Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (682)

Search Parameters:
Keywords = geothermal energy systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9502 KiB  
Article
Phase-Field Modeling of Thermal Fracturing Mechanisms in Reservoir Rock Under High-Temperature Conditions
by Guo Tang, Dianbin Guo, Wei Zhong, Li Du, Xiang Mao and Man Li
Appl. Sci. 2025, 15(15), 8693; https://doi.org/10.3390/app15158693 - 6 Aug 2025
Abstract
Thermal stimulation represents an effective method for enhancing reservoir permeability, thereby improving geothermal energy recovery in Enhanced Geothermal Systems (EGS). The phase-field method (PFM) has been widely adopted for its proven capability in modeling the fracture behavior of brittle solids. Consequently, a coupled [...] Read more.
Thermal stimulation represents an effective method for enhancing reservoir permeability, thereby improving geothermal energy recovery in Enhanced Geothermal Systems (EGS). The phase-field method (PFM) has been widely adopted for its proven capability in modeling the fracture behavior of brittle solids. Consequently, a coupled thermo-mechanical phase-field model (TM-PFM) was developed in COMSOL 6.2 Multiphysics to probe thermal fracturing mechanisms in reservoir rocks. The TM-PFM was validated against the analytical solutions for the temperature and stress fields under steady-state heat conduction in a thin-walled cylinder, three-point bending tests, and thermal shock tests. Subsequently, two distinct thermal fracturing modes in reservoir rock under high-temperature conditions were investigated: (i) fracture initiation driven by sharp temperature gradients during instantaneous thermal shocks, and (ii) crack propagation resulting from heterogeneous thermal expansion of constituent minerals. The proposed TM-PFM has been validated through systematic comparison between the simulation results and the corresponding experimental data, thereby demonstrating its capability to accurately simulate thermal fracturing. These findings provide mechanistic insights for optimizing geothermal energy extraction in EGS. Full article
(This article belongs to the Special Issue Advances in Failure Mechanism and Numerical Methods for Geomaterials)
Show Figures

Figure 1

15 pages, 2053 KiB  
Article
Unveiling Radon Concentration in Geothermal Installation: The Role of Indoor Conditions and Human Activity
by Dimitrios-Aristotelis Koumpakis, Savvas Petridis, Apostolos Tsakirakis, Ioannis Sourgias, Alexandra V. Michailidou and Christos Vlachokostas
Gases 2025, 5(3), 18; https://doi.org/10.3390/gases5030018 - 5 Aug 2025
Viewed by 49
Abstract
The naturally occurring radioactive gas radon presents a major public health danger mainly affecting people who spend time in poorly ventilated buildings. The periodic table includes radon as a noble gas which forms through uranium decay processes in soil, rock, and water. The [...] Read more.
The naturally occurring radioactive gas radon presents a major public health danger mainly affecting people who spend time in poorly ventilated buildings. The periodic table includes radon as a noble gas which forms through uranium decay processes in soil, rock, and water. The accumulation of radon indoors in sealed or poorly ventilated areas leads to dangerous concentrations that elevate human health risks of lung cancer. The research examines environmental variables affecting radon concentration indoors by studying geothermal installations and their drilling activities, which potentially increase radon emissions. The study was conducted in the basement of the plumbing educational building at the Aristotle University of Thessaloniki to assess the potential impact of geothermal activity on indoor radon levels, as the building is equipped with a geothermal heating system. The key findings based on 150 days of continuous data showed that radon levels peak during the cold days, where the concentration had a mean value of 41.5 Bq/m3 and reached a maximum at about 95 Bq/m3. The reason was first and foremost poor ventilation and pressure difference. The lowest concentrations were on days with increased human activity with measures that had a mean value of 14.8 Bq/m3, which is reduced by about 65%. The results that are presented confirm the hypotheses and the study is making clear that ventilation and human activity are crucial in radon mitigation, especially on geothermal and energy efficient structures. Full article
Show Figures

Figure 1

15 pages, 1706 KiB  
Article
Study on a High-Temperature-Resistant Foam Drilling Fluid System
by Yunliang Zhao, Dongxue Li, Fusen Zhao, Yanchao Song, Chengyun Ma, Weijun Ji and Wenjun Shan
Processes 2025, 13(8), 2456; https://doi.org/10.3390/pr13082456 - 3 Aug 2025
Viewed by 196
Abstract
Developing ultra-high-temperature geothermal resources is challenging, as traditional drilling fluids, including foam systems, lack thermal stability above 160 °C. To address this key technical bottleneck, this study delves into the screening principles for high-temperature-resistant foaming agents and foam stabilizers. Through high-temperature aging experiments [...] Read more.
Developing ultra-high-temperature geothermal resources is challenging, as traditional drilling fluids, including foam systems, lack thermal stability above 160 °C. To address this key technical bottleneck, this study delves into the screening principles for high-temperature-resistant foaming agents and foam stabilizers. Through high-temperature aging experiments (foaming performance evaluated up to 240 °C and rheological/filtration properties evaluated after aging at 200 °C), specific additives were selected that still exhibit good foaming and foam-stabilizing performance under high-temperature and high-salinity conditions. Building on this, the foam drilling fluid system formulation was optimized using an orthogonal experimental design. The optimized formulations were systematically evaluated for their density, volume, rheological properties (apparent viscosity and plastic viscosity), and filtration properties (API fluid loss and HTHP fluid loss) before and after high-temperature aging (at 200 °C). The research results indicate that specific formulation systems exhibit excellent high-temperature stability and particularly outstanding performance in filtration control, with the selected foaming agent FP-1 maintaining good performance up to 240 °C and optimized formulations demonstrating excellent HTHP fluid loss control at 200 °C. This provides an important theoretical basis and technical support for further research and field application of foam drilling fluid systems for deep high-temperature geothermal energy development. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 2664 KiB  
Article
Analysis of Heat Exchange Efficiency and Influencing Factors of Energy Tunnels: A Case Study of the Torino Metro in Italy
by Mei Yin, Pengcheng Liu and Zhenhuang Wu
Buildings 2025, 15(15), 2704; https://doi.org/10.3390/buildings15152704 - 31 Jul 2025
Viewed by 185
Abstract
Both ground source heat pumps (GSHPs) and energy underground structures are engineered systems that utilize shallow geothermal energy. However, due to the construction complexity and associated costs of energy tunnels, their heat exchange efficiency relative to GSHPs remains a topic worthy of in-depth [...] Read more.
Both ground source heat pumps (GSHPs) and energy underground structures are engineered systems that utilize shallow geothermal energy. However, due to the construction complexity and associated costs of energy tunnels, their heat exchange efficiency relative to GSHPs remains a topic worthy of in-depth investigation. In this study, a thermal–hydraulic (TH) coupled finite element model was developed based on a section of the Torino Metro Line in Italy to analyze the differences in and influencing factors of heat transfer performance between energy tunnels and GSHPs. The model was validated by comparing the outlet temperature curves under both winter and summer loading conditions. Based on this validated model, a parametric analysis was conducted to examine the effects of the tunnel air velocity, heat carrier fluid velocity, and fluid type. The results indicate that, under identical environmental conditions, energy tunnels exhibit higher heat exchange efficiency than conventional GSHP systems and are less sensitive to external factors such as fluid velocity. Furthermore, a comparison of different heat carrier fluids, including alcohol-based fluids, refrigerants, and water, revealed that the fluid type significantly affects thermal performance, with the refrigerant R-134a outperforming ethylene glycol and water in both heating and cooling efficiency. Full article
Show Figures

Figure 1

19 pages, 2137 KiB  
Article
Technical Evaluation and Problem-Solving in the Reopening of a Thermal Bath Facility
by Krisztián Szolga, Dóra Buzetzky, Nebojša Jurišević and Dénes Kocsis
Appl. Sci. 2025, 15(15), 8456; https://doi.org/10.3390/app15158456 - 30 Jul 2025
Viewed by 200
Abstract
The aim of the study is to carry out a technical assessment of a Hungarian baths complex, which is a major tourist center with approximately 180,000 visitors per year. The bath complex had been partially closed. Following the partial closure of the spa, [...] Read more.
The aim of the study is to carry out a technical assessment of a Hungarian baths complex, which is a major tourist center with approximately 180,000 visitors per year. The bath complex had been partially closed. Following the partial closure of the spa, a comprehensive survey was carried out, identifying four main problem areas: operational difficulties with the thermal and cold-water wells, outdated water treatment technology, structural damage to the swimming pool and general mechanical deficiencies. Based on these investigations, recommendations were made for a safe and sustainable reopening of the spa, such as the reactivation of the geothermal system, the installation of modern filtration and dosing systems, and the application of energy-efficient and intelligent technologies. Based on the recommendations, the safe, economical, and sustainable reopening of the spa can be achieved, while also providing guidance for the modernization of other spa complexes. A separate section presents detailed development proposals, such as restarting the geothermal system, applying modern water treatment technologies and intelligent control systems, renovating the pool structure, and modernizing the mechanical and electrical systems. These proposals contribute to the modernization of the spa infrastructure and can also provide guidance for solving technical problems in other similar facilities. Full article
Show Figures

Figure 1

18 pages, 5232 KiB  
Article
Analysis of the Characteristics of a Multi-Generation System Based on Geothermal, Solar Energy, and LNG Cold Energy
by Xinfeng Guo, Hao Li, Tianren Wang, Zizhang Wang, Tianchao Ai, Zireng Qi, Huarong Hou, Hongwei Chen and Yangfan Song
Processes 2025, 13(8), 2377; https://doi.org/10.3390/pr13082377 - 26 Jul 2025
Viewed by 290
Abstract
In order to reduce gas consumption and increase the renewable energy proportion, this paper proposes a poly-generation system that couples geothermal, solar, and liquid natural gas (LNG) cold energy to produce steam, gaseous natural gas, and low-temperature nitrogen. The high-temperature flue gas is [...] Read more.
In order to reduce gas consumption and increase the renewable energy proportion, this paper proposes a poly-generation system that couples geothermal, solar, and liquid natural gas (LNG) cold energy to produce steam, gaseous natural gas, and low-temperature nitrogen. The high-temperature flue gas is used to heat LNG; low-temperature flue gas, mainly nitrogen, can be used for cold storage cooling, enabling the staged utilization of the energy. Solar shortwave is used for power generation, and longwave is used to heat the working medium, which realizes the full spectrum utilization of solar energy. The influence of different equipment and operating parameters on the performance of a steam generation system is studied, and the multi-objective model of the multi-generation system is established and optimized. The results show that for every 100 W/m2 increase in solar radiation, the renewable energy ratio of the system increases by 1.5%. For every 10% increase in partial load rate of gas boiler, the proportion of renewable energy decreases by 1.27%. The system’s energy efficiency, cooling output, and the LNG vaporization flow rate are negatively correlated with the scale of solar energy utilization equipment. The decision variables determined by the TOPSIS (technique for order of preference by similarity to ideal solution) method have better economic performance. Its investment cost is 18.14 × 10 CNY, which is 7.83% lower than that of the LINMAP (linear programming technique for multidimensional analysis of preference). Meanwhile, the proportion of renewable energy is only 0.29% lower than that of LINMAP. Full article
(This article belongs to the Special Issue Innovations in Waste Heat Recovery in Industrial Processes)
Show Figures

Figure 1

24 pages, 5866 KiB  
Article
Multiscale Characterization of Thermo-Hydro-Chemical Interactions Between Proppants and Fluids in Low-Temperature EGS Conditions
by Bruce Mutume, Ali Ettehadi, B. Dulani Dhanapala, Terry Palisch and Mileva Radonjic
Energies 2025, 18(15), 3974; https://doi.org/10.3390/en18153974 - 25 Jul 2025
Viewed by 285
Abstract
Enhanced Geothermal Systems (EGS) require thermochemically stable proppant materials capable of sustaining fracture conductivity under harsh subsurface conditions. This study systematically investigates the response of commercial proppants to coupled thermo-hydro-chemical (THC) effects, focusing on chemical stability and microstructural evolution. Four proppant types were [...] Read more.
Enhanced Geothermal Systems (EGS) require thermochemically stable proppant materials capable of sustaining fracture conductivity under harsh subsurface conditions. This study systematically investigates the response of commercial proppants to coupled thermo-hydro-chemical (THC) effects, focusing on chemical stability and microstructural evolution. Four proppant types were evaluated: an ultra-low-density ceramic (ULD), a resin-coated sand (RCS), and two quartz-based silica sands. Experiments were conducted under simulated EGS conditions at 130 °C with daily thermal cycling over a 25-day period, using diluted site-specific Utah FORGE geothermal fluids. Static batch reactions were followed by comprehensive multi-modal characterization, including scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and micro-computed tomography (micro-CT). Proppants were tested in both granular and powdered forms to evaluate surface area effects and potential long-term reactivity. Results indicate that ULD proppants experienced notable resin degradation and secondary mineral precipitation within internal pore networks, evidenced by a 30.4% reduction in intragranular porosity (from CT analysis) and diminished amorphous peaks in the XRD spectra. RCS proppants exhibited a significant loss of surface carbon content from 72.98% to 53.05%, consistent with resin breakdown observed via SEM imaging. While the quartz-based sand proppants remained morphologically intact at the macro-scale, SEM-EDS revealed localized surface alteration and mineral precipitation. The brown sand proppant, in particular, showed the most extensive surface precipitation, with a 15.2% increase in newly detected mineral phases. These findings advance understanding of proppant–fluid interactions under low-temperature EGS conditions and underscore the importance of selecting proppants based on thermo-chemical compatibility. The results also highlight the need for continued development of chemically resilient proppant formulations tailored for long-term geothermal applications. Full article
Show Figures

Figure 1

17 pages, 2256 KiB  
Article
Performance Analysis of Different Borehole Heat Exchanger Configurations: A Case Study in NW Italy
by Jessica Maria Chicco, Nicolò Giordano, Cesare Comina and Giuseppe Mandrone
Smart Cities 2025, 8(4), 121; https://doi.org/10.3390/smartcities8040121 - 21 Jul 2025
Viewed by 330
Abstract
The central role of heating and cooling in energy transition has been recognised in recent years, especially with geopolitical developments since February 2022 which demand an acceleration in deploying local energy sources to increase the resilience of the energy sector. Geothermal energy is [...] Read more.
The central role of heating and cooling in energy transition has been recognised in recent years, especially with geopolitical developments since February 2022 which demand an acceleration in deploying local energy sources to increase the resilience of the energy sector. Geothermal energy is a promising and vital option to optimize heating and cooling systems, promoting sustainability of urban environments. To this end, a proper design is of paramount importance to guarantee the energy performance of the whole system. This work deals with the optimization of the technical and geometrical characteristics of borehole heat exchangers (BHEs) as part of a shallow geothermal plant that is assumed to be integrated in an already operating gas-fired DH grid. Thermal performances of three different configurations were analysed according to the geological information that revealed an aquifer at −36 m overlying a poorly permeable marly succession. Numerical simulations validated the geological, hydrogeological, and thermo-physical models by back-analysing the experimental results of a thermal response test (TRT) on a pilot 150 m deep BHE. Five-year simulations were then performed to compare 150 m and 36 m polyethylene 2U, and 36 m steel coaxial BHEs. The coaxial configuration shows the best performance both in terms of specific power (74.51 W/m) and borehole thermal resistance (0.02 mK/W). Outcomes of the study confirm that coupling the best geological and technical parameters ensure the best energy performance and economic sustainability. Full article
(This article belongs to the Special Issue Energy Strategies of Smart Cities)
Show Figures

Figure 1

23 pages, 2903 KiB  
Article
Casson Fluid Saturated Non-Darcy Mixed Bio-Convective Flow over Inclined Surface with Heat Generation and Convective Effects
by Nayema Islam Nima, Mohammed Abdul Hannan, Jahangir Alam and Rifat Ara Rouf
Processes 2025, 13(7), 2295; https://doi.org/10.3390/pr13072295 - 18 Jul 2025
Viewed by 370
Abstract
This paper explores the complex dynamics of mixed convective flow in a Casson fluid saturated in a non-Darcy porous medium, focusing on the influence of gyrotactic microorganisms, internal heat generation, and multiple convective mechanisms. Casson fluids, known for their non-Newtonian behavior, are relevant [...] Read more.
This paper explores the complex dynamics of mixed convective flow in a Casson fluid saturated in a non-Darcy porous medium, focusing on the influence of gyrotactic microorganisms, internal heat generation, and multiple convective mechanisms. Casson fluids, known for their non-Newtonian behavior, are relevant in various industrial and biological contexts where traditional fluid models are insufficient. This study addresses the limitations of the standard Darcy’s law by examining non-Darcy flow, which accounts for nonlinear inertial effects in porous media. The governing equations, derived from conservation laws, are transformed into a system of no linear ordinary differential equations (ODEs) using similarity transformations. These ODEs are solved numerically using a finite differencing method that incorporates central differencing, tridiagonal matrix manipulation, and iterative procedures to ensure accuracy across various convective regimes. The reliability of this method is confirmed through validation with the MATLAB (R2024b) bvp4c scheme. The investigation analyzes the impact of key parameters (such as the Casson fluid parameter, Darcy number, Biot numbers, and heat generation) on velocity, temperature, and microorganism concentration profiles. This study reveals that the Casson fluid parameter significantly improves the velocity, concentration, and motile microorganism profiles while decreasing the temperature profile. Additionally, the Biot number is shown to considerably increase the concentration and dispersion of motile microorganisms, as well as the heat transfer rate. The findings provide valuable insights into non-Newtonian fluid behavior in porous environments, with applications in bioengineering, environmental remediation, and energy systems, such as bioreactor design and geothermal energy extraction. Full article
Show Figures

Figure 1

19 pages, 3482 KiB  
Article
Development and Performance Evaluation of Central Pipe for Middle-Deep Geothermal Heat Pump Systems
by Xiong Zhang, Ziyan Zhao, Zhengrong Guan, Jiaojiao Lv and Lu Cui
Energies 2025, 18(14), 3713; https://doi.org/10.3390/en18143713 - 14 Jul 2025
Viewed by 282
Abstract
In this study, the optimal design of the central pipe in a middle-deep geothermal heat pump (MD-GHP) system is studied using the response surface method to improve the system’s coefficient of performance (COP) and operational reliability. Firstly, a model describing the energy transfer [...] Read more.
In this study, the optimal design of the central pipe in a middle-deep geothermal heat pump (MD-GHP) system is studied using the response surface method to improve the system’s coefficient of performance (COP) and operational reliability. Firstly, a model describing the energy transfer and conversion mechanisms of the MD-GHP system, incorporating unsteady heat transfer in the central pipe, is established and validated using field test data. Secondly, taking the inner diameter, wall thickness, and effective thermal conductivity of the central pipe as design variables, the effects of these parameters on the COP of a 2700 m deep MD-GHP system are analyzed and optimized via the response surface method. The resulting optimal parameters are as follows: an inner diameter of 88 mm, a wall thickness of 14 mm, and an effective thermal conductivity of 0.2 W/(m·K). Based on these results, a composite central pipe composed of high-density polyethylene (HDPE), silica aerogels, and glass fiber tape is designed and fabricated. The developed pipe achieves an effective thermal conductivity of 0.13 W/(m·K) and an axial tensile force of 29,000 N at 105 °C. Compared with conventional PE and vacuum-insulated pipes, the composite central pipe improves the COP by 11% and 7%, respectively. This study proposes an optimization-based design approach for central pipe configuration in MD-GHP systems and presents a new composite pipe with enhanced thermal insulation and mechanical performance. Full article
(This article belongs to the Special Issue Heat Transfer and Fluid Flows for Industry Applications)
Show Figures

Figure 1

23 pages, 546 KiB  
Article
Environmental and Social Dimensions of Energy Transformation Using Geothermal Energy
by Michał Kaczmarczyk and Anna Sowiżdżał
Energies 2025, 18(13), 3565; https://doi.org/10.3390/en18133565 - 7 Jul 2025
Viewed by 404
Abstract
The use of geothermal energy is gaining strategic importance in the context of sustainable development and the decarbonisation of local energy systems. As a stable and low-emission renewable energy source, geothermal energy offers tangible environmental and social benefits, including improved air quality, reduced [...] Read more.
The use of geothermal energy is gaining strategic importance in the context of sustainable development and the decarbonisation of local energy systems. As a stable and low-emission renewable energy source, geothermal energy offers tangible environmental and social benefits, including improved air quality, reduced greenhouse gas emissions, and enhanced energy independence. This article presents a comprehensive overview of the social dimensions of geothermal energy deployment in Poland, with a particular focus on environmental impacts, public acceptance, and participatory governance. Based on a Polish geothermal district heating system example, the paper demonstrates that geothermal projects can significantly reduce local pollution and support low-carbon economic transitions. The study includes a comparative assessment of avoided emissions, a critical discussion of potential social barriers, and SWOT and PESTEL analyses identifying systemic enablers and constraints. The authors argue that for geothermal energy to fulfil its sustainability potential, it must be supported by inclusive planning, transparent communication, and a holistic policy framework integrating environmental, technological, and social criteria. Full article
Show Figures

Figure 1

25 pages, 5272 KiB  
Review
Research Progress of Heat Damage Prevention and Control Technology in Deep Mine
by Yujie Xu, Liu Chen, Jin Zhang and Haiwei Ji
Sustainability 2025, 17(13), 6200; https://doi.org/10.3390/su17136200 - 6 Jul 2025
Viewed by 345
Abstract
As mine mining extends to greater depths, the challenge of heat damage in high-temperature and high-humidity deep mines has emerged as a significant obstacle to the safe mining of deep mines. This paper reviews the causes of mine heat damage, evaluates heat damage [...] Read more.
As mine mining extends to greater depths, the challenge of heat damage in high-temperature and high-humidity deep mines has emerged as a significant obstacle to the safe mining of deep mines. This paper reviews the causes of mine heat damage, evaluates heat damage mechanisms, and explores deep mine cooling technologies. Traditional deep mine cooling technologies employ mechanical refrigeration to cool air. While these technologies can mitigate heat damage, they are associated with issues including high energy consumption, insufficient dehumidification, and significant cold loss. To address the high energy consumption and fully utilize geothermal resources, heat pump technology and combined cooling, heating, and power technology are employed to recover waste heat from deep mines, thereby achieving efficient mine cooling and energy utilization. To enhance the effectiveness of air dehumidification, the integration of deep dehumidification with mine cooling technology addresses the high humidity ratio in mine working faces. To enhance the refrigeration capacity of the system, liquid-phase-change refrigeration technology is employed to boost the refrigeration capacity. For the future development of deep mine cooling technology, this paper identifies four key directions: the integration of diverse technologies, collaboration cooling and geothermal mining, deep dehumidification and cooling, and intelligent control. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

45 pages, 1606 KiB  
Review
A Comprehensive Review of Geothermal Heat Pump Systems
by Khaled Salhein, Sabriya Alghennai Salheen, Ahmed M. Annekaa, Mansour Hawsawi, Edrees Yahya Alhawsawi, C. J. Kobus and Mohamed Zohdy
Processes 2025, 13(7), 2142; https://doi.org/10.3390/pr13072142 - 5 Jul 2025
Viewed by 487
Abstract
Geothermal heat pump systems (GHPSs) offer a sustainable and energy-efficient solution for heating and cooling buildings. Ground heat exchanger (GHE) design and configuration significantly impact on the overall performance and installation expenses of geothermal heat pump systems. This paper presents a comprehensive analysis [...] Read more.
Geothermal heat pump systems (GHPSs) offer a sustainable and energy-efficient solution for heating and cooling buildings. Ground heat exchanger (GHE) design and configuration significantly impact on the overall performance and installation expenses of geothermal heat pump systems. This paper presents a comprehensive analysis of GHPSs, focusing on their advantages, disadvantages, key components, types, and particularly the various closed-loop GHE configurations. Detailed comparisons highlight how different designs affect thermal performance and installation costs. The findings reveal that helical GHEs offer superior thermal efficiency with reduced drilling requirements and cost savings, while coaxial GHEs, especially those using steel tubes, enhance heat transfer and enable shorter boreholes. Cost-effective options like W-type GHEs provide performance comparable to more complex systems. Additionally, triple U-tube and spiral configurations balance high efficiency with economic feasibility. The single and double U-tube remain the most common borehole geometry, though coaxial designs present distinct advantages in targeted scenarios. These insights support the optimization of vertical GHEs, advancing system performance, cost-effectiveness, and long-term sustainability in GHPS applications. Full article
(This article belongs to the Special Issue Application of Refrigeration and Heat Pump Technology)
Show Figures

Graphical abstract

21 pages, 1468 KiB  
Article
Multi-Objective Energy-Saving Optimization and Analysis of a Combined Cooling, Heating, and Power (CCHP) System Driven by Geothermal Energy and LNG Cold Energy
by Xianfeng Gong and Jie Liu
Processes 2025, 13(7), 2135; https://doi.org/10.3390/pr13072135 - 4 Jul 2025
Viewed by 330
Abstract
In this paper, a new type of cogeneration system using LNG cold energy as a cooling source and geothermal energy as a heat source is designed and studied from the perspective of LNG cold energy gradient utilization. The system integrates power generation, cold [...] Read more.
In this paper, a new type of cogeneration system using LNG cold energy as a cooling source and geothermal energy as a heat source is designed and studied from the perspective of LNG cold energy gradient utilization. The system integrates power generation, cold storage, and district cooling. In order to provide more detailed information, the proposed system was analyzed in terms of energy, exergy, and economy. The effects of separator pressure, LNG pump outlet pressure, the mass flow rate of n-Pentane in ORC-I, liquefaction temperature of R23 in the cold storage module, and pump 5 outlet pressure in the refrigeration module on the performance of the system were also investigated. Additionally, the particle swarm algorithm (PSO) was used to optimize the CCHP system with multiple objectives to determine the system’s optimal operation. The optimization results show that the system’s thermal efficiency, exergy efficiency, and depreciation payback period are 66.06%, 42.52%, and 4.509 years, respectively. Full article
Show Figures

Figure 1

14 pages, 2424 KiB  
Article
Experimental Technique for Modeling Multi-Field Coupled Transport in Multi-Fracture Geothermal Reservoirs
by Peng Xiao, Xiaonan Li, Yu Li, Bin Chen, Yudong Tang, Xiufeng Ge, Yan Qin, Hong Tian and Jun Zheng
Energies 2025, 18(13), 3507; https://doi.org/10.3390/en18133507 - 3 Jul 2025
Viewed by 222
Abstract
In the operation of enhanced geothermal systems (EGSs), complex physical and chemical coupling processes, which are crucial for the efficient exploitation of geothermal energy, are involved. In situ studies of multi-fracture hot dry rocks (HDRs) face significant challenges, leading to a shortage of [...] Read more.
In the operation of enhanced geothermal systems (EGSs), complex physical and chemical coupling processes, which are crucial for the efficient exploitation of geothermal energy, are involved. In situ studies of multi-fracture hot dry rocks (HDRs) face significant challenges, leading to a shortage of experimental data for verifying numerical simulations and supporting experimental techniques. In this paper, a multi-field coupling experimental simulation technique was designed for a multi-fracture geothermal reservoir. This technique enables the experimental investigation of the effects of fracture and reservoir characteristics, working fluid parameters, and wellbore arrangement on the multi-field coupling transport mechanism inside geothermal reservoirs during EGS operation. In addition, the practicability and reliability of the experimental technique were proved via a two-dimensional multi-fracture model. The experimental technique addresses a research gap in studying multi-fracture geothermal reservoirs and holds potential to promote substantial progress in geothermal resource exploitation. Full article
(This article belongs to the Section H2: Geothermal)
Show Figures

Figure 1

Back to TopTop