Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (689)

Search Parameters:
Keywords = geometrical formulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 1861 KiB  
Article
A Logifold Structure for Measure Space
by Inkee Jung and Siu-Cheong Lau
Axioms 2025, 14(8), 599; https://doi.org/10.3390/axioms14080599 (registering DOI) - 1 Aug 2025
Abstract
In this paper, we develop a geometric formulation of datasets. The key novel idea is to formulate a dataset to be a fuzzy topological measure space as a global object and equip the space with an atlas of local charts using graphs of [...] Read more.
In this paper, we develop a geometric formulation of datasets. The key novel idea is to formulate a dataset to be a fuzzy topological measure space as a global object and equip the space with an atlas of local charts using graphs of fuzzy linear logical functions. We call such a space a logifold. In applications, the charts are constructed by machine learning with neural network models. We implement the logifold formulation to find fuzzy domains of a dataset and to improve accuracy in data classification problems. Full article
(This article belongs to the Special Issue Recent Advances in Function Spaces and Their Applications)
15 pages, 24344 KiB  
Article
The Influence of Dimensional Parameters on the Characteristics of Magnetic Flux Concentrators Used in Tunneling Magnetoresistance Devices
by Ran Bi, Huiquan Zhang, Shi Pan, Xinting Liu, Ruiying Chen, Shilin Wu and Jun Hu
Sensors 2025, 25(15), 4739; https://doi.org/10.3390/s25154739 (registering DOI) - 31 Jul 2025
Viewed by 136
Abstract
Measuring weak magnetic fields proposes significant challenges to the sensing capabilities of magnetic field sensors. The magnetic field detection capacity of tunnel magnetoresistance (TMR) sensors is often insufficient for such applications, necessitating targeted optimization strategies to improve their performance in weak-field measurements. Utilizing [...] Read more.
Measuring weak magnetic fields proposes significant challenges to the sensing capabilities of magnetic field sensors. The magnetic field detection capacity of tunnel magnetoresistance (TMR) sensors is often insufficient for such applications, necessitating targeted optimization strategies to improve their performance in weak-field measurements. Utilizing magnetic flux concentrators (MFCs) offers an effective approach to enhance TMR sensitivity. In this study, the finite element method was employed to analyze the effects of different MFC geometric structures on the uniformity of the magnetic field in the air gap and the magnetic circuit gain (MCG). It was determined that the MCG of the MFC is not directly related to the absolute values of its parameters but rather to their ratios. Simulation analyses evaluated the impact of these parameter ratios on both the MCG and its spatial distribution uniformity, leading to the formulation of MFC design optimization principles. Building on these simulation-derived principles, several MFCs were fabricated using the 1J85 material, and an experimental platform was established to validate the simulation findings. The fabricated MFCs achieved an MCG of 7.325 times. Based on the previously developed TMR devices, a detection sensitivity of 2.46 nT/Hz @1Hz was obtained. By optimizing parameter configurations, this work provides theoretical guidance for further enhancing the performance of TMR sensors in magnetic field measurements. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

28 pages, 7472 KiB  
Article
Small but Mighty: A Lightweight Feature Enhancement Strategy for LiDAR Odometry in Challenging Environments
by Jiaping Chen, Kebin Jia and Zhihao Wei
Remote Sens. 2025, 17(15), 2656; https://doi.org/10.3390/rs17152656 (registering DOI) - 31 Jul 2025
Viewed by 101
Abstract
LiDAR-based Simultaneous Localization and Mapping (SLAM) serves as a fundamental technology for autonomous navigation. However, in complex environments, LiDAR odometry often experience degraded localization accuracy and robustness. This paper proposes a computationally efficient enhancement strategy for LiDAR odometry, which improves system performance by [...] Read more.
LiDAR-based Simultaneous Localization and Mapping (SLAM) serves as a fundamental technology for autonomous navigation. However, in complex environments, LiDAR odometry often experience degraded localization accuracy and robustness. This paper proposes a computationally efficient enhancement strategy for LiDAR odometry, which improves system performance by reinforcing high-quality features throughout the optimization process. For non-ground features, the method employs statistical geometric analysis to identify stable points and incorporates a contribution-weighted optimization scheme to strengthen their impact in point-to-plane and point-to-line constraints. In parallel, for ground features, locally stable planar surfaces are fitted to replace discrete point correspondences, enabling more consistent point-to-plane constraint formulation during ground registration. Experimental results on the KITTI and M2DGR datasets demonstrated that the proposed method significantly improves localization accuracy and system robustness, while preserving real-time performance with minimal computational overhead. The performance gains were particularly notable in scenarios dominated by unstructured environments. Full article
(This article belongs to the Special Issue Laser Scanning in Environmental and Engineering Applications)
Show Figures

Figure 1

21 pages, 1569 KiB  
Article
A Multibody-Based Benchmarking Framework for the Control of the Furuta Pendulum
by Gerardo Peláez, Pablo Izquierdo, Gustavo Peláez and Higinio Rubio
Actuators 2025, 14(8), 377; https://doi.org/10.3390/act14080377 (registering DOI) - 31 Jul 2025
Viewed by 119
Abstract
The Furuta pendulum is a well-known benchmark in the field of underactuated mechanical systems due to its reduced number of control inputs compared to its degrees of freedom, and richly nonlinear behavior. This work addresses the challenge of accurately modeling and controlling such [...] Read more.
The Furuta pendulum is a well-known benchmark in the field of underactuated mechanical systems due to its reduced number of control inputs compared to its degrees of freedom, and richly nonlinear behavior. This work addresses the challenge of accurately modeling and controlling such a system without relying on traditional linearization techniques. In contrast to the common approach based on Lagrangian analytical modeling and state–space linearization, we propose a methodology that integrates a high-fidelity multibody model developed in Simscape Multibody (MATLAB), capturing the complete nonlinear dynamics of the system. The multibody model includes all geometric, inertial, and joint parameters of the physical hardware and interfaces directly with Simulink, enabling realistic simulation and control integration. To validate the physical fidelity of the multibody model, we perform a frequency-domain analysis of the pendulum’s natural free response. The dominant vibration frequency extracted from the simulation is compared with the theoretical prediction, demonstrating accurate capture of the system’s inertial and dynamic properties. This validation strategy strengthens the reliability of the model as a digital twin. The classical analytical formulation is provided to validate the simulation model and serve as a comparative framework. This dual modeling strategy allows for benchmarking control strategies against a trustworthy nonlinear digital twin of the Furuta pendulum. Preliminary experimental results using a physical prototype validate the feasibility of the proposed approach and set the foundation for future work in advanced nonlinear control design using the multibody representation as a digital validation tool. Full article
(This article belongs to the Special Issue Dynamics and Control of Underactuated Systems)
Show Figures

Figure 1

16 pages, 1702 KiB  
Article
Does Salt Form Matter? A Pilot Randomized, Double-Blind, Crossover Pharmacokinetic Comparison of Crystalline and Regular Glucosamine Sulfate in Healthy Volunteers
by Chuck Chang, Afoke Ibi, Yiming Zhang, Min Du, Yoon Seok Roh, Robert O’Brien and Julia Solnier
Nutrients 2025, 17(15), 2491; https://doi.org/10.3390/nu17152491 - 30 Jul 2025
Viewed by 224
Abstract
Background: Crystalline glucosamine sulfate (cGS) claims to be a stabilized form of glucosamine sulfate with a defined crystalline structure intended to enhance chemical stability. It is proposed to offer pharmacokinetic advantages over regular glucosamine sulfate (rGS) which is stabilized with potassium or [...] Read more.
Background: Crystalline glucosamine sulfate (cGS) claims to be a stabilized form of glucosamine sulfate with a defined crystalline structure intended to enhance chemical stability. It is proposed to offer pharmacokinetic advantages over regular glucosamine sulfate (rGS) which is stabilized with potassium or sodium chloride. However, comparative human bioavailability data are limited. Since both forms dissociate in gastric fluid into constituent ions, the impact of cGS formulation on absorption remains uncertain. This pilot study aimed to compare the bioavailability of cGS and rGS using a randomized, double-blind, crossover design. Methods: Ten healthy adults received a single 1500 mg oral dose of either cGS or rGS with a 7-day washout between interventions. Capillary blood samples were collected over 24 h. Glucosamine and its metabolite concentrations were quantified by Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS), and pharmacokinetic parameters—including maximum concentration (Cmax), time to reach Cmax (Tmax), and area under the curve (AUC)—were calculated. Results: Mean AUC0–24, Cmax, Tmax, and T½ values for glucosamine and glucosamine-6-sulfate (GlcN-6-S) were comparable between cGS and rGS. Although the AUC0–24 for glucosamine was modestly higher with rGS (18,300 ng·h/mL) than with cGS (12,900 ng·h/mL), the difference was not statistically significant (p = 0.136). GlcN-6-S exposure was also similar between formulations (rGS: 50,700 ng·h/mL; cGS: 50,600 ng·h/mL), with a geometric mean ratio of 1.39, a delayed Tmax (6–8 h) and longer half-life, consistent with its role as a downstream metabolite. N-acetylglucosamine levels remained stable, indicating potential homeostatic regulation. Conclusions: This pilot study found no significant pharmacokinetic advantage of cGS over rGS. These preliminary findings challenge claims of cGS’ pharmacokinetic superiority, although the small sample size limits definitive conclusions. Larger, adequately powered studies are needed to confirm these results. Full article
(This article belongs to the Special Issue Bone-Health-Promoting Bioactive Nutrition)
Show Figures

Graphical abstract

23 pages, 2253 KiB  
Article
Robust Underwater Vehicle Pose Estimation via Convex Optimization Using Range-Only Remote Sensing Data
by Sai Krishna Kanth Hari, Kaarthik Sundar, José Braga, João Teixeira, Swaroop Darbha and João Sousa
Remote Sens. 2025, 17(15), 2637; https://doi.org/10.3390/rs17152637 - 29 Jul 2025
Viewed by 183
Abstract
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board [...] Read more.
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board receivers. The proposed framework integrates three key components, each formulated as a convex optimization problem. First, we introduce a robust calibration function that unifies multiple sources of measurement error—such as range-dependent degradation, variable sound speed, and latency—by modeling them through a monotonic function. This function bounds the true distance and defines a convex feasible set for each receiver location. Next, we estimate the receiver positions as the center of this feasible region, using two notions of centrality: the Chebyshev center and the maximum volume inscribed ellipsoid (MVE), both formulated as convex programs. Finally, we recover the vehicle’s full 6-DOF pose by enforcing rigid-body constraints on the estimated receiver positions. To do this, we leverage the known geometric configuration of the receivers in the vehicle and solve the Orthogonal Procrustes Problem to compute the rotation matrix that best aligns the estimated and known configurations, thereby correcting the position estimates and determining the vehicle orientation. We evaluate the proposed method through both numerical simulations and field experiments. To further enhance robustness under real-world conditions, we model beacon-location uncertainty—due to mooring slack and water currents—as bounded spherical regions around nominal beacon positions. We then mitigate the uncertainty by integrating the modified range constraints into the MVE position estimation formulation, ensuring reliable localization even under infrastructure drift. Full article
Show Figures

Figure 1

19 pages, 5262 KiB  
Article
A Conservative Four-Dimensional Hyperchaotic Model with a Center Manifold and Infinitely Many Equilibria
by Surma H. Ibrahim, Ali A. Shukur and Rizgar H. Salih
Modelling 2025, 6(3), 74; https://doi.org/10.3390/modelling6030074 (registering DOI) - 29 Jul 2025
Viewed by 214
Abstract
This paper presents a novel four-dimensional autonomous conservative model characterized by an infinite set of equilibrium points and an unusual algebraic structure in which all eigenvalues of the Jacobian matrix are zero. The linearization of the proposed model implies that classical stability analysis [...] Read more.
This paper presents a novel four-dimensional autonomous conservative model characterized by an infinite set of equilibrium points and an unusual algebraic structure in which all eigenvalues of the Jacobian matrix are zero. The linearization of the proposed model implies that classical stability analysis is inadequate, as only the center manifolds are obtained. Consequently, the stability of the system is investigated through both analytical and numerical methods using Lyapunov functions and numerical simulations. The proposed model exhibits rich dynamics, including hyperchaotic behavior, which is characterized using the Lyapunov exponents, bifurcation diagrams, sensitivity analysis, attractor projections, and Poincaré map. Moreover, in this paper, we explore the model with fractional-order derivatives, demonstrating that the fractional dynamics fundamentally change the geometrical structure of the attractors and significantly change the system stability. The Grünwald–Letnikov formulation is used for modeling, while numerical integration is performed using the Caputo operator to capture the memory effects inherent in fractional models. Finally, an analog electronic circuit realization is provided to experimentally validate the theoretical and numerical findings. Full article
Show Figures

Figure 1

31 pages, 3715 KiB  
Review
Cutting Force—Vibration Interactions in Precise—and Micromilling Processes: A Critical Review on Prediction Methods
by Szymon Wojciechowski, Marcin Suszyński, Rafał Talar, Vit Černohlávek and Jan Štěrba
Materials 2025, 18(15), 3539; https://doi.org/10.3390/ma18153539 - 28 Jul 2025
Viewed by 292
Abstract
In recent years, much research has been devoted to the evaluation of physical phenomena and the technological effects of precise and micromilling processes. However, the available current literature lacks synthetic work covering the current state of the art regarding cutting force–tool displacement interactions [...] Read more.
In recent years, much research has been devoted to the evaluation of physical phenomena and the technological effects of precise and micromilling processes. However, the available current literature lacks synthetic work covering the current state of the art regarding cutting force–tool displacement interactions in precise and micromilling manufacturing systems. Therefore, this literature review aims to fill this research gap and focuses on the critical literature review regarding the current state of the art within the prediction methods of cutting forces and machining system’s displacements/vibrations during precise and micromilling techniques. In the first part, a currently available cutting force, as well as the static and dynamic machining system displacement models applied in precise and micromilling conditions are presented. In the next stage, a relationship between the geometrical elements of cut and generated cutting forces and tool displacements are discussed, based on the recent literature. A subsequent part concerns the formulation of the generalized analytical models for a prediction of cutting forces and vibrations during precise and micromilling conditions. In the last stage, the conclusions and outlook are formulated based on the conducted analysis of the literature. In this context, this paper constitutes a synthetic work presenting current trends in the prediction of precise milling and micromilling mechanics. Full article
Show Figures

Figure 1

20 pages, 7332 KiB  
Article
Analytical Derivation of the q-Factor for Slender Masonry Structures Under Out-of-Plane Seismic Action
by Simona Coccia
Buildings 2025, 15(15), 2622; https://doi.org/10.3390/buildings15152622 - 24 Jul 2025
Viewed by 209
Abstract
Slender masonry structures, in the absence of disintegration phenomena, can be idealized as rigid bodies subjected to seismic excitation. In this study, a closed-form expression for the behavior factor (q-factor) associated with overturning collapse under out-of-plane seismic loading is derived. The [...] Read more.
Slender masonry structures, in the absence of disintegration phenomena, can be idealized as rigid bodies subjected to seismic excitation. In this study, a closed-form expression for the behavior factor (q-factor) associated with overturning collapse under out-of-plane seismic loading is derived. The analysis considers five-step pulse seismic inputs. In the proposed approach, valid for slender masonry structures, sliding failure is neglected, and collapse is assumed to occur when, at the end of the seismic excitation, the rotation of the structure reaches a value equal to its slenderness. Based on this criterion, it is possible to derive a formulation for the q-factor as a function of a dimensionless parameter that combines the geometric characteristics of the slender structure and the period of the applied accelerogram. To validate the proposed formulation, a comparative analysis is conducted against the results obtained from a numerical integration of the motion equation using a set of 20 natural accelerograms recorded in Italy. The characteristic period of each accelerogram is evaluated through different methodologies, with the aim of identifying the most suitable approach for application in simplified seismic assessment procedures. Full article
(This article belongs to the Special Issue Seismic Assessment of Unreinforced Masonry Buildings)
Show Figures

Figure 1

25 pages, 6911 KiB  
Article
Image Inpainting Algorithm Based on Structure-Guided Generative Adversarial Network
by Li Zhao, Tongyang Zhu, Chuang Wang, Feng Tian and Hongge Yao
Mathematics 2025, 13(15), 2370; https://doi.org/10.3390/math13152370 - 24 Jul 2025
Viewed by 287
Abstract
To address the challenges of image inpainting in scenarios with extensive or irregular missing regions—particularly detail oversmoothing, structural ambiguity, and textural incoherence—this paper proposes an Image Structure-Guided (ISG) framework that hierarchically integrates structural priors with semantic-aware texture synthesis. The proposed methodology advances a [...] Read more.
To address the challenges of image inpainting in scenarios with extensive or irregular missing regions—particularly detail oversmoothing, structural ambiguity, and textural incoherence—this paper proposes an Image Structure-Guided (ISG) framework that hierarchically integrates structural priors with semantic-aware texture synthesis. The proposed methodology advances a two-stage restoration paradigm: (1) Structural Prior Extraction, where adaptive edge detection algorithms identify residual contours in corrupted regions, and a transformer-enhanced network reconstructs globally consistent structural maps through contextual feature propagation; (2) Structure-Constrained Texture Synthesis, wherein a multi-scale generator with hybrid dilated convolutions and channel attention mechanisms iteratively refines high-fidelity textures under explicit structural guidance. The framework introduces three innovations: (1) a hierarchical feature fusion architecture that synergizes multi-scale receptive fields with spatial-channel attention to preserve long-range dependencies and local details simultaneously; (2) spectral-normalized Markovian discriminator with gradient-penalty regularization, enabling adversarial training stability while enforcing patch-level structural consistency; and (3) dual-branch loss formulation combining perceptual similarity metrics with edge-aware constraints to align synthesized content with both semantic coherence and geometric fidelity. Our experiments on the two benchmark datasets (Places2 and CelebA) have demonstrated that our framework achieves more unified textures and structures, bringing the restored images closer to their original semantic content. Full article
Show Figures

Figure 1

23 pages, 6601 KiB  
Article
Effect of Hemp Shive Granulometry on the Thermal Conductivity of Hemp–Lime Composites
by Wojciech Piątkiewicz, Piotr Narloch, Zuzanna Wólczyńska and Joanna Mańczak
Materials 2025, 18(15), 3458; https://doi.org/10.3390/ma18153458 - 23 Jul 2025
Viewed by 509
Abstract
This study investigates the effect of hemp shive granulometry on the thermal conductivity and microstructure of hemp–lime composites. Three distinct particle size fractions—fine, medium, and coarse—were characterized using high-resolution image analysis to determine geometric parameters such as Feret diameters, circularity, and elongation. Composite [...] Read more.
This study investigates the effect of hemp shive granulometry on the thermal conductivity and microstructure of hemp–lime composites. Three distinct particle size fractions—fine, medium, and coarse—were characterized using high-resolution image analysis to determine geometric parameters such as Feret diameters, circularity, and elongation. Composite mixtures with varying binder-to-shive and water-to-shive ratios were prepared and compacted at a consistent level to isolate the influence of aggregate granulometry on thermal performance. Results demonstrate a clear inverse relationship between particle size and thermal conductivity, with coarse fractions reducing thermal conductivity by up to 7.6% compared to fine fractions. Composite density was also affected, decreasing with increasing particle size, confirming the impact of granulometry on pore structure and packing density. However, binder content exhibited the most significant effect on thermal conductivity, with a 20% increase observed for higher binder-to-shive ratios irrespective of shive size. The study further establishes that a 15 g sample size (~2400 particles) provides sufficient statistical accuracy for granulometric characterization using image analysis. These findings provide critical insights for optimizing hemp–lime composites for enhanced thermal insulation performance, supporting sustainable construction practices by informing material formulation and processing parameters. Full article
Show Figures

Figure 1

33 pages, 2542 KiB  
Article
Trapped Modes Along Periodic Structures Submerged in a Three-Layer Fluid with a Background Steady Flow
by Gonçalo A. S. Dias and Bruno M. M. Pereira
Computation 2025, 13(8), 176; https://doi.org/10.3390/computation13080176 - 22 Jul 2025
Viewed by 131
Abstract
In this study, we study the trapping of linear water waves by infinite arrays of three-dimensional fixed periodic structures in a three-layer fluid. Each layer has an independent uniform velocity field with respect to the fixed ground in addition to the internal modes [...] Read more.
In this study, we study the trapping of linear water waves by infinite arrays of three-dimensional fixed periodic structures in a three-layer fluid. Each layer has an independent uniform velocity field with respect to the fixed ground in addition to the internal modes along the interfaces between layers. Dynamical stability between velocity shear and gravitational pull constrains the layer velocities to a neighbourhood of the diagonal U1=U2=U3 in velocity space. A non-linear spectral problem results from the variational formulation. This problem can be linearized, resulting in a geometric condition (from energy minimization) that ensures the existence of trapped modes within the limits set by stability. These modes are solutions living the discrete spectrum that do not radiate energy to infinity. Symmetries reduce the global problem to solutions in the first octant of the three-dimensional velocity space. Examples are shown of configurations of obstacles which satisfy the stability and geometric conditions, depending on the values of the layer velocities. The robustness of the result of the vertical column from previous studies is confirmed in the new configurations. This allows for comparison principles (Cavalieri’s principle, etc.) to be used in determining whether trapped modes are generated. Full article
(This article belongs to the Special Issue Advances in Computational Methods for Fluid Flow)
Show Figures

Figure 1

38 pages, 6893 KiB  
Article
A New Eco-Physical, Individual-Based Model of Humpback Whale (Megaptera novaeangliae, Borowski, 1781) Swimming and Diving
by Marisa González Félix, Jennifer Coston-Guarini, Pascal Rivière and Jean-Marc Guarini
J. Mar. Sci. Eng. 2025, 13(8), 1388; https://doi.org/10.3390/jmse13081388 - 22 Jul 2025
Viewed by 307
Abstract
Among marine organisms, baleen whale species like the humpback whale (Megaptera novaeangliae) are a case for which individual-based models are necessary to study population changes because individual trait variabilities predominate over average demographic rates to govern population dynamics. These models require [...] Read more.
Among marine organisms, baleen whale species like the humpback whale (Megaptera novaeangliae) are a case for which individual-based models are necessary to study population changes because individual trait variabilities predominate over average demographic rates to govern population dynamics. These models require quantification of individual organisms’ dynamics with respect to local conditions, which implies optimal strategy frameworks cannot be used. Instead, to quantify how individuals perform according to the environmental conditions they encounter, we formulated a model linking individual mechanical characteristics of swimming and diving with their aerobic metabolism and behavior. The model simulates the dynamics of swimming and diving for the reported range of whale sizes (1000 to 50,000 kg). Additional processes simulate foraging events including rapid accelerations and water engulfment, which modifies whale shape, weight and drag. Simulations show how the energy cost of swimming at equilibrium increases geometrically with velocity and linearly with mass. The duration and distance covered under apnea vary monotonically with mass but not with velocity; hence, there is a positive mass-dependent optimal velocity that maximizes the distance and duration of apnea. The dive limit was explored with a combination of the physiological state, mechanical force produced and distance to return to surface. This combination is imposed as an inequality constraint on the whale individual. The inequality constraint, transformed as a multi-layer perceptron, which continuously processes information about oxygen, depth and relative velocity, provides the whale individual with autonomous decision-making about whether or not to continue the dive. The results also highlight where missing metabolic information is needed to simulate the dynamics of a population of autonomous individuals at the scale of the Global Ocean. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

14 pages, 710 KiB  
Article
Exploring Harmonic Evolute Geometries Derived from Tubular Surfaces in Minkowski 3-Space Using the RM Darboux Frame
by Emad Solouma, Sayed Saber and Haci Mehmet Baskonus
Mathematics 2025, 13(15), 2329; https://doi.org/10.3390/math13152329 - 22 Jul 2025
Viewed by 152
Abstract
In this study, We explore for Minkowski 3-space E13 harmonic surfaces’ geometric features by employing a common tangent vector field along a curve situated on the surface. Our analysis is grounded in the rotation minimizing (RM) Darboux frame, which offers a [...] Read more.
In this study, We explore for Minkowski 3-space E13 harmonic surfaces’ geometric features by employing a common tangent vector field along a curve situated on the surface. Our analysis is grounded in the rotation minimizing (RM) Darboux frame, which offers a robust alternative to the classical Frenet frame particularly valuable in the Lorentzian setting, where singularities frequently arise. The RM Darboux frame, tailored to curves lying on surfaces, enables the expression of fundamental invariants such as geodesic curvature, normal curvature, and geodesic torsion. We derive specific conditions that characterize harmonic surfaces based on these invariants. We also clarify the connection between the components of the RM Darboux frame and thesurface’s mean curvature vector. This formulation provides fresh perspectives on the classification and intrinsic structure of harmonic surfaces within Minkowski geometry. To support our findings, we present several illustrative examples that demonstrate the applicability and strength of the RM Darboux approach in Lorentzian differential geometry. Full article
(This article belongs to the Special Issue Differential Geometric Structures and Their Applications)
Show Figures

Figure 1

30 pages, 24914 KiB  
Article
Algorithm to Find and Analyze All Configurations of Four-Bar Linkages with Different Geometric Loci Degenerate Forms
by Giorgio Figliolini, Chiara Lanni and Luciano Tomassi
Symmetry 2025, 17(8), 1171; https://doi.org/10.3390/sym17081171 - 22 Jul 2025
Viewed by 233
Abstract
A general algorithm to determine the coupler link geometric loci, such as centrodes, inflection and return circles, as well as circling-point and centering-point curves, is formulated to analyze any type of four-bar linkages with the main target to find all mechanism configurations, in [...] Read more.
A general algorithm to determine the coupler link geometric loci, such as centrodes, inflection and return circles, as well as circling-point and centering-point curves, is formulated to analyze any type of four-bar linkages with the main target to find all mechanism configurations, in which at least one of the above-mentioned loci degenerates. Thus, different types of four-bar linkages, such as crank-rocker, double-crank, double-rocker and triple-rocker, are classified according to Grashof’s law, in order to distinguish and analyze their corresponding geometric loci. In particular, the proposed algorithm is based on four diagrams of the angular velocity ratios versus the mechanism driving angle, which consider the links pairs of input/output, input/coupler, and output/coupler, along with those of coupler/input and coupler/output for their relative motion. These diagrams allow the determination of all mechanism configurations according to Freudenstein’s theorems, where the aforementioned geometric loci degenerate into straight lines, including the line at infinity, ϕ-curves, and/or equilateral hyperbolas. This algorithm has been implemented in Matlab in order to run several examples regarding different four-bar linkages, according to Grashof’s law, and analyzing the degenerate forms of their inflection and return circles, as well as the circling-point and centering-point curves, that are also validated by using the collineation axis. Full article
Show Figures

Figure 1

Back to TopTop