Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,243)

Search Parameters:
Keywords = glass manufacturer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 313 KiB  
Article
Sustainability and Profitability of Large Manufacturing Companies
by Iveta Mietule, Rasa Subaciene, Jelena Liksnina and Evalds Viskers
J. Risk Financial Manag. 2025, 18(8), 439; https://doi.org/10.3390/jrfm18080439 - 6 Aug 2025
Abstract
This study explores whether sustainability achievements—proxied through ESG (environmental, social, and governance) reporting—are associated with superior financial performance in Latvia’s manufacturing sector, where ESG maturity remains low and institutional readiness is still emerging. Building on stakeholder, legitimacy, signal, slack resources, and agency theories, [...] Read more.
This study explores whether sustainability achievements—proxied through ESG (environmental, social, and governance) reporting—are associated with superior financial performance in Latvia’s manufacturing sector, where ESG maturity remains low and institutional readiness is still emerging. Building on stakeholder, legitimacy, signal, slack resources, and agency theories, this study applies a mixed-method approach (that consists of two analytical stages) suited to the limited availability and reliability of ESG-related data in the Latvian manufacturing sector. Financial indicators from three large firms—AS MADARA COSMETICS, AS Latvijas Finieris, and AS Valmiera Glass Grupa—are compared with industry averages over the 2019–2023 period using independent sample T-tests. ESG integration is evaluated through a six-stage conceptual schema ranging from symbolic compliance to performance-driven sustainability. The results show that AS MADARA COSMETICS, which demonstrates advanced ESG integration aligned with international standards, significantly outperforms its industry in all profitability metrics. In contrast, the other two companies remain at earlier ESG maturity stages and show weaker financial performance, with sustainability disclosures limited to general statements and outdated indicators. These findings support the synergy hypothesis in contexts where sustainability is internalized and operationalized, while also highlighting structural constraints—such as resource scarcity and fragmented data—that may limit ESG-financial alignment in post-transition economies. This study offers practical guidance for firms seeking competitive advantage through strategic ESG integration and recommends policy actions to enhance ESG transparency and performance in Latvia, including performance-based reporting mandates, ESG data infrastructure, and regulatory alignment with EU directives. These insights contribute to the growing empirical literature on ESG effectiveness under constrained institutional and economic conditions. Full article
(This article belongs to the Section Business and Entrepreneurship)
21 pages, 1353 KiB  
Article
Hydrogen Cost and Carbon Analysis in Hollow Glass Manufacturing
by Dario Atzori, Claudia Bassano, Edoardo Rossi, Simone Tiozzo, Sandra Corasaniti and Angelo Spena
Energies 2025, 18(15), 4105; https://doi.org/10.3390/en18154105 - 2 Aug 2025
Viewed by 198
Abstract
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated [...] Read more.
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated real-world case studies are available in the literature that consider the on-site implementation of an electrolyzer for autonomous hydrogen production capable of meeting the needs of a glass manufacturing plant within current technological constraints. This study examines a representative hollow glass plant and develops various decarbonization scenarios through detailed process simulations in Aspen Plus. The models provide consistent mass and energy balances, enabling the quantification of energy demand and key cost drivers associated with H2 integration. These results form the basis for a scenario-specific techno-economic assessment, including both on-grid and off-grid configurations. Subsequently, the analysis estimates the levelized costs of hydrogen (LCOH) for each scenario and compares them to current and projected benchmarks. The study also highlights ongoing research projects and technological advancements in the transition from natural gas to H2 in the glass sector. Finally, potential barriers to large-scale implementation are discussed, along with policy and infrastructure recommendations to foster industrial adoption. These findings suggest that hybrid configurations represent the most promising path toward industrial H2 adoption in glass manufacturing. Full article
(This article belongs to the Special Issue Techno-Economic Evaluation of Hydrogen Energy)
Show Figures

Figure 1

14 pages, 1632 KiB  
Article
Try It Before You Buy It: A Non-Invasive Authenticity Assessment of a Purported Phoenician Head-Shaped Pendant (Cáceres, Spain)
by Valentina Lončarić, Pedro Barrulas, José Miguel González Bornay and Mafalda Costa
Heritage 2025, 8(8), 308; https://doi.org/10.3390/heritage8080308 - 1 Aug 2025
Viewed by 147
Abstract
Museums may acquire archaeological artefacts discovered by non-specialists or amateur archaeologists, holding the potential to promote the safeguarding of cultural heritage by integrating the local community in their activities. However, this also creates an opportunity for the fraudulent sale of modern forgeries presented [...] Read more.
Museums may acquire archaeological artefacts discovered by non-specialists or amateur archaeologists, holding the potential to promote the safeguarding of cultural heritage by integrating the local community in their activities. However, this also creates an opportunity for the fraudulent sale of modern forgeries presented as archaeological artefacts, resulting in the need for a critical assessment of the artefact’s authenticity prior to acquisition by the museum. In 2019, the regional museum in Cáceres (Spain) was offered the opportunity to acquire a Phoenician-Punic head pendant, allegedly discovered in the vicinity of the city. The artefact’s authenticity was assessed by traditional approaches, including typological analysis and analysis of manufacture technique, which raised doubts about its purported age. VP-SEM-EDS analysis of the chemical composition of the different glass portions comprising the pendant was used for non-invasive determination of glassmaking recipes, enabling the identification of glass components incompatible with known Iron Age glassmaking recipes from the Mediterranean. Further comparison with historical and modern glassmaking recipes allowed for the identification of the artefact as a recent forgery made from glasses employing modern colouring and opacifying techniques. Full article
Show Figures

Figure 1

23 pages, 3279 KiB  
Article
Assessment of the Environmental Feasibility of Utilizing Hemp Fibers in Composite Production
by Denis da Silva Miranda, Douglas Alexandre Casetta, Leonardo Coelho Simon and Luiz Kulay
Polymers 2025, 17(15), 2103; https://doi.org/10.3390/polym17152103 - 31 Jul 2025
Viewed by 292
Abstract
This study investigated the impact of incorporating hemp fibers into composites for manufacturing industrial parts. The Global Warming Potential (GWP) of producing a traditional polymer matrix composite containing glass fibers was compared to that of producing a counterpart from natural hemp fibers. The [...] Read more.
This study investigated the impact of incorporating hemp fibers into composites for manufacturing industrial parts. The Global Warming Potential (GWP) of producing a traditional polymer matrix composite containing glass fibers was compared to that of producing a counterpart from natural hemp fibers. The investigation concluded that the partial replacement of synthetic fibers with biomass reduced the GWP of the product by up to 25% without compromising its mechanical properties. This study also quantified and discussed the GWP of intermediate products obtained from alternative routes, such as the manufacture of hemp stalks and pellets. In these cases, the findings showed that the amount of CO2 absorbed during plant growth exceeded the emissions related to soil preparation, farming, and processing of hemp stalks by up to 15 times, and the processing of row hemp bales into pellets could result in an even “greener” product. This study highlights the importance of using bio-based inputs in reducing greenhouse gas emissions in the materials manufacturing industry and concludes that even partial substitutions of synthetic inputs with natural fibers can show significant reductions in this type of environmental impact. Full article
(This article belongs to the Special Issue Advances in Composite Materials: Polymers and Fibers Inclusion)
Show Figures

Figure 1

14 pages, 8280 KiB  
Article
Mechanical Characteristics of Glass-Fiber-Reinforced Polyester Composite Materials
by Ioan Milosan, Tibor Bedo, Camelia Gabor and Mihai Alin Pop
Materials 2025, 18(15), 3595; https://doi.org/10.3390/ma18153595 - 31 Jul 2025
Viewed by 183
Abstract
Fiber-reinforced composites are gaining more importance across different fields such as aeronautics, automotives, high-performance sporting equipment, etc., where decreasing weight while improving mechanical properties of polymers is fundamental. This article explores the mechanical behavior of fiber-reinforced polyester composite materials, highlighting their advantages and [...] Read more.
Fiber-reinforced composites are gaining more importance across different fields such as aeronautics, automotives, high-performance sporting equipment, etc., where decreasing weight while improving mechanical properties of polymers is fundamental. This article explores the mechanical behavior of fiber-reinforced polyester composite materials, highlighting their advantages and applications in various industrial fields. Usually, composite materials consist of a polyester matrix reinforced with different types of fibers, such as glass, carbon, or Kevlar, which provide superior mechanical characteristics. This study analyzed the tensile strength, bending resistance, and resilience of glass fiber composites, emphasizing the importance of proper fiber selection and manufacturing processes. These materials stand out for their excellent strength-to-weight ratio and are widely used in the fabrication of tanks in various industries. Experimental results demonstrated tensile strength (Rm) around 115 MPa, Shore D hardness values of 88 units, and impact toughness (resilience) of 2.7 J/cm2. Based on the composite materials’ behavior in testing, the article further offers practical recommendations for the effective deployment of these composites in the fabrication of various types of industrial reservoirs. Full article
Show Figures

Graphical abstract

26 pages, 8400 KiB  
Article
Conceptual Design of a Hybrid Composite to Metal Joint for Naval Vessels Applications
by Man Chi Cheung, Nenad Djordjevic, Chris Worrall, Rade Vignjevic, Mihalis Kazilas and Kevin Hughes
Materials 2025, 18(15), 3512; https://doi.org/10.3390/ma18153512 - 26 Jul 2025
Viewed by 329
Abstract
This paper describes the development of a new hybrid composite for the metal joints of aluminium and glass fibre composite adherents. The aluminium adherend is manufactured using friction stir-formed studs that are inserted into the composite adherend in the through-thickness direction during the [...] Read more.
This paper describes the development of a new hybrid composite for the metal joints of aluminium and glass fibre composite adherents. The aluminium adherend is manufactured using friction stir-formed studs that are inserted into the composite adherend in the through-thickness direction during the composite manufacturing process, where the dry fibres are displaced to accommodate the studs before the resin infusion process. The materials used were AA6082-T6 aluminium and plain-woven E-glass fabric reinforced epoxy, with primary applications in naval vessels. This joining approach offers a cost-effective solution that does not require complicated onsite welding. The joint design was developed based on a simulation test program with finite element analysis, followed by experimental characterisation and validation. The design solution was analysed in terms of the force displacement response, sequence of load transfer, and characterisation of the joint failure modes. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

13 pages, 1881 KiB  
Article
Transforming Rice Husk Ash into Road Safety: A Sustainable Approach to Glass Microsphere Production
by Ingrid Machado Teixeira, Juliano Pase Neto, Acsiel Budny, Luis Enrique Gomez Armas, Chiara Valsecchi and Jacson Weber de Menezes
Ceramics 2025, 8(3), 93; https://doi.org/10.3390/ceramics8030093 - 24 Jul 2025
Viewed by 302
Abstract
Glass microspheres are essential components in horizontal road markings due to their retroreflective properties, enhancing visibility and safety under low-light conditions. Traditionally produced from soda-lime glass made with high-purity silica from sand, their manufacturing raises environmental concerns amid growing global sand scarcity. This [...] Read more.
Glass microspheres are essential components in horizontal road markings due to their retroreflective properties, enhancing visibility and safety under low-light conditions. Traditionally produced from soda-lime glass made with high-purity silica from sand, their manufacturing raises environmental concerns amid growing global sand scarcity. This study explores the viability of rice husk ash (RHA)—a high-silica byproduct of rice processing—as a sustainable raw material for microsphere fabrication. A glass composition containing 70 wt% SiO2 was formulated using RHA and melted at 1500 °C. Microspheres were produced through flame spheroidization and characterized following the Brazilian standard NBR 16184:2021 for Type IB beads. The RHA-derived microspheres exhibited high sphericity, appropriate size distribution (63–300 μm), density of 2.42 g/cm3, and the required acid resistance. UV-Vis analysis confirmed their optical transparency, and the refractive index was measured as 1.55 ± 0.03. Retroreflectivity tests under standardized conditions revealed performance comparable to commercial counterparts. These results demonstrate the technical feasibility of replacing conventional silica with RHA in glass microsphere production, aligning with circular economy principles and promoting sustainable infrastructure. Given Brazil’s significant rice production and corresponding RHA availability, this approach offers both environmental and socio-economic benefits for road safety and material innovation. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Graphical abstract

15 pages, 7193 KiB  
Article
Effects of Defocus Distance and Weld Spacing on Microstructure and Properties of Femtosecond Laser Welded Quartz Glass-TC4 Alloy Joints with Residual Stress Analysis
by Gang Wang, Runbo Zhang, Xiangyu Xu, Ren Yuan, Xuteng Lv and Chenglei Fan
Materials 2025, 18(14), 3390; https://doi.org/10.3390/ma18143390 - 19 Jul 2025
Viewed by 251
Abstract
This study develops an optimized femtosecond laser welding process for joining quartz glass and TC4 titanium alloy (Ti-6Al-4V) under non-optical contact conditions, specifically addressing the manufacturing needs of specialized photoelectric effect research containers. The joint primarily consists of parallel laser-welded zones (WZ) interspersed [...] Read more.
This study develops an optimized femtosecond laser welding process for joining quartz glass and TC4 titanium alloy (Ti-6Al-4V) under non-optical contact conditions, specifically addressing the manufacturing needs of specialized photoelectric effect research containers. The joint primarily consists of parallel laser-welded zones (WZ) interspersed with base material. The defocus distance of the femtosecond laser predominantly influences the depth and phase composition of the WZ, while the weld spacing influences the crack distribution in the joint region. The maximum shear strength of 14.4 MPa was achieved at a defocusing distance of +0.1 mm (below the interface) and a weld spacing of 40 μm. The XRD stress measurements indicate that the defocusing distance mainly affects the stress along the direction of laser impact (DLI), whereas the weld spacing primarily influences the stress along the direction of spacing (DS). GPA results demonstrate that when the spacing is less than 30 μm, the non-uniform shrinkage inside the WZ induces tensile stress in the joint, leading to significant fluctuations in DS residual stress and consequently affecting the joint’s shear strength. This study investigates the effects of process parameters on the mechanical properties of dissimilar joints and, for the first time, analyzes the relationship between joint residual strain and femtosecond laser weld spacing, providing valuable insights for optimizing femtosecond laser welding processes. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

21 pages, 1014 KiB  
Review
Pharmaceutical Packaging Materials and Medication Safety: A Mini-Review
by Yaokang Lv, Nianyu Liu, Chao Chen, Zhiwei Cai and Jianhang Li
Safety 2025, 11(3), 69; https://doi.org/10.3390/safety11030069 - 18 Jul 2025
Viewed by 444
Abstract
Pharmaceutical packaging materials play a crucial role in ensuring the safety and efficacy of medications. This mini-review examines the properties of common packaging materials (glass, plastics, metals, and rubber) and their implications for drug safety. By analyzing 127 research articles from PubMed, Web [...] Read more.
Pharmaceutical packaging materials play a crucial role in ensuring the safety and efficacy of medications. This mini-review examines the properties of common packaging materials (glass, plastics, metals, and rubber) and their implications for drug safety. By analyzing 127 research articles from PubMed, Web of Science, and CNKI databases (2000–2025), we also discuss recent regulatory updates in China and highlight emerging technologies, including nanomaterials, sustainable packaging solutions, and intelligent packaging systems that present new opportunities for the pharmaceutical industry. Key findings include the following: (1) The physicochemical properties of packaging materials and potential microbial contamination risks during production significantly impact drug quality and safety, underscoring the need for enhanced research and regulatory oversight. (2) Each material exhibits distinct advantages and limitations: glass demonstrates superior chemical stability but may leach ions; plastics offer versatility but risk plasticizer migration; metals provide exceptional strength yet have limited applications; rubber ensures effective sealing but may release additives compromising drug quality. (3) The pharmaceutical packaging sector is evolving toward intelligent systems and sustainable solutions to address contemporary healthcare challenges. This review can aid pharmaceutical companies in selecting drug packaging and guide manufacturers in developing innovative packaging solutions. Full article
Show Figures

Figure 1

15 pages, 3980 KiB  
Article
Four-Dimensional-Printed Woven Metamaterials for Vibration Reduction and Energy Absorption in Aircraft Landing Gear
by Xiong Wang, Changliang Lin, Liang Li, Yang Lu, Xizhe Zhu and Wenjie Wang
Materials 2025, 18(14), 3371; https://doi.org/10.3390/ma18143371 - 18 Jul 2025
Viewed by 338
Abstract
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent [...] Read more.
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent to traditional textile preforms. Six distinct braided structural units (types 1–6) were devised based on periodic trigonometric functions (Y = A sin(12πX)), and integrated with shape memory polylactic acid (SMP-PLA), thereby achieving a synergistic combination of topological architecture and adaptive response characteristics. Compression tests reveal that reducing strip density to 50–25% (as in types 1–3) markedly enhances energy absorption performance, achieving a maximum specific energy absorption of 3.3 J/g. Three-point bending tests further demonstrate that the yarn amplitude parameter A is inversely correlated with load-bearing capacity; for instance, the type 1 structure (A = 3) withstands a maximum load stress of 8 MPa, representing a 100% increase compared to the type 2 structure (A = 4.5). A multi-branch viscoelastic constitutive model elucidates the temperature-dependent stress relaxation behavior during the glass–rubber phase transition and clarifies the relaxation time conversion mechanism governed by the Williams–Landel–Ferry (WLF) and Arrhenius equations. Experimental results further confirm the shape memory effect, with the type 3 structure fully recovering its original shape within 3 s under thermal stimulation at 80 °C, thus addressing the non-reusability issue of conventional energy-absorbing structures. This work establishes a new paradigm for the design of impact-resistant aviation components, particularly in the context of anti-collision structures and reusable energy absorption systems for eVTOL aircraft. Future research should further investigate the regulation of multi-stimulus response behaviors and microstructural optimization to advance the engineering application of smart textile metamaterials in aviation protection systems. Full article
Show Figures

Figure 1

14 pages, 2941 KiB  
Article
Experimental and Numerical Investigation of the Mechanical Properties of ABS Parts Fabricated via Fused Deposition Modeling
by Yanqin Li, Peihua Zhu and Dehai Zhang
Polymers 2025, 17(14), 1957; https://doi.org/10.3390/polym17141957 - 17 Jul 2025
Viewed by 384
Abstract
This study investigates the mechanical properties of ABS parts fabricated via used deposition modeling (FDM) through integrated experimental and numerical approaches. ABS resin was used as the experimental material, and tensile tests were conducted using a universal testing machine. Finite element analysis (FEA) [...] Read more.
This study investigates the mechanical properties of ABS parts fabricated via used deposition modeling (FDM) through integrated experimental and numerical approaches. ABS resin was used as the experimental material, and tensile tests were conducted using a universal testing machine. Finite element analysis (FEA) was performed via ANSYS 2021 to simulate stress deformation behavior, with key parameters including a gauge length of 10 mm (pre-stretching) and printing temperature gradients. The results show that the specimen exhibited a maximum tensile force of 7.3 kN, upper yield force of 3.7 kN, and lower yield force of 3.2 kN, demonstrating high strength and toughness. The non-proportional elongation reached 0.06 (6%), and the quantified enhancement multiple of AM relative to traditional manufacturing was 1.1, falling within the reasonable range for glass fiber-reinforced or specially formulated ABS. FEA results validated the experimental data, showing that the material underwent 15 mm of plastic deformation before fracture, consistent with ABS’s ductile characteristics. Full article
Show Figures

Figure 1

38 pages, 5046 KiB  
Review
Photonics on a Budget: Low-Cost Polymer Sensors for a Smarter World
by Muhammad A. Butt
Micromachines 2025, 16(7), 813; https://doi.org/10.3390/mi16070813 - 15 Jul 2025
Viewed by 589
Abstract
Polymer-based photonic sensors are emerging as cost-effective, scalable alternatives to conventional silicon and glass photonic platforms, offering unique advantages in flexibility, functionality, and manufacturability. This review provides a comprehensive assessment of recent advances in polymer photonic sensing technologies, focusing on material systems, fabrication [...] Read more.
Polymer-based photonic sensors are emerging as cost-effective, scalable alternatives to conventional silicon and glass photonic platforms, offering unique advantages in flexibility, functionality, and manufacturability. This review provides a comprehensive assessment of recent advances in polymer photonic sensing technologies, focusing on material systems, fabrication techniques, device architectures, and application domains. Key polymer materials, including PMMA, SU-8, polyimides, COC, and PDMS, are evaluated for their optical properties, processability, and suitability for integration into sensing platforms. High-throughput fabrication methods such as nanoimprint lithography, soft lithography, roll-to-roll processing, and additive manufacturing are examined for their role in enabling large-area, low-cost device production. Various photonic structures, including planar waveguides, Bragg gratings, photonic crystal slabs, microresonators, and interferometric configurations, are discussed concerning their sensing mechanisms and performance metrics. Practical applications are highlighted in environmental monitoring, biomedical diagnostics, and structural health monitoring. Challenges such as environmental stability, integration with electronic systems, and reproducibility in mass production are critically analyzed. This review also explores future opportunities in hybrid material systems, printable photonics, and wearable sensor arrays. Collectively, these developments position polymer photonic sensors as promising platforms for widespread deployment in smart, connected sensing environments. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

21 pages, 7773 KiB  
Article
Dynamic Properties and Vibration Control of Additively Manufactured Carbon and Glass Fiber Reinforced Polymer Composites Using MFC: A Numerical Study with Experimental Validation
by Ali Raza, Magdalena Mieloszyk, Rūta Rimašauskienė, Vytautas Jūrėnas, Nabeel Maqsood, Marius Rimašauskas and Tomas Kuncius
J. Manuf. Mater. Process. 2025, 9(7), 235; https://doi.org/10.3390/jmmp9070235 - 8 Jul 2025
Viewed by 427
Abstract
With the growing need for lightweight, durable, and high-performance structures, additively manufactured (AM) polymer composite structures have captured significant attention in the engineering community. These structures offer considerable advantages in various dynamic engineering sectors including automotive, aviation, and military. Thus, this investigation emphasizes [...] Read more.
With the growing need for lightweight, durable, and high-performance structures, additively manufactured (AM) polymer composite structures have captured significant attention in the engineering community. These structures offer considerable advantages in various dynamic engineering sectors including automotive, aviation, and military. Thus, this investigation emphasizes the numerical analysis of the dynamic properties and vibration control of AM polylactic acid (PLA) composite structures reinforced with continuous glass fibers (CGFR-PLA) and carbon fibers (CCFR-PLA), with 0°–0° and 0°–90° layer orientations. The findings of this numerical study are compared and validated against earlier published experimental results. Initially, the numerical models were created using the Abaqus CAE 2024, replicating the actual experimental models. The numerical bending modal frequency of each numerical model is determined, and the 0°–0° oriented models exhibited considerably higher values compared to the corresponding 0°–90° models. Significant differences were noted between the numerical and experimental values in the higher modes, mainly due to existence of voids and misalignment in the actual models that were not considered in numerical models. Following this, a numerical amplitude frequency response (AFR) analysis was conducted to observe vibration amplitude variations as a function of frequency. The AFR numerical results demonstrated consistent trends with the experimental results despite differences between the absolute values of both scenarios. Afterwards, vibration amplitude control analysis was performed under the influence of a macro fiber composite (MFC) actuator. The findings from both numerical and experimental cases revealed that vibration control was noticeably higher in 0°–0° oriented structures compared to 0°–90° structures. Experimental models demonstrated higher vibration control effectiveness than the corresponding numerical models. Although significant differences between the numerical and experimental vibration response values were observed in each composite structure, the numerical results exhibited consistent trends with the experiments. This discrepancy is attributed to the challenge of capturing all boundary conditions of the experimental scenario and incorporating them into the numerical simulation. Full article
Show Figures

Figure 1

24 pages, 2554 KiB  
Review
Technical Chains in Civil and Urban Engineering: Review of Selected Solutions, Shaping, Geometry, and Dimensioning
by Krzysztof Adam Ostrowski and Mariusz Spyrowski
Appl. Sci. 2025, 15(13), 7600; https://doi.org/10.3390/app15137600 - 7 Jul 2025
Viewed by 437
Abstract
This article provides an in-depth review of selected technical chains, with particular emphasis on link chains and their load transmission mechanisms. It explores structural and functional characteristics, highlighting how chain geometry affects stress distribution, fatigue life, and performance under various loading conditions. The [...] Read more.
This article provides an in-depth review of selected technical chains, with particular emphasis on link chains and their load transmission mechanisms. It explores structural and functional characteristics, highlighting how chain geometry affects stress distribution, fatigue life, and performance under various loading conditions. The study includes a detailed classification of chains by type, material, and application, ranging from steel-based lifting and transport chains to lightweight, corrosion-resistant polymer types. Manufacturing methods and connection techniques are also discussed, underscoring the importance of proper assembly for mechanical reliability. Special attention is given to the role of materials, particularly the emergence of polymer composites reinforced with glass or carbon fibers, which offer promising alternatives to conventional metals. Although such composites exhibit advantageous properties—such as low weight, corrosion resistance, and energy efficiency—their application remains limited, insufficient load-bearing capacity, and the absence of standardized design guidelines. The review identifies critical knowledge gaps in the field, especially concerning shaping, dimensioning, and normative requirements for polymer-based load-bearing chains. It also highlights the lack of focused research on chain-specific geometries and the need for numerical simulations to optimize link design. The article concludes by emphasizing the importance of developing sustainable, durable, and standardized chain systems—particularly those utilizing recycled or novel materials—to meet both technical demands and environmental goals. This work supports future innovation in the design of advanced chain structures and provides a foundation for expanding the use of high-performance composites in civil and urban engineering applications. Full article
Show Figures

Figure 1

24 pages, 24527 KiB  
Article
Design of Alternatives to Stained Glass with Open-Source Distributed Additive Manufacturing for Energy Efficiency and Economic Savings
by Emily Bow Pearce, Joshua M. Pearce and Alessia Romani
Designs 2025, 9(4), 80; https://doi.org/10.3390/designs9040080 - 24 Jun 2025
Viewed by 829
Abstract
Stained glass has played important roles in heritage building construction, however, conventional fabrication techniques have become economically prohibitive due to both capital costs and energy inefficiency, as well as high-level artistic and craft skills. To overcome these challenges, this study provides a new [...] Read more.
Stained glass has played important roles in heritage building construction, however, conventional fabrication techniques have become economically prohibitive due to both capital costs and energy inefficiency, as well as high-level artistic and craft skills. To overcome these challenges, this study provides a new design methodology for customized 3D-printed polycarbonate (PC)-based stained-glass window alternatives using a fully open-source toolchain and methodology based on digital fabrication and hybrid crafts. Based on design thinking and open design principles, this procedure involves fabricating an additional insert made of (i) a PC substrate and (ii) custom geometries directly 3D printed on the substrate with PC-based 3D printing feedstock (iii) to be painted after the 3D printing process. This alternative is intended for customizable stained-glass design patterns to be used instead of traditional stained glass or in addition to conventional windows, making stained glass accessible and customizable according to users’ needs. Three approaches are developed and demonstrated to generate customized painted stained-glass geometries according to the different users’ skills and needs using (i) online-retrieved 3D and 2D patterns; (ii) custom patterns, i.e., hand-drawn and digital-drawn images; and (iii) AI-generated patterns. The proposed methodology shows potential for distributed applications in the building and heritage sectors, demonstrating its practical feasibility. Its use makes stained-glass-based products accessible to a broader range of end-users, especially for repairing and replicating existing conventional stained glass and designing new customizable products. The developed custom patterns are 50 times less expensive than traditional stained glass and can potentially improve thermal insulation, paving the way to energy efficiency and economic savings. Full article
Show Figures

Graphical abstract

Back to TopTop