Green Conversion of Carbon Dioxide and Sustainable Fuel Synthesis
Abstract
:1. Introduction
2. Global Warming and Sustainability
3. Green Hydrogen and Biofuel
4. Carbon Dioxide Sequestration by Microalgae
Target | Method | Enzymes | Species | Product | Pathway | References |
---|---|---|---|---|---|---|
Changing heterotrophic yeast into autotrophs capable of utilizing carbon dioxide as their sole carbon source | Isotopic tracing, metabolic rewiring, gene modification, responsive laboratory evolution | cbbM, groEL, groES, PGK1, TDH3, TPI1, TKL1, | Pichia pastoris | Biomass | Calvin-Benson-Bassham (CBB) | [82] |
C. carboxidivorans homologous and heterozygous gene upregulation to improve ethyl alcohol and butanol manufacturing | Expression of homozygous and heterozygous RT-PCR, fermentation, and enzyme methods | aor, adhE2, fnr | Clostridium carboxidivorans | Butanol, ethyl alcohol | Wood-Ljungdahl pathway, alcohol biosynthesis | [83] |
To induce artificial autotrophy in Escherichia coli. | Isotopic tracing, metabolic rewiring, gene modification, responsive laboratory evolution | Rubisco, Prk, CA, FDH, | Escherichia coli | Biomass | CBB | [84] |
To design an efficient ATP path that leads to fixing of carbon dioxide and malate biosynthesis. | UPLC-MS/MS UPLCMS HPLC Genetic manipulations Gene overexpression, Enzyme assays, gas chromatograph, | ΔpfkAB, Δzwf | S. elongatus Escherichia coli | Malate | PCK CBB | [85] |
To cultivate artificial autotrophs in M. extorquens. | Growth phenotyping, whole-cell proteomics LC-MS/MS, Spectrophotometric assays, genetic manipulation | PCK | Methylobacterium extorquens | Biomass | CBB | [86] |
To direct carbon flow toward the shikimate pathway in order to generate aromatic compounds from CO2 sequestration. | Metabolic engineering, flow rate analysis, gene modification | MDH | S. elongatus | Aromatic compound: 2- phenylethanol, phenylpyruvate, L-phenylalanine, phenylacetaldehyde | Shikimate | [87] |
To build a heterogeneous route in Anabaena sp. for 1,3-propanediol syntheses. | Homologous recombination, pathway optimization, qPCR, GC-MS, and HPLC are all examples of gene modification. | Rubisco | Anabaena PCC7120 | 1,3-Propanediol | 1,3-propanediol biosynthetic | [88] |
To create an effective hybrid (bioelectrochemical) structure for carbon dioxide fixation. | CRISPR-Cas9 gene output, gas chromatography, mass spectrometry, and electrochemical cultivation, gene cloning. | Prk | Escherichia coli | Formate | RGP, rGCS | [89] |
Using engineered bacteria, alkanes are produced from carbon dioxide. | Gene cloning, biosensor, biofluorescence, LC | Acr1, Ramo, Aar, seado, pmado, cer1 | Acetobacterium woodii, Acinetobacter baylyi | Alkanes | Alkane biosynthesis | [90] |
5. Future Perspective
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Li, Z.; Su, C.-W.; Umar, M.; Shao, X. Exploring the Asymmetric Impact of Economic Policy Uncertainty on China’s Carbon Emissions Trading Market Price: Do Different Types of Uncertainty Matter? Technol. Forecast. Soc. Change 2022, 178, 121601. [Google Scholar] [CrossRef]
- Liu, Z.; Ciais, P.; Deng, Z.; Lei, R.; Davis, S.J.; Feng, S.; Zheng, B.; Cui, D.; Dou, X.; Zhu, B. Near-Real-Time Monitoring of Global CO2 Emissions Reveals the Effects of the COVID-19 Pandemic. Nat. Commun. 2020, 11, 5172. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, C.; Yan, S.; Zhong, J.; Zhang, B.; Cheng, Z. Cu@ Bi Nanocone Induced Efficient Reduction of CO2 to Formate with High Current Density. Appl. Catal. A Gen. 2020, 598, 117545. [Google Scholar] [CrossRef]
- Prasad, R.; Gupta, S.K.; Shabnam, N.; Oliveira, C.Y.B.; Nema, A.K.; Ansari, F.A.; Bux, F. Role of Microalgae in Global CO2 Sequestration: Physiological Mechanism, Recent Development, Challenges, and Future Prospective. Sustainability 2021, 13, 13061. [Google Scholar] [CrossRef]
- Saleh, H.M.; Bondouk, I.I.; Salama, E.; Esawii, H.A. Consistency and Shielding Efficiency of Cement-Bitumen Composite for Use as Gamma-Radiation Shielding Material. Prog. Nucl. Energy 2021, 137, 103764. [Google Scholar] [CrossRef]
- Reda, S.M.; Saleh, H.M. Calculation of the Gamma Radiation Shielding Efficiency of Cement-Bitumen Portable Container Using MCNPX Code. Prog. Nucl. Energy 2021, 142, 104012. [Google Scholar] [CrossRef]
- Saleh, H.M.; Bondouk, I.I.; Salama, E.; Mahmoud, H.H.; Omar, K.; Esawii, H.A. Asphaltene or Polyvinylchloride Waste Blended with Cement to Produce a Sustainable Material Used in Nuclear Safety. Sustainabilitiy 2022, 14, 3525. [Google Scholar] [CrossRef]
- Eid, M.S.; Bondouk, I.I.; Saleh, H.M.; Omar, K.M.; Sayyed, M.I.; El-Khatib, A.M.; Elsafi, M. Implementation of Waste Silicate Glass into Composition of Ordinary Cement for Radiation Shielding Applications. Nucl. Eng. Technol. 2021, 54, 1456–1463. [Google Scholar] [CrossRef]
- Eid, M.S.; Bondouk, I.I.; Saleh, H.M.; Omar, K.M.; Diab, H.M. Investigating the Effect of Gamma and Neutron Irradiation on Portland Cement Provided with Waste Silicate Glass. Sustainability 2022, 15, 763. [Google Scholar] [CrossRef]
- Eskander, S.B.; Saleh, H.M.; Tawfik, M.E.; Bayoumi, T.A. Towards Potential Applications of Cement-Polymer Composites Based on Recycled Polystyrene Foam Wastes on Construction Fields: Impact of Exposure to Water Ecologies. Case Stud. Constr. Mater. 2021, 15, e00664. [Google Scholar] [CrossRef]
- Saleh, H.; Salman, A.; Faheim, A.; El-Sayed, A. Polymer and Polymer Waste Composites in Nuclear and Industrial Applications. J. Nucl. Energy Sci. Power Gener. Technol. 2020, 9, 11000199. [Google Scholar]
- Saleh, H.M.; Eskander, S.B. Impact of Water Flooding on Hard Cement-Recycled Polystyrene Composite Immobilizing Radioactive Sulfate Waste Simulate. Constr. Build. Mater. 2019, 222, 522–530. [Google Scholar] [CrossRef]
- Saleh, H.M.; El-Saied, F.A.; Salaheldin, T.A.; Hezo, A.A. Influence of Severe Climatic Variability on the Structural, Mechanical and Chemical Stability of Cement Kiln Dust-Slag-Nanosilica Composite Used for Radwaste Solidification. Constr. Build. Mater. 2019, 218, 556–567. [Google Scholar] [CrossRef]
- Saleh, H.M.; El-Sheikh, S.M.; Elshereafy, E.E.; Essa, A.K. Performance of Cement-Slag-Titanate Nanofibers Composite Immobilized Radioactive Waste Solution through Frost and Flooding Events. Constr. Build. Mater. 2019, 223, 221–232. [Google Scholar] [CrossRef]
- Saleh, H.M.; Salman, A.A.; Faheim, A.A.; El-Sayed, A.M. Influence of Aggressive Environmental Impacts on Clean, Lightweight Bricks Made from Cement Kiln Dust and Grated Polystyrene. Case Stud. Constr. Mater. 2021, 15, e00759. [Google Scholar]
- El-Sayed, A.M.; Faheim, A.A.; Salman, A.A.; Saleh, H.M. Sustainable Lightweight Concrete Made of Cement Kiln Dust and Liquefied Polystyrene Foam Improved with Other Waste Additives. Sustainability 2022, 14, 15313. [Google Scholar] [CrossRef]
- Saleh, H.M.; Aglan, R.F.; Mahmoud, H.H. Qualification of Corroborated Real Phytoremediated Radioactive Wastes under Leaching and Other Weathering Parameters. Prog. Nucl. Energy 2020, 119, 103178. [Google Scholar] [CrossRef]
- Saleh, H.M.; Moussa, H.R.; El-Saied, F.A.; Dawoud, M.; Bayoumi, T.A.; Abdel Wahed, R.S. Mechanical and Physicochemical Evaluation of Solidified Dried Submerged Plants Subjected to Extreme Climatic Conditions to Achieve an Optimum Waste Containment. Prog. Nucl. Energy 2020, 122, 103285. [Google Scholar] [CrossRef]
- Saleh, H.M.; Eskander, S.B. Long-Term Effect on the Solidified Degraded Cellulose-Based Waste Slurry in Cement Matrix. Acta Montan. Slovaca 2009, 14, 291–297. [Google Scholar]
- Saleh, H.M. Some Applications of Clays in Radioactive Waste Management. In Clays and Clay Minerals: Geological Origin, Mechanical Properties and Industrial Applications; Wesley, L.R., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2014; pp. 403–415. ISBN 978-1-63117-779-8. [Google Scholar]
- Bayoumi, T.A.; Reda, S.M.; Saleh, H.M. Assessment Study for Multi-Barrier System Used in Radioactive Borate Waste Isolation Based on Monte Carlo Simulations. Appl. Radiat. Isot. 2012, 70, 99–102. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The Role of Renewable Energy in the Global Energy Transformation. Energy Strateg. Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Priest, T. Hubbert’s Peak: The Great Debate over the End of Oil. Hist. Stud. Nat. Sci. 2014, 44, 37–79. [Google Scholar] [CrossRef] [Green Version]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply. Front. Energy Res. 2022, 9, 743114. [Google Scholar] [CrossRef]
- Olivier, J.G.J.; Peters, J.A.H.W. Trends in Global CO2 and Total Greenhouse Gas Emissions. PBL Netherlands Environ. Assess. Agency 2020, 2020, 70. [Google Scholar]
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; et al. Technologies and Perspectives for Achieving Carbon Neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef]
- Numpilai, T.; Cheng, C.K.; Limtrakul, J.; Witoon, T. Recent Advances in Light Olefins Production from Catalytic Hydrogenation of Carbon Dioxide. Process Saf. Environ. Prot. 2021, 151, 401–427. [Google Scholar] [CrossRef]
- Dowson, G.R.M.; Styring, P. Demonstration of CO2 Conversion to Synthetic Transport Fuel at Flue Gas Concentrations. Front. Energy Res. 2017, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Zhang, L.; Li, S.; Zhou, Z.; Sun, Y. Novel Heterogeneous Catalysts for CO2 Hydrogenation to Liquid Fuels. ACS Cent. Sci. 2020, 6, 1657–1670. [Google Scholar] [CrossRef] [PubMed]
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.P.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.G.; et al. Temporary Reduction in Daily Global CO2 Emissions during the COVID-19 Forced Confinement. Nat. Clim. Chang. 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Madejski, P.; Chmiel, K.; Subramanian, N.; Kuś, T. Methods and Techniques for CO2 Capture: Review of Potential Solutions and Applications in Modern Energy Technologies. Energies 2022, 15, 887. [Google Scholar] [CrossRef]
- Ennaceri, H.; Abel, B. Conversion of carbon dioxide into storable solar fuels using solar energy. In IOP Conference Series: Earth and Environmental Science, Seoul, South Korea, 26–29 January 2019; IOP Publishing: Philadelphia, PA, USA, 2019; Volume 291, p. 012038. [Google Scholar] [CrossRef]
- Kumaravel, V.; Bartlett, J.; Pillai, S.C. Photoelectrochemical Conversion of Carbon Dioxide (CO2) into Fuels and Value-Added Products. ACS Energy Lett. 2020, 486–519. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Xiao, T.; Kuznetsov, V.L.; Edwards, P.P. Turning Carbon Dioxide into Fuel. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 3343–3364. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Eden, M.R.; Gani, R. Toward the Development and Deployment of Large-Scale Carbon Dioxide Capture and Conversion Processes. Ind. Eng. Chem. Res. 2016, 55, 3383–3419. [Google Scholar] [CrossRef] [Green Version]
- Markewitz, P.; Zhao, L.; Ryssel, M.; Moumin, G.; Wang, Y.; Sattler, C.; Robinius, M.; Stolten, D. Carbon Capture for CO2 Emission Reduction in the Cement Industry in Germany. Energies 2019, 12, 2432. [Google Scholar] [CrossRef] [Green Version]
- Spadaro, L.; Palella, A.; Arena, F. Totally-green Fuels via CO2 Hydrogenation. Bull. Chem. React. Eng. Catal. 2020, 15, 390–404. [Google Scholar] [CrossRef]
- Zhong, Z.; Etim, U.; Song, Y. Improving the Cu/ZnO-Based Catalysts for Carbon Dioxide Hydrogenation to Methanol, and the Use of Methanol as a Renewable Energy Storage Media. Front. Energy Res. 2020, 8, 545431. [Google Scholar] [CrossRef]
- Allam, D.; Bennici, S.; Limousy, L.; Hocine, S. Improved Cu- and Zn-Based Catalysts for CO2 Hydrogenation to Methanol. Comptes Rendus Chim. 2019, 22, 227–237. [Google Scholar] [CrossRef]
- Si, C.; Ban, H.; Chen, K.; Wang, X.; Cao, R.; Yi, Q.; Qin, Z.; Shi, L.; Li, Z.; Cai, W.; et al. Insight into the Positive Effect of Cu0/Cu+ Ratio on the Stability of Cu-ZnO-CeO2 Catalyst for Syngas Hydrogenation. Appl. Catal. A Gen. 2020, 594, 117466. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Kim, H.B.; Park, E.D. CO and CO2 Methanation over CeO2-Supported Cobalt Catalysts. Catalysts 2022, 12, 212. [Google Scholar] [CrossRef]
- Saeedmanesh, A.; Mac Kinnon, M.A.; Brouwer, J. Hydrogen Is Essential for Sustainability. Curr. Opin. Electrochem. 2018, 12, 166–181. [Google Scholar] [CrossRef]
- Full, J.; Merseburg, S.; Miehe, R.; Sauer, A. A new perspective for climate change mitigation—Introducing carbon-negative hydrogen production from biomass with carbon capture and storage (Hybeccs). Sustainability 2021, 13, 4026. [Google Scholar] [CrossRef]
- Ringsgwandl, L.M.; Schaffert, J.; Brücken, N.; Albus, R.; Görner, K. Current Legislative Framework for Green Hydrogen Production by Electrolysis Plants in Germany. Energies 2022, 15, 1786. [Google Scholar] [CrossRef]
- Ewing, M.; Israel, B.; Jutt, T.; Talebian, H.; Stepanik, L. Hydrogen on the Path to Net-Zero Emissions Costs and Climate Benefits; Pembina Institute: Calgary, AB, Canada, 2020. [Google Scholar]
- Tashie-Lewis, B.C.; Nnabuife, S.G. Hydrogen Production, Distribution, Storage and Power Conversion in a Hydrogen Economy—A Technology Review. Chem. Eng. J. Adv. 2021, 8, 100172. [Google Scholar] [CrossRef]
- Solid, M. Gasification of Densified Biomass (DB) and Municipal Solid Wastes (MSW) Using HTA/SG Technology. Processes 2021, 9, 2178. [Google Scholar]
- Zhao, Q.; Wang, Y.; Li, G.; Hu, C. CeZrOx Promoted Water-Gas Shift Reaction under Steam–Methane Reforming Conditions. Catalysts 2020, 10, 1110. [Google Scholar] [CrossRef]
- Rosa, L.; Mazzotti, M. Potential for Hydrogen Production from Sustainable Biomass with Carbon Capture and Storage. Renew. Sustain. Energy Rev. 2022, 157, 112123. [Google Scholar] [CrossRef]
- Van Der Spek, M.; Banet, C.; Bauer, C.; Gabrielli, P.; Goldthorpe, W.; Mazzotti, M.; Munkejord, S.T.; Røkke, N.A.; Shah, N.; Sunny, N.; et al. Environmental Science Perspective on the Hydrogen Economy as a Pathway. Energy Environ. Sci. 2022, 15, 1034–1077. [Google Scholar] [CrossRef]
- Lau, H.C.; Ramakrishna, S.; Zhang, K.; Radhamani, A.V. The Role of Carbon Capture and Storage in the Energy Transition. Energy Fuels 2021, 35, 7364–7386. [Google Scholar] [CrossRef]
- Erans, M.; Sanz-Pérez, E.S.; Hanak, D.P.; Clulow, Z.; Reiner, D.M.; Mutch, G.A. Direct Air Capture: Process Technology, Techno-Economic and Socio-Political Challenges. Energy Environ. Sci. 2022, 15, 1360–1405. [Google Scholar] [CrossRef]
- da Cruz, T.T.; Balestieri, J.A.P.; de Toledo Silva, J.M.; Vilanova, M.R.N.; Oliveira, O.J.; Ávila, I. Life Cycle Assessment of Carbon Capture and Storage/Utilization: From Current State to Future Research Directions and Opportunities. Int. J. Greenh. Gas Control 2021, 108, 103309. [Google Scholar] [CrossRef]
- Winnefeld, F.; Leemann, A.; German, A.; Lothenbach, B. CO2 Storage in Cement and Concrete by Mineral Carbonation. Curr. Opin. Green Sustain. Chem. 2022, 38, 100672. [Google Scholar] [CrossRef]
- Ray, S.; Abraham, J.; Jordan, N.; Lindsay, M.; Chauhan, N. Synthetic, Photosynthetic, and Chemical Strategies to Enhance Carbon Dioxide Fixation. C 2022, 8, 18. [Google Scholar] [CrossRef]
- Benoiston, A.-S.; Ibarbalz, F.M.; Bittner, L.; Guidi, L.; Jahn, O.; Dutkiewicz, S.; Bowler, C. The Evolution of Diatoms and Their Biogeochemical Functions. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2017, 372, 20160397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iglina, T.; Iglin, P.; Pashchenko, D. Industrial CO2 Capture by Algae: A Review and Recent Advances. Sustainability 2022, 14, 3801. [Google Scholar] [CrossRef]
- Fei, C.; Wilson, A.T.; Mangan, N.M.; Wingreen, N.S.; Jonikas, M.C. Modelling the pyrenoid-based CO2-concentrating mechanism provides insights into its operating principles and a roadmap for its engineering into crops. Nat. Plants 2022, 8, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Waheed, R.; Sarwar, S.; Alsaggaf, M.I. Relevance of energy, green and blue factors to achieve sustainable economic growth: Empirical study of Saudi Arabia. Technol. Forecast. Soc. Change 2023, 187, 122184. [Google Scholar] [CrossRef]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on Nanoparticles and Nanostructured Materials: History, Sources, Toxicity and Regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, M.A.; Takkellapati, S.; Tadele, K.; Li, T.; Varma, R.S. Framework towards More Sustainable Chemical Synthesis Design—A Case Study of Organophosphates. ACS Sustain. Chem. Eng. 2019, 7, 6744–6757. [Google Scholar] [CrossRef] [PubMed]
- Maulu, S.; Hasimuna, O.J.; Haambiya, L.H.; Monde, C.; Musuka, C.G.; Makorwa, T.H.; Munganga, B.P.; Phiri, K.J.; Nsekanabo, J.D. Climate Change Effects on Aquaculture Production: Sustainability Implications, Mitigation, and Adaptations. Front. Sustain. Food Syst. 2021, 5, 609097. [Google Scholar] [CrossRef]
- John Camm, A. European Perspective. In Cardiac Mapping, 4th ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Duque, A.; Ochoa, S.; Odloak, D. Stochastic Multilayer Optimization for an Acrylic Acid Reactor. ACS Omega 2021, 6, 26150–26169. [Google Scholar] [CrossRef]
- Velenturf, A.P.M.; Purnell, P. Principles for a Sustainable Circular Economy. Sustain. Prod. Consum. 2021, 27, 1437–1457. [Google Scholar] [CrossRef]
- Sheldon, R.A. Metrics of green chemistry and sustainability: Past, present, and future. ACS Sustain. Chem. Eng. 2018, 6, 32–48. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Ping, H.; Tan, T.; Lei, L.; Xie, H.; Yang, X.-Y.; Fu, Z. Bioprocess-Inspired Fabrication of Materials with New Structures and Functions. Prog. Mater. Sci. 2019, 105, 100571. [Google Scholar] [CrossRef]
- Ruiz-López, E.; Gandara-Loe, J.; Baena-Moreno, F.; Reina, T.R.; Odriozola, J.A. Electrocatalytic CO2 Conversion to C2 Products: Catalysts Design, Market Perspectives and Techno-Economic Aspects. Renew. Sustain. Energy Rev. 2022, 161, 112329. [Google Scholar] [CrossRef]
- He, J.; Janáky, C. Recent Advances in Solar-Driven Carbon Dioxide Conversion: Expectations versus Reality. ACS Energy Lett. 2020, 5, 1996–2014. [Google Scholar] [CrossRef] [PubMed]
- Samanta, S.; Srivastava, R. Catalytic Conversion of CO2 to Chemicals and Fuels: The Collective Thermocatalytic/Photocatalytic/Electrocatalytic Approach with Graphitic Carbon Nitride. Mater. Adv. 2020, 1, 1506–1545. [Google Scholar] [CrossRef]
- Diyan, N.; Ridzuan, M.; Shaharun, M.S.; Anawar, M.A.; Ud-din, I. Ni-Based Catalyst for Carbon Dioxide Methanation: A Review. Catalysts 2022, 12, 469. [Google Scholar]
- Lin, R.; Guo, J.; Li, X.; Patel, P.; Seifitokaldani, A. Electrochemical Reactors for CO2 Conversion. Catalysts 2020, 10, 473. [Google Scholar] [CrossRef]
- Sharma, D.; Sharma, R.; Chand, D.; Chaudhary, A. Nanocatalysts as Potential Candidates in Transforming CO2 into Valuable Fuels and Chemicals: A Review. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100671. [Google Scholar] [CrossRef]
- Kondaveeti, S.; Abu-Reesh, I.M.; Mohanakrishna, G.; Bulut, M.; Pant, D. Advanced Routes of Biological and Bio-Electrocatalytic Carbon Dioxide (CO2) Mitigation Toward Carbon Neutrality. Front. Energy Res. 2020, 8, 94. [Google Scholar] [CrossRef]
- Onyeaka, H.; Miri, T.; Obileke, K.; Hart, A.; Anumudu, C.; Al-Sharify, Z.T. Minimizing Carbon Footprint via Microalgae as a Biological Capture. Carbon Capture Sci. Technol. 2021, 1, 100007. [Google Scholar] [CrossRef]
- Xu, X.; Kentish, S.E.; Martin, G.J. Direct air capture of CO2 by microalgae with buoyant beads encapsulating carbonic anhydrase. ACS Sustain. Chem. Eng. 2021, 9, 9698–9706. [Google Scholar] [CrossRef]
- Boone, C.D.; Gill, S.; Habibzadegan, A.; McKenna, R. Carbonic Anhydrase: An Efficient Enzyme with Possible Global Implications. Int. J. Chem. Eng. 2013, 2013, 813931. [Google Scholar] [CrossRef] [Green Version]
- Udayan, A.; Pandey, A.K.; Sirohi, R.; Sreekumar, N.; Sang, B.I.; Sim, S.J.; Kim, S.H.; Pandey, A. Production of microalgae with high lipid content and their potential as sources of nutraceuticals. Phytochem. Rev. 2022, 2022, 1–28. [Google Scholar] [CrossRef]
- Sharma, P.K. Review Article Micro-Algal Lipids: A Potential Source of Biodiesel. JIPBS 2021, 2, 135–143. [Google Scholar]
- Alishah Aratboni, H.; Rafiei, N.; Garcia-Granados, R.; Alemzadeh, A.; Morones-Ramírez, J.R. Biomass and Lipid Induction Strategies in Microalgae for Biofuel Production and Other Applications. Microb. Cell Fact. 2019, 18, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamczyk, M.; Lasek, J.; Skawińska, A. CO2 Biofixation and Growth Kinetics of Chlorella Vulgaris and Nannochloropsis Gaditana. Appl. Biochem. Biotechnol. 2016, 179, 1248–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gassler, T.; Sauer, M.; Gasser, B.; Egermeier, M.; Troyer, C.; Causon, T.; Hann, S.; Mattanovich, D.; Steiger, M.G. The Industrial Yeast Pichia Pastoris Is Converted from a Heterotroph into an Autotroph Capable of Growth on CO2. Nat. Biotechnol. 2020, 38, 210–216. [Google Scholar] [CrossRef]
- Cheng, C.; Li, W.; Lin, M.; Yang, S.-T. Metabolic Engineering of Clostridium Carboxidivorans for Enhanced Ethanol and Butanol Production from Syngas and Glucose. Bioresour. Technol. 2019, 284, 415–423. [Google Scholar] [CrossRef] [Green Version]
- Gleizer, S.; Ben-Nissan, R.; Bar-On, Y.M.; Antonovsky, N.; Noor, E.; Zohar, Y.; Jona, G.; Krieger, E.; Shamshoum, M.; Bar-Even, A. Conversion of Escherichia Coli to Generate All Biomass Carbon from CO2. Cell 2019, 179, 1255–1263. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Zhou, J.; Chen, X.; Qian, Y.; Gao, C.; Guo, L.; Xu, P.; Chen, W.; Chen, J.; Li, Y. Engineering Synergetic CO2-Fixing Pathways for Malate Production. Metab. Eng. 2018, 47, 496–504. [Google Scholar] [CrossRef]
- von Borzyskowski, L.S.; Carrillo, M.; Leupold, S.; Glatter, T.; Kiefer, P.; Weishaupt, R.; Heinemann, M.; Erb, T.J. An Engineered Calvin-Benson-Bassham Cycle for Carbon Dioxide Fixation in Methylobacterium Extorquens AM1. Metab. Eng. 2018, 47, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Nisar, A.; Khan, S.; Hameed, M.; Nisar, A.; Ahmad, H.; Mehmood, S.A. Bio-Conversion of CO2 into Biofuels and Other Value-Added Chemicals via Metabolic Engineering. Microbiol. Res. 2021, 251, 126813. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Ni, J.; Xu, P.; Tao, F. Enhancing Light-Driven 1, 3-Propanediol Production by Using Natural Compartmentalization of Differentiated Cells. ACS Synth. Biol. 2018, 7, 2436–2446. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, Y.; Hirano, S.; Matson, M.M.; Atsumi, S.; Kondo, A. Electrical-Biological Hybrid System for CO2 Reduction. Metab. Eng. 2018, 47, 211–218. [Google Scholar] [CrossRef]
- Lehtinen, T.; Virtanen, H.; Santala, S.; Santala, V. Production of Alkanes from CO2 by Engineered Bacteria. Biotechnol. Biofuels 2018, 11, 228. [Google Scholar] [CrossRef]
- Kassim, M.A.; Meng, T.K. Carbon Dioxide (CO2) Biofixation by Microalgae and Its Potential for Biorefinery and Biofuel Production. Sci. Total Environ. 2017, 584–585, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- Znad, H.; Al Ketife, A.M.D.; Judd, S. Enhancement of CO2 Biofixation and Lipid Production by Chlorella Vulgaris Using Coloured Polypropylene Film. Environ. Technol. 2019, 40, 2093–2099. [Google Scholar] [CrossRef] [Green Version]
- Amulya, K.; Mohan, S.V. Fixation of CO2, Electron Donor and Redox Microenvironment Regulate Succinic Acid Production in Citrobacter Amalonaticus. Sci. Total Environ. 2019, 695, 133838. [Google Scholar] [CrossRef]
- Ye, Q.; Cheng, J.; Liu, S.; Qiu, Y.; Zhang, Z.; Guo, W.; An, Y. Improving Light Distribution and Light/Dark Cycle of 900 L Tangential Spiral-Flow Column Photobioreactors to Promote CO2 Fixation with Arthrospira sp. Cells. Sci. Total Environ. 2020, 720, 137611. [Google Scholar] [CrossRef] [PubMed]
- Almomani, F. Kinetic Modeling of Microalgae Growth and CO2 Bio-Fixation Using Central Composite Design Statistical Approach. Sci. Total Environ. 2020, 720, 137594. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.W.; Fast, A.G.; Carlson, E.D.; Wiedel, C.A.; Au, J.; Antoniewicz, M.R.; Papoutsakis, E.T.; Tracy, B.P. CO2 Fixation by Anaerobic Non-Photosynthetic Mixotrophy for Improved Carbon Conversion. Nat. Commun. 2016, 7, 12800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diallo, M.; Kengen, S.W.M.; López-Contreras, A.M. Sporulation in Solventogenic and Acetogenic Clostridia. Appl. Microbiol. Biotechnol. 2021, 105, 3533–3557. [Google Scholar] [CrossRef]
- Debabov, V.G. Acetogens: Biochemistry, bioenergetics, genetics, and biotechnological potential. Microbiology 2021, 90, 273–297. [Google Scholar] [CrossRef]
- Saleh, H.M.; Hassan, A.I. Use of heterogeneous catalysis in sustainable biofuel production. Phys. Sci. Rev. 2022. [Google Scholar] [CrossRef]
- Alsarayreh, M.; Almomani, F.; Khraisheh, M.; Nasser, M.S.; Soliman, Y. Biological-Based Produced Water Treatment Using Microalgae: Challenges and Efficiency. Sustainability 2022, 14, 499. [Google Scholar] [CrossRef]
- Sen, G.Y.A.-G.Y.A.-B.K.D.A.-R. A Comparative Life Cycle Assessment of Microalgae Production by CO2 Sequestration from Flue Gas in Outdoor Raceway Ponds under Batch and Semi-Continuous Regime. J. Clean. Prod. 2020, 258, 120703. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Wu, Y.; Fan, Y.; Zhu, C.; Fu, X.; Chu, Y.; Chen, F.; Sun, H.; Mou, H. Application of Microalgal Stress Responses in Industrial Microalgal Production Systems. Mar. Drugs 2022, 20, 30. [Google Scholar] [CrossRef]
- Molitor, H.R.; Schaeffer, A.K.; Schnoor, J.L. Sustainably Cultivating and Harvesting Microalgae through Sedimentation and Forward Osmosis Using Wastes. ACS Omega 2021, 6, 17362–17371. [Google Scholar] [CrossRef]
- Viswanaathan, S.; Perumal, P.K.; Sundaram, S. Integrated Approach for Carbon Sequestration and Wastewater Treatment Using Algal–Bacterial Consortia: Opportunities and Challenges. Sustainability 2022, 14, 1075. [Google Scholar] [CrossRef]
- Sahoo, P.C.; Pant, D.; Kumar, M.; Puri, S.K.; Ramakumar, S.S. V Material–Microbe Interfaces for Solar-Driven CO2 Bioelectrosynthesis. Trends Biotechnol. 2020, 38, 1245–1261. [Google Scholar] [CrossRef] [PubMed]
- Maurya, P.K.; Mondal, S.; Kumar, V.; Singh, S.P. Roadmap to Sustainable Carbon-Neutral Energy and Environment: Can We Cross the Barrier of Biomass Productivity? Environ. Sci. Pollut. Res. 2021, 28, 49327–49342. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.-M.; Chen, K.; Kang, J.-N.; Chen, W.; Wang, X.-Y.; Zhang, X. Policy and Management of Carbon Peaking and Carbon Neutrality: A Literature Review. Engineering 2022, 14, 52–63. [Google Scholar] [CrossRef]
- Hu, J.; Fan, S.; Zhang, B.; He, C.; Liu, Z.; Chen, Q. Optimal Design of Heat Pump Integrated Low-Grade Heat Utilization Systems. Energy Convers. Manag. 2022, 260, 115619. [Google Scholar] [CrossRef]
- Osman, A.I.; Hefny, M.; Abdel Maksoud, M.I.A.; Elgarahy, A.M.; Rooney, D.W. Recent Advances in Carbon Capture Storage and Utilisation Technologies: A Review. Environ. Chem. Lett. 2021, 19, 797–849. [Google Scholar] [CrossRef]
- Jabbary, A.; Pourmahmoud, N.; Abdollahi, M.A.A. Artificial Intelligence-Assisted Optimization and Multiphase Analysis of Polygon PEM Fuel Cells. arXiv 2022, arXiv2205.06768, preprint. [Google Scholar] [CrossRef]
- Hassan, A.I.; Saleh, H.M. Nanomaterials for the conversion of carbon dioxide into renewable fuels. In Advanced Technology for the Conversion of Waste into Fuels and Chemicals; Woodhead Publishing: London, UK, 2021; pp. 1–20. [Google Scholar] [CrossRef]
- Saleh, H.M.; Hassan, A.I. The potential of sustainable biogas production from animal waste. In Advanced Technology for the Conversion of Waste into Fuels and Chemicals; Woodhead Publishing: London, UK, 2021; pp. 115–134. [Google Scholar] [CrossRef]
- Saleh, H.M.; Hassan, A.I. Sustainability: A comprehensive approach to developing environmental technologies and conserving natural resources. In Risk, Reliability and Sustainable Remediation in the Field of Civil and Environmental Engineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 437–448. [Google Scholar] [CrossRef]
- Saleh, H.M.; Hassan, A.I. The Effectiveness of Membrane Materials in Green Alternative Energy and Environmental Technologies. Green Energy Environ. Technol. 2022, 2022, 1–21. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, H.M.; Hassan, A.I. Green Conversion of Carbon Dioxide and Sustainable Fuel Synthesis. Fire 2023, 6, 128. https://doi.org/10.3390/fire6030128
Saleh HM, Hassan AI. Green Conversion of Carbon Dioxide and Sustainable Fuel Synthesis. Fire. 2023; 6(3):128. https://doi.org/10.3390/fire6030128
Chicago/Turabian StyleSaleh, Hosam M., and Amal I. Hassan. 2023. "Green Conversion of Carbon Dioxide and Sustainable Fuel Synthesis" Fire 6, no. 3: 128. https://doi.org/10.3390/fire6030128
APA StyleSaleh, H. M., & Hassan, A. I. (2023). Green Conversion of Carbon Dioxide and Sustainable Fuel Synthesis. Fire, 6(3), 128. https://doi.org/10.3390/fire6030128