Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,327)

Search Parameters:
Keywords = geographic characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 22496 KiB  
Article
Comparative Genomics and Adaptive Evolution of Bifidobacterium adolescentis in Geographically Distinct Human Gut Populations
by Pei Fu, Hao Qi and Wenjun Liu
Foods 2025, 14(15), 2747; https://doi.org/10.3390/foods14152747 - 6 Aug 2025
Abstract
Bifidobacterium adolescentis is prevalent in the gastrointestinal tract of healthy humans, and significantly influences host health. Recent studies have predominantly investigated the probiotic characteristics of individual strains and their specific metabolic roles, whereas analyses at the population genome level have been limited to [...] Read more.
Bifidobacterium adolescentis is prevalent in the gastrointestinal tract of healthy humans, and significantly influences host health. Recent studies have predominantly investigated the probiotic characteristics of individual strains and their specific metabolic roles, whereas analyses at the population genome level have been limited to date. This study conducted a comparative genomics analysis of 543 B. adolescentis genomes to explore genetic background variations and functional gene differences across geographically diverse populations. The results revealed significant differences in genome size and GC content among populations from Asia, Europe, and North America (p < 0.05). The pan-gene exhibited an open structure, reflecting the substantial genetic diversity within B. adolescentis. Functional annotation demonstrated that B. adolescentis possesses numerous protein-coding genes and abundant carbohydrate-active enzymes (CAZys) implicated in carbohydrate degradation and transformation. Population-specific CAZys were identified, suggesting adaptive evolution driven by distinct regional dietary patterns. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

24 pages, 2539 KiB  
Article
Classification Framework for Hydrological Resources for Sustainable Hydrogen Production with a Predictive Algorithm for Optimization
by Mónica Álvarez-Manso, Gabriel Búrdalo-Salcedo and María Fernández-Raga
Hydrogen 2025, 6(3), 54; https://doi.org/10.3390/hydrogen6030054 - 6 Aug 2025
Abstract
Given the urgent need to decarbonize the global energy system, green hydrogen has emerged as a key alternative in the transition to renewables. However, its production via electrolysis demands high water quality and raises environmental concerns, particularly regarding reject water discharge. This study [...] Read more.
Given the urgent need to decarbonize the global energy system, green hydrogen has emerged as a key alternative in the transition to renewables. However, its production via electrolysis demands high water quality and raises environmental concerns, particularly regarding reject water discharge. This study employs an experimental and analytical approach to define optimal water characteristics for electrolysis, focusing on conductivity as a key parameter. A pilot water treatment plant with reverse osmosis and electrodeionization (EDI) was designed to simulate industrial-scale pretreatment. Twenty water samples from diverse natural sources (surface and groundwater) were tested, selected for geographical and geological variability. A predictive algorithm was developed and validated to estimate useful versus reject water based on input quality. Three conductivity-based categories were defined: optimal (0–410 µS/cm), moderate (411–900 µS/cm), and restricted (>900 µS/cm). Results show that water quality significantly affects process efficiency, energy use, waste generation, and operating costs. This work offers a technical and regulatory framework for assessing potential sites for green hydrogen plants, recommending avoidance of high-conductivity sources. It also underscores the current regulatory gap regarding reject water treatment, stressing the need for clear environmental guidelines to ensure project sustainability. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Figure 1

22 pages, 14608 KiB  
Article
Temporal and Spatial Evolution of Gross Primary Productivity of Vegetation and Its Driving Factors on the Qinghai-Tibet Plateau Based on Geographical Detectors
by Liang Zhang, Cunlin Xin and Meiping Sun
Atmosphere 2025, 16(8), 940; https://doi.org/10.3390/atmos16080940 (registering DOI) - 5 Aug 2025
Abstract
To investigate the spatiotemporal evolution characteristics and primary driving factors of Gross Primary Productivity (GPP) on the Qinghai-Tibet Plateau, we employed an enhanced MODIS-PSN model. Utilizing the fifth-generation global climate reanalysis dataset (ECMWF ERA5), we generated GPP remote sensing products by integrating six [...] Read more.
To investigate the spatiotemporal evolution characteristics and primary driving factors of Gross Primary Productivity (GPP) on the Qinghai-Tibet Plateau, we employed an enhanced MODIS-PSN model. Utilizing the fifth-generation global climate reanalysis dataset (ECMWF ERA5), we generated GPP remote sensing products by integrating six natural factors. Through correlation analysis and geographical detector modeling, we quantitatively analyzed the spatiotemporal dynamics and key drivers of vegetation GPP across the Qinghai-Tibet Plateau from 2001 to 2022. The results demonstrate that GPP changes across the Qinghai-Tibet Plateau display pronounced spatial heterogeneity. The humid northeastern and southeastern regions exhibit significantly positive change rates, primarily distributed across wetland and forest ecosystems, with a maximum mean annual change rate of 12.40 gC/m2/year. In contrast, the central and southern regions display a decreasing trend, with the minimum change rate reaching −1.61 gC/m2/year, predominantly concentrated in alpine grasslands and desert areas. Vegetation GPP on the Qinghai-Tibet Plateau shows significant correlations with temperature, vapor pressure deficit (VPD), evapotranspiration (ET), leaf area index (LAI), precipitation, and radiation. Among the factors analyzed, LAI demonstrates the strongest explanatory power for spatial variations in vegetation GPP across the Qinghai-Tibet Plateau. The dominant factors influencing vegetation GPP on the Qinghai-Tibet Plateau are LAI, ET, and precipitation. The pairwise interactions between these factors exhibit linear enhancement effects, demonstrating synergistic multifactor interactions. This study systematically analyzed the response mechanisms and variations of vegetation GPP to multiple driving factors across the Qinghai-Tibet Plateau from a spatial heterogeneity perspective. The findings provide both a critical theoretical framework and practical insights for better understanding ecosystem response dynamics and drought conditions on the plateau. Full article
Show Figures

Figure 1

25 pages, 8686 KiB  
Article
Urban Shrinkage in the Qinling–Daba Mountains: Spatiotemporal Patterns and Influencing Factors
by Yuan Lv, Shanni Yang, Dan Zhao, Yilin He and Shuaibin Li
Sustainability 2025, 17(15), 7084; https://doi.org/10.3390/su17157084 - 5 Aug 2025
Abstract
With the global economic restructuring and the consequent population mobility, urban shrinkage has become a common phenomenon. The Qinling–Daba Mountains, a zone with a key ecological function in China, have long experienced population decline and functional degradation. Clarifying the dynamics and influencing factors [...] Read more.
With the global economic restructuring and the consequent population mobility, urban shrinkage has become a common phenomenon. The Qinling–Daba Mountains, a zone with a key ecological function in China, have long experienced population decline and functional degradation. Clarifying the dynamics and influencing factors of urban shrinkage plays a vital role in supporting the sustainable development of the region. This study, using permanent resident population growth rates and nighttime light data, classified cities in the region into four spatial patterns: expansion–growth, intensive growth, expansion–shrinkage, and intensive shrinkage. It further examined the spatial characteristics of shrinkage across four periods (2005–2010, 2010–2015, 2015–2020, and 2020–2022). A Geographically and Temporally Weighted Regression (GTWR) model was applied to examine core influencing factors and their spatiotemporal heterogeneity. The results indicated the following: (1) The dominant pattern of urban shrinkage in the Qinling–Daba Mountains shifted from expansion–growth to expansion–shrinkage, highlighting the paradox of population decline alongside continued spatial expansion. (2) Three critical indicators significantly influenced urban shrinkage: the number of students enrolled in general secondary schools (X5), the per capita disposable income of urban residents (X7), and the number of commercial and residential service facilities (X12), with their effects exhibiting significant spatiotemporal heterogeneity. Temporally, X12 was the most influential factor in 2005 and 2010, while in 2015, 2020, and 2022, X5 and X7 became the dominant factors. Spatially, X7 significantly affected both eastern and western areas; X5’s influence was most pronounced in the west; and X12 had the greatest impact in the east. This study explored the patterns and underlying drivers of urban shrinkage in underdeveloped areas, aiming to inform sustainable development practices in regions facing comparable challenges. Full article
(This article belongs to the Special Issue Sustainable Urban Planning and Regional Development)
Show Figures

Figure 1

23 pages, 3557 KiB  
Article
Enhancing Inclusive Social, Financial, and Health Services for Persons with Disabilities in Saudi Arabia: Insights from Caregivers
by Ghada Alturif, Wafaa Saleh, Hessa Alsanad and Augustus Ababio-Donkor
Healthcare 2025, 13(15), 1901; https://doi.org/10.3390/healthcare13151901 - 5 Aug 2025
Abstract
Background: Social and financial services are essential for the inclusion and well-being of people with disabilities (PWDs), who often rely on family caregivers to access these systems. In Saudi Arabia, where disability inclusion is a strategic goal under Vision 2030, understanding caregiver experiences [...] Read more.
Background: Social and financial services are essential for the inclusion and well-being of people with disabilities (PWDs), who often rely on family caregivers to access these systems. In Saudi Arabia, where disability inclusion is a strategic goal under Vision 2030, understanding caregiver experiences is crucial to identifying service gaps and improving accessibility. Objectives: This study aimed to explore caregivers’ perspectives on awareness, perceived barriers, and accessibility of social and financial services for PWDs in Saudi Arabia. The analysis is grounded in Andersen’s Behavioural Model of Health Service Use and the WHO’s International Classification of Functioning, Disability and Health (ICF) framework. Methods: A cross-sectional survey was conducted with 3353 caregivers of PWDs attending specialised day schools. The survey collected data on demographic characteristics, service awareness, utilisation, and perceived obstacles. Exploratory Factor Analysis (EFA) identified latent constructs, and Structural Equation Modelling (SEM) was used to test relationships between awareness, barriers, and accessibility. Results: Findings reveal that over 70% of caregivers lacked awareness of available services, and only about 3% had accessed them. Key challenges included technological barriers, complex procedures, and non-functional or unclear service provider platforms. Both User Barriers and Service Barriers were negatively associated with Awareness and Accessibility. Awareness, in turn, significantly predicted perceived Accessibility. Caregiver demographics, such as age, education, gender, and geographic location, also influenced awareness and service use. Conclusions: There is a pressing need for targeted awareness campaigns, accessible digital service platforms, and simplified service processes tailored to diverse caregiver profiles. Inclusive communication, decentralised outreach, and policy reforms are necessary to enhance service access and promote the societal inclusion of PWDs in alignment with Saudi Arabia’s Vision 2030. Full article
(This article belongs to the Special Issue Disability Studies and Disability Evaluation)
Show Figures

Figure 1

13 pages, 1870 KiB  
Article
Study on the Spatiotemporal Distribution Characteristics and Constitutive Relationship of Foggy Airspace in Mountainous Expressways
by Xiaolei Li, Yinxia Zhan, Tingsong Cheng and Qianghui Song
Appl. Sci. 2025, 15(15), 8615; https://doi.org/10.3390/app15158615 (registering DOI) - 4 Aug 2025
Viewed by 56
Abstract
To study the generation and dissipation process of agglomerate fog in mountainous expressways and deeply understand the hazard mechanisms of agglomerate fog sections in mountainous expressways, based on the analysis of the geographical location characteristics of mountainous expressways and the spatial and temporal [...] Read more.
To study the generation and dissipation process of agglomerate fog in mountainous expressways and deeply understand the hazard mechanisms of agglomerate fog sections in mountainous expressways, based on the analysis of the geographical location characteristics of mountainous expressways and the spatial and temporal distribution characteristics of agglomerate fog, the airspace constitutive model of agglomerate fog in mountainous expressways was constructed based on Newton constitutive theory. Firstly, the properties of the Newtonian fluid and cluster fog were compared and analyzed, and the influence mechanism of environmental factors such as the altitude difference, topography, water system, valley effect, and vegetation on the generation and dissipation of agglomerate fog in mountainous expressways was analyzed. Based on Newton’s constitutive theory, the constitutive model of temperature, humidity, wind speed, and agglomerate fog points in the foggy airspace of the mountainous expressway was established. Then, the time and spatial distribution of fog in Chongqing and Guizhou from 2021 to 2023 were analyzed. Finally, the model was verified by using the meteorological data and fog warning data of Liupanshui City, Guizhou Province in 2023. The results show that the foggy airspace of mountainous expressways can be defined as “the space occupied by the agglomerate fog that occurs above the mountain expressway”; The temporal and spatial distribution of foggy airspace on expressways in mountainous areas is closely related to the topography, water system, vegetation distribution, and local microclimate formed by thermal radiation. The horizontal and vertical movements of the atmosphere have little influence on the foggy airspace on expressways in mountainous areas. The specific manifestation of time distribution is that the occurrence of agglomerate fog is concentrated from November to April of the following year, and the daily occurrence time is mainly concentrated between 4:00–8:00 and 18:00–22:00. The calculation results of the foggy airspace constitutive model of the expressway in the mountainous area show that when there is low surface radiation or no surface radiation, the fogging value range is [90, 100], and the fogging value range is [50, 70] when there is high surface radiation (>200), and there is generally no fog in other intervals. The research results can provide a theoretical basis for traffic safety management and control of mountainous expressway fog sections. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

16 pages, 2326 KiB  
Article
Patterns and Determinants of Ecological Uniqueness in Plant Communities on the Qinghai-Tibetan Plateau
by Liangtao Li and Gheyur Gheyret
Plants 2025, 14(15), 2379; https://doi.org/10.3390/plants14152379 - 1 Aug 2025
Viewed by 232
Abstract
The Qinghai-Tibetan Plateau is one of the world’s most prominent biodiversity hotspots. Understanding the spatial patterns of ecological uniqueness in its plant communities is essential for uncovering the mechanisms of community assembly and informing effective conservation strategies. In this study, we analyzed data [...] Read more.
The Qinghai-Tibetan Plateau is one of the world’s most prominent biodiversity hotspots. Understanding the spatial patterns of ecological uniqueness in its plant communities is essential for uncovering the mechanisms of community assembly and informing effective conservation strategies. In this study, we analyzed data from 758 plots across 338 sites on the Qinghai-Tibetan Plateau. For each plot, the vegetation type was classified, and all plant species present, along with their respective abundance or coverage, were recorded in the database. To assess overall compositional variation, community β-diversity was quantified, while a plot-level approach was applied to determine the influence of local environmental conditions and community characteristics on ecological uniqueness. We used stepwise multiple regressions, variation partitioning, and structural equation modeling to identify the key drivers of spatial variation in ecological uniqueness. Our results show that (1) local contributions to β-diversity (LCBD) exhibit significant geographic variation—increasing with longitude, decreasing with latitude, and showing a unimodal trend along the elevational gradient; (2) shrubs and trees contribute more to β-diversity than herbaceous species, and LCBD is strongly linked to the proportion of rare species; and (3) community characteristics, including species richness and vegetation coverage, are the main direct drivers of ecological uniqueness, explaining 36.9% of the variance, whereas climate and soil properties exert indirect effects through their interactions. Structural equation modeling further reveals a coordinated influence of soil, climate, and community attributes on LCBD, primarily mediated through soil nutrient availability. These findings provide a theoretical basis for adaptive biodiversity management on the Qinghai-Tibetan Plateau and underscore the conservation value of regions with high ecological uniqueness. Full article
Show Figures

Figure 1

22 pages, 3491 KiB  
Article
Phylogenetic Insights from a Novel Rehubryum Species Challenge Generic Boundaries in Orthotrichaceae
by Nikolay Matanov, Francisco Lara, Juan Antonio Calleja, Isabel Draper, Pablo Aguado-Ramsay and Ricardo Garilleti
Plants 2025, 14(15), 2373; https://doi.org/10.3390/plants14152373 - 1 Aug 2025
Viewed by 215
Abstract
In recent years, phylogenomic approaches have significantly deepened our understanding of moss diversity. These techniques have uncovered numerous previously overlooked species and provided greater clarity in resolving complex taxonomic relationships. In this context, the genus Rehubryum is particularly outstanding, because of its close [...] Read more.
In recent years, phylogenomic approaches have significantly deepened our understanding of moss diversity. These techniques have uncovered numerous previously overlooked species and provided greater clarity in resolving complex taxonomic relationships. In this context, the genus Rehubryum is particularly outstanding, because of its close morphological similarity to both Ulota and Atlantichella. The challenges posed by its segregation are addressed in this study, which integrates morphological and molecular data to reassess the circumscription of Rehubryum and its phylogenetic placement within the subtribe Lewinskyinae. Our results support the recognition of a new species, R. kiwi, and show that its inclusion within the genus further complicates the morphological delimitation of Rehubryum from Ulota, as both genera are distinguishable by only two consistent gametophytic characteristics: a submarginal leaf band of elongated cells, and the presence of geminate denticulations in the margins of the basal half of the leaf. Moreover, R. kiwi challenges the current morphological circumscription of Rehubryum itself, as it overlaps in key characteristics with its sister genus Atlantichella, rendering their morphological separation untenable. The striking interhemispheric disjunction between Rehubryum and Atlantichella raises new questions about long-distance dispersal and historical biogeography in mosses, despite these complexities at the generic level. Nevertheless, species-level distinctions remain well defined, especially in sporophytic traits and geographic distribution. These findings highlight the pervasive cryptic diversity within Orthotrichaceae, underscoring the need for integrative taxonomic frameworks that synthesize morphology, molecular phylogenetics, and biogeography to resolve evolutionary histories. Full article
(This article belongs to the Section Plant Systematics, Taxonomy, Nomenclature and Classification)
Show Figures

Figure 1

42 pages, 2867 KiB  
Article
A Heuristic Approach to Competitive Facility Location via Multi-View K-Means Clustering with Co-Regularization and Customer Behavior
by Thanathorn Phoka, Praeploy Poonprapan and Pornpimon Boriwan
Mathematics 2025, 13(15), 2481; https://doi.org/10.3390/math13152481 - 1 Aug 2025
Viewed by 204
Abstract
Solving competitive facility location problems can optimize market share or operational efficiency in environments where multiple firms compete for customer attention. In such contexts, facility attractiveness is shaped not only by geographic proximity but also by customer preference characteristics. This study presents a [...] Read more.
Solving competitive facility location problems can optimize market share or operational efficiency in environments where multiple firms compete for customer attention. In such contexts, facility attractiveness is shaped not only by geographic proximity but also by customer preference characteristics. This study presents a novel heuristic framework that integrates multi-view K-means clustering with customer behavior modeling reinforced by a co-regularization mechanism to align clustering results across heterogeneous data views. By jointly exploiting spatial and behavioral information, the framework clusters customers and facilities into meaningful market segments. Within each segment, a bilevel optimization model is applied to represent the sequential decision-making of competing entities—where a leader first selects facility locations, followed by a reactive follower. An empirical evaluation on a real-world dataset from San Francisco demonstrates that the proposed approach, using optimal co-regularization parameters, achieves a total runtime of approximately 4.00 s—representing a 99.34% reduction compared to the full CFLBP-CB model (608.58 s) and a 99.32% reduction compared to a genetic algorithm (585.20 s). Concurrently, it yields an overall profit of 16,104.17, which is an approximate 0.72% increase over the Direct CFLBP-CB profit of 15,988.27 and is only 0.21% lower than the genetic algorithm’s highest profit of 16,137.75. Moreover, comparative analysis reveals that the proposed multi-view clustering with co-regularization outperforms all single-view baselines, including K-means, spectral, and hierarchical methods. This superiority is evidenced by an approximate 5.21% increase in overall profit and a simultaneous reduction in optimization time, thereby demonstrating its effectiveness in capturing complementary spatial and behavioral structures for competitive facility location. Notably, the proposed two-stage approach achieves high-quality solutions with significantly shorter computation times, making it suitable for large-scale or time-sensitive competitive facility planning tasks. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

27 pages, 6094 KiB  
Article
National Multi-Scenario Simulation of Low-Carbon Land Use to Achieve the Carbon-Neutrality Target in China
by Junjun Zhi, Chenxu Han, Qiuchen Yan, Wangbing Liu, Likang Zhang, Zuyuan Wang, Xinwu Fu and Haoshan Zhao
Earth 2025, 6(3), 85; https://doi.org/10.3390/earth6030085 (registering DOI) - 1 Aug 2025
Viewed by 157
Abstract
Refining the land use structure can boost land utilization efficiency and curtail regional carbon emissions. Nevertheless, prior research has predominantly concentrated on static linear planning analysis. It has failed to account for how future dynamic alterations in driving factors (such as GDP and [...] Read more.
Refining the land use structure can boost land utilization efficiency and curtail regional carbon emissions. Nevertheless, prior research has predominantly concentrated on static linear planning analysis. It has failed to account for how future dynamic alterations in driving factors (such as GDP and population) affect simulation outcomes and how the land use spatial configuration impacts the attainment of the carbon-neutrality goal. In this research, 1 km spatial resolution LULC products were employed to meticulously simulate multiple land use scenarios across China at the national level from 2030 to 2060. This was performed by taking into account the dynamic changes in driving factors. Subsequently, an analysis was carried out on the low-carbon land use spatial structure required to reach the carbon-neutrality target. The findings are as follows: (1) When employing the PLUS (Patch—based Land Use Simulation) model to conduct simulations of various land use scenarios in China by taking into account the dynamic alterations in driving factors, a high degree of precision was attained across diverse scenarios. The sustainable development scenario demonstrated the best performance, with kappa, OA, and FoM values of 0.9101, 93.15%, and 0.3895, respectively. This implies that the simulation approach based on dynamic factors is highly suitable for national-scale applications. (2) The simulation accuracy of the PLUS and GeoSOS-FLUS (Systems for Geographical Modeling and Optimization, Simulation of Future Land Utilization) models was validated for six scenarios by extrapolating the trends of influencing factors. Moreover, a set of scenarios was added to each model as a control group without extrapolation. The present research demonstrated that projecting the trends of factors having an impact notably improved the simulation precision of both the PLUS and GeoSOS-FLUS models. When contrasted with the GeoSOS-FLUS model, the PLUS model attained superior simulation accuracy across all six scenarios. The highest precision indicators were observed in the sustainable development scenario, with kappa, OA, and FoM values reaching 0.9101, 93.15%, and 0.3895, respectively. The precise simulation method of the PLUS model, which considers the dynamic changes in influencing factors, is highly applicable at the national scale. (3) Under the sustainable development scenario, it is anticipated that China’s land use carbon emissions will reach their peak in 2030 and achieve the carbon-neutrality target by 2060. Net carbon emissions are expected to decline by 14.36% compared to the 2020 levels. From the perspective of dynamic changes in influencing factors, the PLUS model was used to accurately simulate China’s future land use. Based on these simulations, multi-scenario predictions of future carbon emissions were made, and the results uncover the spatiotemporal evolution characteristics of China’s carbon emissions. This study aims to offer a solid scientific basis for policy-making related to China’s low-carbon economy and high-quality development. It also intends to present Chinese solutions and key paths for achieving carbon peak and carbon neutrality. Full article
Show Figures

Figure 1

26 pages, 3030 KiB  
Article
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
by Frédéric Lorng Gnagne, Serge Schmitz, Hélène Boyossoro Kouadio, Aurélia Hubert-Ferrari, Jean Biémi and Alain Demoulin
Earth 2025, 6(3), 84; https://doi.org/10.3390/earth6030084 (registering DOI) - 1 Aug 2025
Viewed by 216
Abstract
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and [...] Read more.
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and frequency ratio models. The analysis is based on a dataset comprising 54 mapped landslide scarps collected from June 2015 to July 2023, along with 16 thematic predictor variables, including altitude, slope, aspect, profile curvature, plan curvature, drainage area, distance to the drainage network, normalized difference vegetation index (NDVI), and an urban-related layer. A high-resolution (5-m) digital elevation model (DEM), derived from multiple data sources, supports the spatial analysis. The landslide inventory was randomly divided into two subsets: 80% for model calibration and 20% for validation. After optimization and statistical testing, the selected thematic layers were integrated to produce a susceptibility map. The results indicate that 6.3% (0.7 km2) of the study area is classified as very highly susceptible. The proportion of the sample (61.2%) in this class had a frequency ratio estimated to be 20.2. Among the predictive indicators, altitude, slope, SE, S, NW, and NDVI were found to have a positive impact on landslide occurrence. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), demonstrating strong predictive capability. These findings can support informed land-use planning and risk reduction strategies in urban areas. Furthermore, the prediction model should be communicated to and understood by local authorities to facilitate disaster management. The cost function was adopted as a novel approach to delineate hazardous zones. Considering the landslide inventory period, the increasing hazard due to climate change, and the intensification of human activities, a reasoned choice of sample size was made. This informed decision enabled the production of an updated prediction map. Optimal thresholds were then derived to classify areas into high- and low-susceptibility categories. The prediction map will be useful to planners in helping them make decisions and implement protective measures. Full article
Show Figures

Figure 1

24 pages, 3328 KiB  
Review
Ergonomic and Psychosocial Risk Factors and Their Relationship with Productivity: A Bibliometric Analysis
by Gretchen Michelle Vuelvas-Robles, Julio César Cano-Gutiérrez, Jesús Everardo Olguín-Tiznado, Claudia Camargo-Wilson, Juan Andrés López-Barreras and Melissa Airem Cázares-Manríquez
Safety 2025, 11(3), 74; https://doi.org/10.3390/safety11030074 - 1 Aug 2025
Viewed by 161
Abstract
This study analyzes the relationship between ergonomic and psychosocial risk factors and labor productivity using a bibliometric approach through a general analysis and one that includes inclusion criteria such as English language, open access, and primary research publications to identify only those articles [...] Read more.
This study analyzes the relationship between ergonomic and psychosocial risk factors and labor productivity using a bibliometric approach through a general analysis and one that includes inclusion criteria such as English language, open access, and primary research publications to identify only those articles that explicitly address the relationship between ergonomic and psychosocial risk factors and labor productivity. It is recognized that both physical and psychosocial conditions of the work environment directly influence workers’ health and organizational performance. For this purpose, a bibliometric review was conducted in academic databases, including Scopus, Web of Science, ScienceDirect, and Taylor & Francis, resulting in the selection of 4794 relevant articles for general analysis. Additionally, 116 relevant articles were selected based on the inclusion criteria. Tools and methodologies, such as Rayyan, Excel, VOSviewer 1.6.20, and PRISMA, were used to classify the studies and identify trends, collaboration networks, and geographical distribution. The results reveal a sustained growth in scientific production, with clusters on occupational safety and health, work environment factors, and the characteristics of the population, approach, and methodologies used in the studies. Likewise, Procedia Manufacturing, International Journal of Occupational Safety and Ergonomics, and Ergonomics stand out as the main sources of publication, while countries such as Sweden, Poland, and the United States lead the scientific production in this field. In addition, the network of co-occurrence of keywords evidences a comprehensive approach that articulates physical or ergonomic and psychosocial risk factors with organizational performance, while the network of authors shows consolidated collaborations and studies focused on analyzing the relationship between physical demands and musculoskeletal disorders from advanced ergonomic approaches. Full article
Show Figures

Figure 1

11 pages, 4743 KiB  
Communication
The Remarkable Increase in the Invasive Autumn Fern, Dryopteris erythrosora, One of the World’s Most Marketed Ferns, in Eastern North America
by Robert W. Pemberton and Eduardo Escalona
Plants 2025, 14(15), 2369; https://doi.org/10.3390/plants14152369 - 1 Aug 2025
Viewed by 197
Abstract
Autumn fern, Dryopteris erythrosora, is the most marketed temperate fern in the world. The rapid increase and spread of this recently naturalized fern in North America was determined and mapped using 76 herbarium specimen records and 2553 Research Grade iNaturalist posts. In [...] Read more.
Autumn fern, Dryopteris erythrosora, is the most marketed temperate fern in the world. The rapid increase and spread of this recently naturalized fern in North America was determined and mapped using 76 herbarium specimen records and 2553 Research Grade iNaturalist posts. In 2008, it was recorded in two states, but by 2025, it was found in 25 states in the eastern United States and Ontario, Canada. At the end of 2017, there had been only 23 iNaturalist posts, but this grew to 511 by the end of 2020 and 2553 by May 2025. The great increase in the number of iNaturalist posts is thought to be due to the real geographic spread and an actual increase in the abundance of the fern, as well as recognition of the fern by iNaturalists, and the increase in the number of iNaturalists. The spread and great increase are probably related to the high level of marketing, which introduces plants to the environment, and to biological characteristics of the fern, including apogamy and polyploidy, and possibly natural enemy release, which allows it to flourish in new environments and to displace native plants. This novel study demonstrated citizen science’s (iNaturalist’s) great value in detecting the naturalization and spread of alien plants. Full article
Show Figures

Figure 1

33 pages, 8930 KiB  
Article
Network-Aware Gaussian Mixture Models for Multi-Objective SD-WAN Controller Placement
by Abdulrahman M. Abdulghani, Azizol Abdullah, Amir Rizaan Rahiman, Nor Asilah Wati Abdul Hamid and Bilal Omar Akram
Electronics 2025, 14(15), 3044; https://doi.org/10.3390/electronics14153044 - 30 Jul 2025
Viewed by 164
Abstract
Software-Defined Wide Area Networks (SD-WANs) require optimal controller placement to minimize latency, balance loads, and ensure reliability across geographically distributed infrastructures. This paper introduces NA-GMM (Network-Aware Gaussian Mixture Model), a novel multi-objective optimization framework addressing key limitations in current controller placement approaches. Three [...] Read more.
Software-Defined Wide Area Networks (SD-WANs) require optimal controller placement to minimize latency, balance loads, and ensure reliability across geographically distributed infrastructures. This paper introduces NA-GMM (Network-Aware Gaussian Mixture Model), a novel multi-objective optimization framework addressing key limitations in current controller placement approaches. Three principal contributions distinguish NA-GMM: (1) a hybrid distance metric that integrates geographic distance, network latency, topological cost, and link reliability through adaptive weighting, effectively capturing multi-dimensional network characteristics; (2) a modified expectation–maximization algorithm incorporating node importance-weighting to optimize controller placements for critical network elements; and (3) a robust clustering mechanism that transitions from probabilistic (soft) assignments to definitive (hard) cluster selections, ensuring optimal placement convergence. Empirical evaluations on real-world topologies demonstrate NA-GMM’s superiority, achieving up to 22.7% lower average control latency compared to benchmark approaches, maintaining near-optimal load distribution with node distribution ratios, and delivering a 12.9% throughput improvement. Furthermore, NA-GMM achieved exquisite computational efficiency, executing 68.9% faster and consuming 41.5% less memory than state of the art methods, while achieving exceptional load balancing. These findings confirm NA-GMM’s practical viability for large-scale SD-WAN deployments where real-time multi-objective optimization is essential. Full article
(This article belongs to the Special Issue Feature Papers in Artificial Intelligence)
Show Figures

Figure 1

13 pages, 1009 KiB  
Article
A Statistical Optimization Method for Sound Speed Profiles Inversion in the South China Sea Based on Acoustic Stability Pre-Clustering
by Zixuan Zhang, Ke Qu and Zhanglong Li
Appl. Sci. 2025, 15(15), 8451; https://doi.org/10.3390/app15158451 - 30 Jul 2025
Viewed by 176
Abstract
Aiming at the problem of accuracy degradation caused by the mixing of spatiotemporal disturbance patterns in sound speed profile (SSP) inversion using the traditional geographic grid division method, this study proposes an acoustic stability pre-clustering framework that integrates principal component analysis and machine [...] Read more.
Aiming at the problem of accuracy degradation caused by the mixing of spatiotemporal disturbance patterns in sound speed profile (SSP) inversion using the traditional geographic grid division method, this study proposes an acoustic stability pre-clustering framework that integrates principal component analysis and machine learning clustering. Disturbance mode principal component analysis is first used to extract characteristic parameters, and then a machine learning clustering algorithm is adopted to pre-classify SSP samples according to acoustic stability. The SSP inversion experimental results show that: (1) the SSP samples of the South China Sea can be divided into three clusters of disturbance modes with statistically significant differences. (2) The regression inversion method based on cluster attribution reduces the average error of SSP inversion for data from 2018 to 1.24 m/s, which is more than 50% lower than what can be achieved with the traditional method without pre-clustering. (3) Transmission loss prediction verification shows that the proposed method can produce highly accurate sound field calculations in environmental assessment tasks. The acoustic stability pre-clustering technology proposed in this study provides an innovative solution for the statistical modeling of marine environment parameters by effectively decoupling the mixed effect of SSP spatiotemporal disturbance patterns. Its error control level (<1.5 m/s) is 37% higher than that of the single empirical orthogonal function regression method, showing important potential in underwater acoustic applications in complex marine dynamic environments. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

Back to TopTop