholar] [CrossRef] [PubMed]
- Panknin, T.M.; Howe, C.L.; Hauer, M.; Bucchireddigari, B.; Rossi, A.M.; Funk, J.L. Curcumin Supplementation and Human Disease: A Scoping Review of Clinical Trials. Int. J. Mol. Sci. 2023, 24, 4476. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Y.; Abdullah; Khan, F.; Alsharif, K.F.; Alzahrani, K.J.; Saso, L.; Khan, H. Regulatory Effects of Curcumin on Platelets: An Update and Future Directions. Biomedicines 2022, 10, 3180. [Google Scholar] [CrossRef]
- Zhang, L.-X.; Li, C.-X.; Kakar, M.U.; Khan, M.S.; Wu, P.-F.; Amir, R.M.; Dai, D.-F.; Naveed, M.; Li, Q.-Y.; Saeed, M.; et al. Resveratrol (RV): A pharmacological review and call for further research. Biomed. Pharmacother. 2021, 143, 112164. [Google Scholar] [CrossRef]
- Nowacka, A.; Śniegocka, M.; Smuczyński, W.; Liss, S.; Ziółkowska, E.; Bożiłow, D.; Śniegocki, M.; Wiciński, M. The Potential Application of Resveratrol and Its Derivatives in Central Nervous System Tumors. Int. J. Mol. Sci. 2024, 25, 13338. [Google Scholar] [CrossRef]
- Gürsoy, G.T.; Tuncer, M.C.; Özdemir, İ. Resveratrol and temozolomide induce apoptosis and suppress proliferation in glioblastoma cells via the apoptotic signaling pathway. Acta Cir. Bras. 2025, 40, e405525. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.; Theofanous, D.; Britton, R.G.; Aburido, G.; Pepper, C.; Sri Undru, S.; Howells, L. Resveratrol for the Management of Human Health: How Far Have We Come? A Systematic Review of Resveratrol Clinical Trials to Highlight Gaps and Opportunities. Int. J. Mol. Sci. 2024, 25, 747. [Google Scholar] [CrossRef]
- Yu, Z.; Zhu, W.; Lu, F.; Liu, H.; Sun, H.; Dong, J.; Zhang, Y.; Wang, H. Inhibitory effects of resveratrol on platelet activation and thrombosis in colon cancer through regulation of the MAPK and cGMP/VASP pathways. Thromb. Res. 2024, 241, 109111. [Google Scholar] [CrossRef]
- Alam, M.; Gulzar, M.; Akhtar, M.S.; Rashid, S.; Zulfareen; Tanuja; Shamsi, A.; Hassan, M.I. Epigallocatechin-3-gallate therapeutic potential in human diseases: Molecular mechanisms and clinical studies. Mol. Biomed. 2024, 5, 73. [Google Scholar] [CrossRef]
- Li, D.; Cao, D.; Sun, Y.; Cui, Y.; Zhang, Y.; Jiang, J.; Cao, X. The roles of epigallocatechin gallate in the tumor microenvironment, metabolic reprogramming, and immunotherapy. Front. Immunol. 2024, 15, 1641. [Google Scholar] [CrossRef]
- Acosta, L.; Byham-Gray, L.; Kurzer, M.; Samavat, H. Hepatotoxicity with High-Dose Green Tea Extract: Effect of Catechol-O-Methyltransferase and Uridine 5′-Diphospho-glucuronosyltransferase 1A4 Genotypes. J. Diet. Suppl. 2023, 20, 850–869. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Yao, L.; Gu, W.; Zhao, S.; Shen, Z.; Lin, Z.; Liu, W.; Yan, T. Pharmacological Activity of Quercetin: An Updated Review. Evid.-Based Complement. Altern. Med. 2022, 2022, 3997190. [Google Scholar] [CrossRef]
- Chen, B.; Li, X.; Wu, L.; Zhou, D.; Song, Y.; Zhang, L.; Wu, Q.; He, Q.; Wang, G.; Liu, X.; et al. Quercetin Suppresses Human Glioblastoma Migration and Invasion via GSK3β/β-catenin/ZEB1 Signaling Pathway. Front. Pharmacol. 2022, 13, 3614. [Google Scholar] [CrossRef]
- Wang, W.; Yuan, X.; Mu, J.; Zou, Y.; Xu, L.; Chen, J.; Zhu, X.; Li, B.; Zeng, Z.; Wu, X.; et al. Quercetin induces MGMT+ glioblastoma cells apoptosis via dual inhibition of Wnt3a/β-Catenin and Akt/NF-κB signaling pathways. Phytomedicine 2023, 118, 154933. [Google Scholar] [CrossRef]
- Thorpe, E.M.; Muller-Greven, G.; Hirbawi, J.; Gladson, C.L.; Kalafatis, M. Quercetin Increases Expression of Membrane-TRAIL in Glioblastoma Cells Resulting in Apoptosis. Cancers 2025, 17, 3197. [Google Scholar] [CrossRef]
- Baba, R.A.; Mir, H.A.; Mokhdomi, T.A.; Bhat, H.F.; Ahmad, A.; Khanday, F.A. Quercetin suppresses ROS production and migration by specifically targeting Rac1 activation in gliomas. Front. Pharmacol. 2024, 15, 8797. [Google Scholar] [CrossRef]
- Pawar, A.; Russo, M.; Rani, I.; Goswami, K.; Russo, G.L.; Pal, A. A critical evaluation of risk to reward ratio of quercetin supplementation for COVID-19 and associated comorbid conditions. Phytother. Res. 2022, 36, 2394–2415. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.S.; Ahmad, N.; Jamal Gilani, S.; Ali Khan, N. Isothiocyanates: A review. Res. J. Pharmacogn. 2018, 5, 71–89. [Google Scholar]
- Ruhee, R.T.; Roberts, L.A.; Ma, S.; Suzuki, K. Organosulfur compounds: A review of their anti-inflammatory effects in human health. Front. Nutr. 2020, 7, 64. [Google Scholar] [CrossRef] [PubMed]
- Kiser, C.; Gonul, C.P.; Olcum, M.; Genc, S. Inhibitory effects of sulforaphane on NLRP3 inflammasome activation. Mol. Immunol. 2021, 140, 175–185. [Google Scholar] [CrossRef]
- Kumar, A.; P, N.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.; K, S.; et al. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules 2023, 28, 887. [Google Scholar] [CrossRef]
- Hussain, H.; Wang, D.; El-Seedi, H.R.; Rashan, L.; Ahmed, I.; Abbas, M.; Mamadalieva, N.Z.; Sultani, H.N.; Hussain, M.I.; Shah, S.T.A. Therapeutic potential of boswellic acids: An update patent review (2016–2023). Expert. Opin. Ther. Pat. 2024, 34, 723–732. [Google Scholar] [CrossRef]
- Gong, Y.; Jiang, X.; Yang, S.; Huang, Y.; Hong, J.; Ma, Y.; Fang, X.; Fang, Y.; Wu, J. The Biological Activity of 3-O-Acetyl-11-keto-β-Boswellic Acid in Nervous System Diseases. Neuromol. Med. 2022, 24, 374–384. [Google Scholar] [CrossRef]
- Dejonckheere, C.S.; Scafa, D.; Käsmann, L.; Zeyen, T.; Potthoff, A.-L.; Schäfer, N.; Weller, J.; Herrlinger, U.; Schneider, M.; Vatter, H.; et al. Boswellia serrata for the Management of Radiation-Induced Cerebral Edema and Necrosis: A Systematic Meta-Narrative Review of Clinical Evidence. Adv. Radiat. Oncol. 2025, 10, 101732. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, J.; Zhao, X.; Zheng, B.; Han, Y.; Luo, G.; Dou, D. Ginsenoside RK3 inhibits glioblastoma by modulating macrophage M2 polarization via the PPARG/CCL2 axis. Phytomedicine 2025, 136, 156271. [Google Scholar] [CrossRef]
- Jang, W.Y.; Hwang, J.Y.; Cho, J.Y. Ginsenosides from Panax ginseng as Key Modulators of NF-κB Signaling Are Powerful Anti-Inflammatory and Anticancer Agents. Int. J. Mol. Sci. 2023, 24, 6119. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liu, X.U.; Xu, Q.I.; Zhou, X.; Liu, J.; Xu, Y.; Lu, Y.A.N.; Liu, H. Revealing the role of honokiol in human glioma cells by RNA-seq analysis. Biocell 2024, 48, 945–958. [Google Scholar] [CrossRef]
- Li, S.; Li, L.; Chen, J.; Fan, Y.; Wang, C.; Du, Y.; Guo, C.; Chen, F.; Li, W. Liposomal honokiol inhibits glioblastoma growth through regulating macrophage polarization. Ann. Transl. Med. 2021, 9, 1644. [Google Scholar] [CrossRef]
- Fan, Y.; Xue, W.; Schachner, M.; Zhao, W. Honokiol Eliminates Glioma/Glioblastoma Stem Cell-Like Cells Via JAK-STAT3 Signaling and Inhibits Tumor Progression by Targeting Epidermal Growth Factor Receptor. Cancers 2018, 11, 22. [Google Scholar] [CrossRef]
- Quinlivan, K.M.; Howard, I.V.; Southan, F.; Bayer, R.L.; Torres, K.L.; Serhan, C.N.; Panigrahy, D. Exploring the unique role of specialized pro-resolving mediators in cancer therapeutics. Prostagland. Other Lipid Mediat. 2025, 178, 106944. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.A.; Colquhoun, A. The Omega-3 Fatty Acids Eicosapentaenoic Acid and Docosahexaenoic Acid Enhance the Effects of Temozolomide Chemotherapy in Glioblastoma Cells. Int. J. Mol. Sci. 2025, 26, 8759. [Google Scholar] [CrossRef]
- Ljungblad, L.; Bergqvist, F.; Tümmler, C.; Madawala, S.; Olsen, T.K.; Andonova, T.; Jakobsson, P.-J.; Johnsen, J.I.; Pickova, J.; Strandvik, B.; et al. Omega-3 fatty acids decrease CRYAB, production of oncogenic prostaglandin E2 and suppress tumor growth in medulloblastoma. Life Sci. 2022, 295, 120394. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, C.; Liang, W.; Li, L.; Du, J.; Pan, C.; Chen, B.; Chen, Y.; Wang, Y. ω-3 and ω-6 Polyunsaturated Fatty Acids Regulate the Proliferation, Invasion and Angiogenesis of Gastric Cancer Through COX/PGE Signaling Pathway. Front. Oncol. 2022, 12, 2009. [Google Scholar] [CrossRef]
- Kao, T.-J.; Lin, C.-L.; Yang, W.-B.; Li, H.-Y.; Hsu, T.-I. Dysregulated lipid metabolism in TMZ-resistant glioblastoma: Pathways, proteins, metabolites and therapeutic opportunities. Lipids Health Dis. 2023, 22, 114. [Google Scholar] [CrossRef]
- Alnouri, M.W.; Roquid, K.A.; Bonnavion, R.; Cho, H.; Heering, J.; Kwon, J.; Jäger, Y.; Wang, S.; Günther, S.; Wettschureck, N.; et al. SPMs exert anti-inflammatory and pro-resolving effects through positive allosteric modulation of the prostaglandin EP4 receptor. Proc. Natl. Acad. Sci. USA 2024, 121, e2407130121. [Google Scholar] [CrossRef] [PubMed]
- Tiberi, M.; Chiurchiù, V. Specialized Pro-resolving Lipid Mediators and Glial Cells: Emerging Candidates for Brain Homeostasis and Repair. Front. Cell. Neurosci. 2021, 15, 3549. [Google Scholar] [CrossRef] [PubMed]
- Yun, D.; Yoon, S.Y.; Park, S.J.; Park, Y.J. The anticancer effect of natural plant alkaloid isoquinolines. Int. J. Mol. Sci. 2021, 22, 1653. [Google Scholar] [CrossRef] [PubMed]
- Sunhe, Y.-X.; Zhang, Y.-H.; Fu, R.-J.; Xu, D.-Q.; Tang, Y.-P. Neuroprotective effect and preparation methods of berberine. Front. Pharmacol. 2024, 15, 9050. [Google Scholar] [CrossRef]

| Molecule | Class | Primary Inflammatory Targets | GBM-Relevant Actions | Evidence Stage (GBM) * |
|---|---|---|---|---|
| Curcumin | Polyphenol | NF-κB ↓ COX-2/PGE2 ↓ | Radiosensitization; chemo-sensitization (TMZ); anti-invasion | in vitro ++; in vivo (orthotopic) + |
| Resveratrol | Polyphenol (stilbene) | NF-κB crosstalk ↓; COX-2/PGE2 ↓ (indirect) | STAT3 ↓; TMZ synergy; anti-migration | in vitro ++; in vivo + |
| EGCG | Polyphenol (catechin) | NF-κB ↓; COX-2/iNOS ↓; IL-1β signaling ↓ | Potentiates combos (e.g., metabolic + TMZ) | in vitro ++; in vivo + |
| Quercetin | Polyphenol (flavonol) | NF-κB ↓ (indirect); COX-2 pathway ↓ | Wnt/β-catenin ↓; anti-invasion; pro-apoptotic | in vitro ++; in vivo + |
| Sulforaphane | Isothiocyanate | NF-κB ↓; NLRP3/IL-1β ↓ | Reverses TMZ resistance (MGMT ↓); ATF4-CHOP apoptosis | in vitro ++; in vivo ++ |
| Boswellic acids (e.g., AKBA) | Triterpenoid acids | 5-LOX ↓; NF-κB ↓ (crosstalk); COX-2 cross-regulation | Anti-edema/anti-angiogenic signals | in vitro +; early human (supportive care) ± |
| Ginsenosides (e.g., Rg5, RK3) | Triterpenoid saponins | NF-κB ↓ (class effect); COX-2 ↓ (reported) | Ferroptosis induction; antiproliferative | in vitro +; in vivo + |
| Honokiol | Lignan | NF-κB ↓; COX-2/PGE2 ↓ (indirect) | TAM re-polarization (M2→M1); GSC targeting; brain-accumulating (liposomal) | in vitro ++; in vivo ++; early human ± |
| ω-3 PUFAs (EPA/DHA) | Fatty acids | COX-2 substrate shift → PGE2 ↓ | Pro-resolving mediator precursors; metabolism re-tuning | in vitro +; in vivo + |
| SPMs | Lipid mediators | Pro-resolution of inflammation; IL-1/TNF programs ↓ | Immune “de-escalation” without broad suppression | preclinical + |
| Berberine | Isoquinoline alkaloid | NF-κB ↓; pro-inflammatory cytokines ↓ | TGF-β/SMAD and mitochondrial apoptosis effects | in vitro +; in vivo ± |
| Resistance Mechanism/Pathway | Typical Readouts in GBM Models | Representative Compounds | Evidence Stage (GBM) * |
|---|---|---|---|
| NF-κB-driven survival/inflammation | IκBα loss; NF-κB target genes; cytokines | Curcumin, resveratrol, EGCG, honokiol, berberine | in vitro ++; in vivo + |
| COX-2–PGE2 immunosuppression | COX-2/PGE2 ↓; EP2/EP4 modulation | Polyphenols; ω-3 PUFAs/SPMs; boswellic acids; honokiol | in vitro +; in vivo + |
| NLRP3–IL-1 axis | IL-1β/IL-18 ↓; ASC/caspase-1 modulation | Sulforaphane; EGCG; SPMs | preclinical + |
| Apoptosis (mitochondrial) | Caspase-3/9; BAX/BCL-2; ΔΨm | Berberine; polyphenols | in vitro +; in vivo ± |
| Autophagy (context dependent) | LC3-II, p62 | Polyphenols (selected reports) | in vitro ± |
| Ferroptosis | GPX4/ACSL4; lipid-ROS | Ginsenosides (e.g., Rg5) | in vitro +; in vivo + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markopoulos, G.S.; Sioka, C.; Alexiou, G.A.; Peschos, D.; Vartholomatos, G.; Kyritsis, A.P. Natural Anti-Inflammatory Agents in the Chemoprevention of Gliomas: Targeting Neuroinflammation and the Tumor Microenvironment. Cancers 2025, 17, 3922. https://doi.org/10.3390/cancers17243922
Markopoulos GS, Sioka C, Alexiou GA, Peschos D, Vartholomatos G, Kyritsis AP. Natural Anti-Inflammatory Agents in the Chemoprevention of Gliomas: Targeting Neuroinflammation and the Tumor Microenvironment. Cancers. 2025; 17(24):3922. https://doi.org/10.3390/cancers17243922
Chicago/Turabian StyleMarkopoulos, Georgios S., Chrissa Sioka, George A. Alexiou, Dimitrios Peschos, George Vartholomatos, and Athanassios P. Kyritsis. 2025. "Natural Anti-Inflammatory Agents in the Chemoprevention of Gliomas: Targeting Neuroinflammation and the Tumor Microenvironment" Cancers 17, no. 24: 3922. https://doi.org/10.3390/cancers17243922
APA StyleMarkopoulos, G. S., Sioka, C., Alexiou, G. A., Peschos, D., Vartholomatos, G., & Kyritsis, A. P. (2025). Natural Anti-Inflammatory Agents in the Chemoprevention of Gliomas: Targeting Neuroinflammation and the Tumor Microenvironment. Cancers, 17(24), 3922. https://doi.org/10.3390/cancers17243922

