Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = get hydrogen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4082 KiB  
Article
Epoxy-Functionalized Isatin Derivative: Synthesis, Computational Evaluation, and Antibacterial Analysis
by Deepanjali Shukla, Iqbal Azad, Mohd Arsh Khan, Ziaul Husain, Azhar Kamal, Sabahat Yasmeen Sheikh, Ibrahim Alotibi, Varish Ahmad and Firoj Hassan
Antibiotics 2025, 14(6), 595; https://doi.org/10.3390/antibiotics14060595 - 9 Jun 2025
Viewed by 2115
Abstract
Background/Objectives: The current need for new antibacterial compounds that target non-classical pathways is highlighted by the emergence of multidrug-resistant Klebsiella pneumoniae. In the development of antibiotics, DNA adenine methyltransferase (Dam), a key regulator of bacterial gene expression and pathogenicity, is still underutilized. [...] Read more.
Background/Objectives: The current need for new antibacterial compounds that target non-classical pathways is highlighted by the emergence of multidrug-resistant Klebsiella pneumoniae. In the development of antibiotics, DNA adenine methyltransferase (Dam), a key regulator of bacterial gene expression and pathogenicity, is still underutilized. Epoxy-functionalized analogues of isatin derivatives have not been adequately investigated for their antibacterial activity, particularly as Dam inhibitors. In the pursuit of antimicrobial agents, this study synthesized an epoxy-functionalized isatin derivative (L3) using a one-pot reaction. The compound was characterized using FT-IR, ¹H-NMR, 13C-NMR, HR-MS, and UV–Vis spectroscopy. Methods: In silico evaluation performed by using ADMETlab3 and SwissADME. While molecular docking studies were achieved by AutoDock and Vina to find L3’s interaction with potential antibacterial target (Dam protein in K. pneumoniae). In addition, the antibacterial potential of L3 was evaluated using minimum inhibitory concentration (MIC) assays against Bacillus cereus, Bacillus pumilus, Escherichia coli, and K. pneumoniae. Results: Among these, L3 exhibited potential inhibitory activity against K. pneumoniae, with a MIC value of 93.75 μg/mL. In silico evaluations confirmed L3’s favorable drug-like properties, including potential oral bioavailability, blood–brain barrier (BBB) permeability, and low plasma protein binding (PPB). The compound satisfied Lipinski’s and other drug-likeness rules as well as getting a quantitative estimate of drug-likeness (QED) score of 0.52. Here, a homology model of Dam protein in K. pneumoniae was generated using the SWISS-MODEL server and validated using computational tools. Targeted docking analysis revealed that L3 exhibited significant potential binding affinity against Dam protein, with binding energies of −6.4 kcal/mol and −4.85 kcal/mol, as determined by Vina and AutoDock, respectively. The associated inhibition constant was calculated as 280.35 µM. Further interaction analysis identified the formation of hydrogen bonds with TRP7 and PHE32, along with Van der Waals’ interactions involving GLY9, ASP51, and ASP179. Conclusions: These findings highlight L3 as a promising scaffold for antimicrobial drug development, particularly in targeting Dam protein in K. pneumoniae. Furthermore, the ADMET profiling and physicochemical properties of L3 support its potential as a drug-like candidate. Full article
Show Figures

Figure 1

9 pages, 9941 KiB  
Article
In Situ Anodic Transition and Cathodic Contamination Affect the Overall Voltage of Alkaline Water Electrolysis
by Zheng Liu, Zhaoyu Liu, Lingxing Zan, Yu Sun, Huizhen Han, Zhe Li, Han Wang, Ting Cao, Yao Zhu, Haiyang Lv, Yuxuan Liu, Juzhe Liu and Xin Bo
Molecules 2024, 29(22), 5298; https://doi.org/10.3390/molecules29225298 - 9 Nov 2024
Viewed by 1402
Abstract
NiFe (oxy)hydroxide has been widely used as a benchmark anodic catalyst for oxygen evolution reactions (OERs) in alkaline water electrolysis devices; however, the energy saving actually takes contributions from both the anodic OER and cathodic hydrogen evolution reaction (HER). In this work, we [...] Read more.
NiFe (oxy)hydroxide has been widely used as a benchmark anodic catalyst for oxygen evolution reactions (OERs) in alkaline water electrolysis devices; however, the energy saving actually takes contributions from both the anodic OER and cathodic hydrogen evolution reaction (HER). In this work, we observe the catalytic promotion upon the in situ-derived NiFe (oxy)hydroxide from the NiFe alloy monolithic electrode and also point out that the coupled nickel cathode is contaminated, leading to the loss of HER activity and a reduction in overall efficiency. It is found that Ni2+ and Fe3+ cations are inevitably detached from the anode into the electrolyte and electrodeposited on the nickel cathode after the three-month industrial simulation. This research presents the significant enhancement of the oxygen evolution catalysis using an in situ aging process and emphasizes that the catalytic application should not only be isolated on the half reaction, but a reasonable coupled electrode match to get rid of the contamination from the electrolyte is also of great significance to sufficiently present the intrinsic catalytic yielding for the real application. Full article
Show Figures

Figure 1

11 pages, 1043 KiB  
Article
Economic Prospects of Taxis Powered by Hydrogen Fuel Cells in Palestine
by Fady M. A. Hassouna and Kangwon Shin
World Electr. Veh. J. 2024, 15(2), 50; https://doi.org/10.3390/wevj15020050 - 5 Feb 2024
Cited by 5 | Viewed by 2198
Abstract
Recently, major problems related to fuel consumption and greenhouse gas (GHG) emissions have arisen in the transportation sector. Therefore, developing transportation modes powered by alternative fuels has become one of the main targets for car manufacturers and governments around the world. This study [...] Read more.
Recently, major problems related to fuel consumption and greenhouse gas (GHG) emissions have arisen in the transportation sector. Therefore, developing transportation modes powered by alternative fuels has become one of the main targets for car manufacturers and governments around the world. This study aimed to investigate the economic prospects of using hydrogen fuel cell technology in taxi fleets in Westbank. For this purpose, a model that could predict the number of taxis was developed, and the expected economic implications of using hydrogen fuel cell technology in taxi fleets were determined based on the expected future fuel consumption and future fuel cost. After analysis of the results, it was concluded that a slight annual increase in the number of taxis in Palestine is expected in the future, due to the government restrictions on issuing new taxi permits in order to get this sector organized. Furthermore, using hydrogen fuel cells in taxi fleets is expected to become more and more feasible over time due to the expected future increase in oil price and the expected significant reduction in hydrogen cost as a result of the new technologies that are expected to be used in the production and handling of hydrogen. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-mobility)
Show Figures

Figure 1

32 pages, 6466 KiB  
Review
Ecological Hydrogen Production and Water Sterilization: An Innovative Approach to the Trigeneration of Renewable Energy Sources for Water Desalination: A Review
by Evgeny Solomin, Zaid Salah, Konstantin Osintsev, Sergei Aliukov, Sulpan Kuskarbekova, Vladimir Konchakov, Alyona Olinichenko, Alexander Karelin and Tatyana Tarasova
Energies 2023, 16(17), 6118; https://doi.org/10.3390/en16176118 - 22 Aug 2023
Cited by 2 | Viewed by 1605
Abstract
In this study, hydrogen production by solar thermal energy has been studied in terms of economics, technology and hydrogen sources. Methane was captured and subjected to solar photovoltaic steam, solar methane cracking, high-temperature water electrolysis and thermochemical cycles. The price of hydrogen production [...] Read more.
In this study, hydrogen production by solar thermal energy has been studied in terms of economics, technology and hydrogen sources. Methane was captured and subjected to solar photovoltaic steam, solar methane cracking, high-temperature water electrolysis and thermochemical cycles. The price of hydrogen production was calculated compared to other methods, and means of using and exploiting hydrogen as an energy carrier were examined in addition to verifying the industrial need for hydrogen, especially in the presence of high solar energy, which improves hydrogen production. The study was carried out in order to generate hydrogen using a solar electrolyzer based on polymeric exchange membrane technology. The study was carried out using two methods. The first was involved the direct connection of the photovoltaic system to the hydrogen analyzer, and the second was a system for a solar electrolysis hydrogen analyzer consisting of a PV array and a maximum power tracker MPPT meant to operate the system at the maximum power of the photovoltaic system at all times uses a DC converter to supply the analyzer. With the necessary current and hydrogen tank, the results showed that the first method was less effective compared to the second method due to the instability of the intensity of solar radiation during the day, and the results show that adding potassium hydroxide, for example, enhances ionization and improves hydrogen supply. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

15 pages, 7739 KiB  
Article
Effect of a Long-Range Dislocation Pileup on the Atomic-Scale Hydrogen Diffusion near a Grain Boundary in Plastically Deformed bcc Iron
by Yipeng Peng, Rigelesaiyin Ji, Thanh Phan, Xiang Chen, Ning Zhang, Shuozhi Xu, Ashraf Bastawros and Liming Xiong
Crystals 2023, 13(8), 1270; https://doi.org/10.3390/cryst13081270 - 17 Aug 2023
Cited by 3 | Viewed by 2086
Abstract
In this paper, we present concurrent atomistic-continuum (CAC) simulations of the hydrogen (H) diffusion along a grain boundary (GB), nearby which a large population of dislocations are piled up, in a plastically deformed bi-crystalline bcc iron sample. With the microscale dislocation slip and [...] Read more.
In this paper, we present concurrent atomistic-continuum (CAC) simulations of the hydrogen (H) diffusion along a grain boundary (GB), nearby which a large population of dislocations are piled up, in a plastically deformed bi-crystalline bcc iron sample. With the microscale dislocation slip and the atomic structure evolution at the GB being simultaneously retained, our main findings are: (i) the accumulation of tens of dislocations near the H-charged GB can induce a local internal stress as high as 3 GPa; (ii) the more dislocations piled up at the GB, the slower the H diffusion ahead of the slip–GB intersection; and (iii) H atoms diffuse fast behind the pileup tip, get trapped within the GB, and diffuse slowly ahead of the pileup tip. The CAC simulation-predicted local H diffusivity, Dpileuptip, and local stresses, σ, are correlated with each other. We then consolidate such correlations into a mechanics model by considering the dislocation pileup as an Eshelby inclusion. These findings will provide researchers with opportunities to: (a) characterize the interplay between plasticity, H diffusion, and crack initiation underlying H-induced cracking (HIC); (b) develop mechanism-based constitutive rules to be used in diffusion–plasticity coupling models for understanding the interplay between mechanical and mass transport in materials at the continuum level; and (c) connect the atomistic deformation physics of polycrystalline materials with their performance in aqueous environments, which is currently difficult to achieve in experiments. Full article
Show Figures

Figure 1

12 pages, 3995 KiB  
Article
Hydrogen Peroxide Measurement Can Be Used to Monitor Plant Oxidative Stress Rapidly Using Modified Ferrous Oxidation Xylenol Orange and Titanium Sulfate Assay Correlation
by Mizanur Rahman, Takashi Asaeda, Kiyotaka Fukahori, Fumiko Imamura, Akio Nohara and Masaomi Matsubayashi
Int. J. Plant Biol. 2023, 14(3), 546-557; https://doi.org/10.3390/ijpb14030043 - 23 Jun 2023
Cited by 7 | Viewed by 4679
Abstract
Various methodologies, sensitivities, and types of interference affect the quantification of plant hydrogen peroxide (H2O2) concentration. Modified ferrous oxidation xylenol orange (eFOX) assay and titanium sulfate (Ti(SO4)2 assay are relatively accessible methods. However, their correlation is [...] Read more.
Various methodologies, sensitivities, and types of interference affect the quantification of plant hydrogen peroxide (H2O2) concentration. Modified ferrous oxidation xylenol orange (eFOX) assay and titanium sulfate (Ti(SO4)2 assay are relatively accessible methods. However, their correlation is unknown, for example whether we can get the same results for different species in different environments. Leaf samples of Ambrosia trifida, Solidago altissima, Artemisia princeps, and Sicyos angulatus were collected from a riparian vegetation zone on sunny days. The H2O2 concentration in the plant leaves was evaluated in two groups. Nonfrozen leaf samples were prepared for analysis soon after arriving at the laboratory, and frozen leaf samples were stored at −80 °C for 25 days and prepared afterwards. The eFOX assay can measure even lower fluctuations in H2O2 concentration than the Ti(SO4)2 assay. A substantial correlation was observed between nonfrozen and frozen samples in the eFOX (r = 0.879, p < 0.001) and Ti(SO4)2 assays (r = 0.837, p < 0.001). Sample weight did not affect H2O2 quantification. Each species showed a substantial correlation between the eFOX and Ti(SO4)2 assays in nonfrozen conditions (Ambrosia trifida (r = 0.767, p < 0.001), Solidago altissima (r = 0.583, p < 0.001), Artemisia princeps (r = 0.672, p < 0.001), and Sicyos angulatus (r = 0.828, p < 0.001)). Therefore, both methods can be utilized easily and rapidly to quantify oxidative stress using H2O2. Full article
(This article belongs to the Section Plant Response to Stresses)
Show Figures

Figure 1

18 pages, 1279 KiB  
Review
Premier, Progress and Prospects in Renewable Hydrogen Generation: A Review
by Mukesh Sharma, Arka Pramanik, Gourav Dhar Bhowmick, Akash Tripathi, Makarand Madhao Ghangrekar, Chandan Pandey and Beom-Soo Kim
Fermentation 2023, 9(6), 537; https://doi.org/10.3390/fermentation9060537 - 31 May 2023
Cited by 20 | Viewed by 3333
Abstract
Renewable hydrogen production has an opportunity to reduce carbon emissions in the transportation and industrial sectors. This method generates hydrogen utilizing renewable energy sources, such as the sun, wind, and hydropower, lowering the number of greenhouse gases released into the environment. In recent [...] Read more.
Renewable hydrogen production has an opportunity to reduce carbon emissions in the transportation and industrial sectors. This method generates hydrogen utilizing renewable energy sources, such as the sun, wind, and hydropower, lowering the number of greenhouse gases released into the environment. In recent years, considerable progress has been made in the production of sustainable hydrogen, particularly in the disciplines of electrolysis, biomass gasification, and photoelectrochemical water splitting. This review article figures out the capacity, efficiency, and cost-effectiveness of hydrogen production from renewable sources effectively comparing the conventionally used technologies with the latest techniques, which are getting better day by day with the implementation of the technological advancements. Governments, investors, and industry players are increasingly interested in manufacturing renewable hydrogen, and the global need for clean energy is expanding. It is projected that facilities for manufacturing renewable hydrogen, as well as infrastructure to support this development, would expand, hastening the transition to an environment-friendly and low-carbon economy. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

14 pages, 1337 KiB  
Article
Shotgun Proteomics of Co-Cultured Leukemic and Bone Marrow Stromal Cells from Different Species as a Preliminary Approach to Detect Intercellular Protein Transfer
by Abraham Josué Nevárez-Ramírez, Ana Laura Guzmán-Ortiz, Pedro Cortes-Reynosa, Eduardo Perez-Salazar, Gustavo Alberto Jaimes-Ortega, Ricardo Valle-Rios, Álvaro Marín-Hernández, José S. Rodríguez-Zavala, Eliel Ruiz-May, José Luis Castrejón-Flores and Héctor Quezada
Proteomes 2023, 11(2), 15; https://doi.org/10.3390/proteomes11020015 - 5 Apr 2023
Cited by 1 | Viewed by 3615
Abstract
Cellular interactions within the bone marrow microenvironment modulate the properties of subsets of leukemic cells leading to the development of drug-resistant phenotypes. The intercellular transfer of proteins and organelles contributes to this process but the set of transferred proteins and their effects in [...] Read more.
Cellular interactions within the bone marrow microenvironment modulate the properties of subsets of leukemic cells leading to the development of drug-resistant phenotypes. The intercellular transfer of proteins and organelles contributes to this process but the set of transferred proteins and their effects in the receiving cells remain unclear. This study aimed to detect the intercellular protein transfer from mouse bone marrow stromal cells (OP9 cell line) to human T-lymphoblasts (CCRF-CEM cell line) using nanoLC-MS/MS-based shotgun proteomics in a 3D co-culture system. After 24 h of co-culture, 1513 and 67 proteins from human and mouse origin, respectively, were identified in CCRF-CEM cells. The presence of mouse proteins in the human cell line, detected by analyzing the differences in amino acid sequences of orthologous peptides, was interpreted as the result of intercellular transfer. The transferred proteins might have contributed to the observed resistance to vincristine, methotrexate, and hydrogen peroxide in the co-cultured leukemic cells. Our results suggest that shotgun proteomic analyses of co-cultured cells from different species could be a simple option to get a preliminary survey of the proteins exchanged among interacting cells. Full article
Show Figures

Graphical abstract

17 pages, 765 KiB  
Review
Green Conversion of Carbon Dioxide and Sustainable Fuel Synthesis
by Hosam M. Saleh and Amal I. Hassan
Fire 2023, 6(3), 128; https://doi.org/10.3390/fire6030128 - 22 Mar 2023
Cited by 44 | Viewed by 9749
Abstract
Carbon capture and use may provide motivation for the global problem of mitigating global warming from substantial industrial emitters. Captured CO2 may be transformed into a range of products such as methanol as renewable energy sources. Polymers, cement, and heterogeneous catalysts for [...] Read more.
Carbon capture and use may provide motivation for the global problem of mitigating global warming from substantial industrial emitters. Captured CO2 may be transformed into a range of products such as methanol as renewable energy sources. Polymers, cement, and heterogeneous catalysts for varying chemical synthesis are examples of commercial goods. Because some of these components may be converted into power, CO2 is a feedstock and excellent energy transporter. By employing collected CO2 from the atmosphere as the primary hydrocarbon source, a carbon-neutral fuel may be created. The fuel is subsequently burned, and CO2 is released into the atmosphere like a byproduct of the combustion process. There is no net carbon dioxide emitted or withdrawn from the environment during this process, hence the name carbon-neutral fuel. In a world with net-zero CO2 emissions, the anthroposphere will have attained its carbon hold-up capacity in response to a particular global average temperature increase, such as 1.5 °C. As a result, each carbon atom removed from the subsurface (lithosphere) must be returned to it, or it will be expelled into the atmosphere. CO2 removal technologies, such as biofuels with carbon sequestration and direct air capture, will be required to lower the high CO2 concentration in the atmosphere if the Paris Agreement’s ambitious climate targets are to be realized. In a carbon-neutral scenario, CO2 consumption with renewable energy is expected to contribute to the displacement of fossil fuels. This article includes a conceptual study and an evaluation of fuel technology that enables a carbon-neutral chemical industry in a net-zero-CO2-emissions environment. These are based on the use of collected CO2 as a feedstock in novel chemical processes, along with “green” hydrogen, or on the use of biomass. It will also shed light on innovative methods of green transformation and getting sustainable, environmentally friendly energy. Full article
(This article belongs to the Special Issue Biomass-Burning)
Show Figures

Figure 1

13 pages, 3582 KiB  
Article
Investigation of Molecular Mechanism of Cobalt Porphyrin Catalyzed CO2 Electrochemical Reduction in Ionic Liquid by In-Situ SERS
by Feng Wu, Fengshuo Jiang, Jiahao Yang, Weiyan Dai, Donghui Lan, Jing Shen and Zhengjun Fang
Molecules 2023, 28(6), 2747; https://doi.org/10.3390/molecules28062747 - 18 Mar 2023
Cited by 5 | Viewed by 2638
Abstract
This study explores the electrochemical reduction in CO2 using room temperature ionic liquids as solvents or electrolytes, which can minimize the environmental impact of CO2 emissions. To design effective CO2 electrochemical systems, it is crucial to identify intermediate surface species [...] Read more.
This study explores the electrochemical reduction in CO2 using room temperature ionic liquids as solvents or electrolytes, which can minimize the environmental impact of CO2 emissions. To design effective CO2 electrochemical systems, it is crucial to identify intermediate surface species and reaction products in situ. The study investigates the electrochemical reduction in CO2 using a cobalt porphyrin molecular immobilized electrode in 1-n-butyl-3-methyl imidazolium tetrafluoroborate (BMI.BF4) room temperature ionic liquids, through in-situ surface-enhanced Raman spectroscopy (SERS) and electrochemical technique. The results show that the highest faradaic efficiency of CO produced from the electrochemical reduction in CO2 can reach 98%. With the potential getting more negative, the faradaic efficiency of CO decreases while H2 is produced as a competitive product. Besides, water protonates porphyrin macrocycle, producing pholorin as the key intermediate for the hydrogen evolution reaction, leading to the out-of-plane mode of the porphyrin molecule. Absorption of CO2 by the ionic liquids leads to the formation of BMI·CO2 adduct in BMI·BF4 solution, causing vibration modes at 1100, 1457, and 1509 cm−1. However, the key intermediate of CO2· radical is not observed. The υ(CO) stretching mode of absorbed CO is affected by the electrochemical Stark effect, typical of CO chemisorbed on a top site. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

14 pages, 2751 KiB  
Article
Study of Cyclohexane and Methylcyclohexane Functionalization Promoted by Manganese(III) Compounds
by Eduardo S. Neves, Christiane Fernandes and Adolfo Horn
Inorganics 2023, 11(3), 105; https://doi.org/10.3390/inorganics11030105 - 3 Mar 2023
Cited by 5 | Viewed by 3748
Abstract
Alkane functionalization using safe and low-energy processes is of great interest to industry and academia. Aiming to contribute to the process of saturated hydrocarbon functionalization, we have studied a set of three manganese(III) complexes as catalysts for promoting the oxidation of saturated hydrocarbons [...] Read more.
Alkane functionalization using safe and low-energy processes is of great interest to industry and academia. Aiming to contribute to the process of saturated hydrocarbon functionalization, we have studied a set of three manganese(III) complexes as catalysts for promoting the oxidation of saturated hydrocarbons (cyclohexane and methylcyclohexane) in the presence of hydrogen peroxide or trichloroisocyanuric acid (TCCA). The mononuclear manganese(III) compounds were prepared using the ligands H2LMet4 (6,6’-((1,4-diazepane-1,4-diyl)bis(methylene))bis(2,4-dimethylphenol), H2salen (2,2’-((1E,1’E)-(ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene))diphenol) and H2salan (2,2’-((ethane-1,2-diylbis(azanediyl))bis(methylene))diphenol). The catalytic processes were carried out in acetonitrile at 25 and 50 °C for 24 h. The increase in the temperature was important to get a better conversion. The compounds did not promote cyclohexane oxidation in the presence of H2O2. However, they were active in the presence of TCCA, employing a ratio of 1000:333:1 equivalents of the substrate:TCCA:catalyst. The best catalytic activity was shown by the compound [Mn(salen)Cl], reaching conversions of 14.5 ± 0.3% (25 °C) and 26.3 ± 1.1% (50 °C) (yield for chlorocyclohexane) and up to 12.1 ± 0.5% (25 °C) and 29.8 ± 2.2% (50 °C) (total yield for the mixture of the products 1-chloro-4-methylcyclohexane, 3-methylcyclohexene and 1-methylcyclohexene). The interaction of the catalysts with TCCA was studied using electron paramagnetic resonance (EPR), suggesting that the catalysts [Mn(LMet4)Cl] and [Mn(salan)Cl] act via a different mechanism from that observed for [Mn(salen)Cl]. Full article
(This article belongs to the Special Issue Manganese Chemistry: From Fundamentals to Applications)
Show Figures

Figure 1

12 pages, 2820 KiB  
Article
Synergistic Electrochemical Properties of Graphene Incorporated LCZ-Oxide Cathode for Low Temperature Solid Oxide Fuel Cell
by Muhammad Ashfaq Ahmad, Khalil Ahmad, Hu Li, Abdelaziz Gassoumi, Rizwan Raza, Muhammad Saleem, Syed Hassan Mujtaba Jafri and Ghazanfar Abbas
Crystals 2023, 13(3), 434; https://doi.org/10.3390/cryst13030434 - 2 Mar 2023
Cited by 4 | Viewed by 2309
Abstract
Mixed metallic oxides are getting increasing attention as novel electrode materials for energy conversion devices. However, low mixed ionic-electronic conductivity and high operating temperature hamper the practical applications of these devices. This study reports an effective strategy to improve the conductivity and performance [...] Read more.
Mixed metallic oxides are getting increasing attention as novel electrode materials for energy conversion devices. However, low mixed ionic-electronic conductivity and high operating temperature hamper the practical applications of these devices. This study reports an effective strategy to improve the conductivity and performance of the fuel cell at low temperature by partially incorporating graphene in the Li0.1Cu0.2Zn0.7-oxide (LCZ) composite. The proposed cathode material is synthesized via the cost effective conventional solid-state route. Graphene incorporated LCZ shows excellent performance, which is attributed to the favorable charge transport paths offering low area-specific resistance. An X-ray diffractometer (XRD) and scanning electron microscope (SEM) are employed for microstructural and surface morphological analyses, respectively. Electrical conductivities of all the materials are determined by the DC four probe method, and interestingly, LCZ-1.5% graphene exhibits an excellent conductivity of 3.5 S/cm in air atmosphere at a temperature of 450 °C with a minimum value of 0.057 Ωcm2 area-specific resistance (ASR) that demonstrates significantly good performance. Moreover, the three-layer fuel cell device is fabricated using sodium carbonated Sm0.2Ce0.8O (NSDC) as an electrolyte, which can operate at low temperatures exhibiting open circuit voltage 0.95 V and shows a peak power density, i.e., 267.5 mW/cm2 with hydrogen as the fuel. Full article
(This article belongs to the Special Issue Advances of Solid Oxide Fuel Cells)
Show Figures

Figure 1

9 pages, 5177 KiB  
Communication
Investigation of Glucose–Water Mixtures as a Function of Concentration and Temperature by Infrared Spectroscopy
by Maria Teresa Caccamo and Salvatore Magazù
Int. J. Mol. Sci. 2023, 24(3), 2564; https://doi.org/10.3390/ijms24032564 - 29 Jan 2023
Cited by 2 | Viewed by 2917
Abstract
The main aim of the present paper is to characterize the hydration properties of glucose and the hydrogen bond network in glucose–water mixtures. For these purposes, temperature scans on ten concentration values of glucose–water mixtures were performed by means of Fourier Transform InfraRed [...] Read more.
The main aim of the present paper is to characterize the hydration properties of glucose and the hydrogen bond network in glucose–water mixtures. For these purposes, temperature scans on ten concentration values of glucose–water mixtures were performed by means of Fourier Transform InfraRed (FTIR) spectroscopy. More specifically, in order to get this information an analysis of the intramolecular OH stretching mode, investigating the 3000–3700 cm−1 spectral range, was performed by means of an innovative approach based on the evaluation of the Spectral Distance (SD). The adopted procedure allows evaluating the glucose hydration number as well as characterizing the temperature behavior of the hydrogen bond network in the glucose–water mixtures. The obtained results for the hydration number are in excellent agreement with literature data and suggest the existence of a particular concentration value for which the hydrogen bond network shows a maximum strength. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

8 pages, 362 KiB  
Article
Electron Capture and Ionisation in Collisions of Ne10+ and Li3+ with Atomic Hydrogen
by Aks M. Kotian, Corey T. Plowman, Ilkhom B. Abdurakhmanov, Igor Bray and Alisher S. Kadyrov
Atoms 2022, 10(4), 144; https://doi.org/10.3390/atoms10040144 - 1 Dec 2022
Cited by 3 | Viewed by 1954
Abstract
The two-center wave-packet convergent close-coupling method has been applied to model the processes of electron capture and ionisation in collisions of fully stripped neon and lithium ions with atomic hydrogen at projectile energies from 1 keV/u to 1 MeV/u. For the Ne [...] Read more.
The two-center wave-packet convergent close-coupling method has been applied to model the processes of electron capture and ionisation in collisions of fully stripped neon and lithium ions with atomic hydrogen at projectile energies from 1 keV/u to 1 MeV/u. For the Ne10+ projectile, the resulting total electron-capture cross section lies between the two sets of experimental results available for system, which differ from each other significantly. For Li3+, our total electron-capture cross section agrees with the available experimental measurements by Shah et al. [J. Phys. B: At. Mol. Opt. Phys 11, L233 (1978)] and Seim et al. [J. Phys. B: At. Mol. Opt. Phys 14, 3475 (1981)], particularly at low and high energies. We also get good agreement with the existing theoretical works, particularly the atomic- and molecular-orbital close-coupling calculations. Our total ionisation cross section overestimates the experimental data by Shah et al. [J. Phys. B: At. Mol. Opt. Phys 15, 413 (1982)] at the peak, however we get good agreement with the other existing theoretical calculations at low and high energies. Full article
(This article belongs to the Special Issue 20th International Conference on the Physics of Highly Charged Ions)
Show Figures

Figure 1

14 pages, 3668 KiB  
Article
Exploring the Binding Interaction of Active Compound of Pineapple against Foodborne Bacteria and Novel Coronavirus (SARS-CoV-2) Based on Molecular Docking and Simulation Studies
by Mohammed F. Abuzinadah, Varish Ahmad, Salwa Al-Thawdi, Shadi Ahmed Zakai and Qazi Mohammad Sajid Jamal
Nutrients 2022, 14(15), 3045; https://doi.org/10.3390/nu14153045 - 25 Jul 2022
Cited by 8 | Viewed by 2897
Abstract
Natural resources, particularly plants and microbes, are an excellent source of bioactive molecules. Bromelain, a complex enzyme mixture found in pineapples, has numerous pharmacological applications. In a search for therapeutic molecules, we conducted an in silico study on natural phyto-constituent bromelain, targeting pathogenic [...] Read more.
Natural resources, particularly plants and microbes, are an excellent source of bioactive molecules. Bromelain, a complex enzyme mixture found in pineapples, has numerous pharmacological applications. In a search for therapeutic molecules, we conducted an in silico study on natural phyto-constituent bromelain, targeting pathogenic bacteria and viral proteases. Docking studies revealed that bromelain strongly bound to food-borne bacterial pathogens and SARS-CoV-2 virus targets, with a high binding energy of −9.37 kcal/mol. The binding interaction was mediated by the involvement of hydrogen bonds, and some hydrophobic interactions stabilized the complex and molecular dynamics. Simulation studies also indicated the stable binding between bromelain and SARS-CoV-2 protease as well as with bacterial targets which are essential for DNA and protein synthesis and are required to maintain the integrity of membranous proteins. From this in silico study, it is also concluded that bromelain could be an effective molecule to control foodborne pathogen toxicity and COVID-19. So, eating pineapple during an infection could help to interfere with the pathogen attaching and help prevent the virus from getting into the host cell. Further, research on the bromelain molecule could be helpful for the management of COVID-19 disease as well as other bacterial-mediated diseases. Thus, the antibacterial and anti-SARS-CoV-2 virus inhibitory potentials of bromelain could be helpful in the management of viral infections and subsequent bacterial infections in COVID-19 patients. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

Back to TopTop