Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = geoelectrical sounding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6101 KiB  
Article
Modern Capabilities of Semi-Airborne UAV-TEM Technology on the Example of Studying the Geological Structure of the Uranium Paleovalley
by Ayur Bashkeev, Alexander Parshin, Ilya Trofimov, Sergey Bukhalov, Danila Prokhorov and Nikolay Grebenkin
Minerals 2025, 15(6), 630; https://doi.org/10.3390/min15060630 - 10 Jun 2025
Cited by 1 | Viewed by 420
Abstract
Unmanned systems provide significant prospects for improving the efficiency of electromagnetic geophysical exploration in mineral prospecting and geological mapping, as they can significantly increase the productivity of field surveys by accelerating the movement of the measuring system along the site, as well as [...] Read more.
Unmanned systems provide significant prospects for improving the efficiency of electromagnetic geophysical exploration in mineral prospecting and geological mapping, as they can significantly increase the productivity of field surveys by accelerating the movement of the measuring system along the site, as well as minimizing problems in cases where the pedestrian walkability of the site is a challenge. Lightweight and cheap UAV systems with a take-off weight in the low tens of kilograms are unable to carry a powerful current source; therefore, semi-airborne systems with a ground transmitter (an ungrounded loop or grounded at the ends of the line) and a measuring system towed on a UAV are becoming more and more widespread. This paper presents the results for a new generation of semi-airborne technology SibGIS UAV-TEMs belonging to the “line-loop” type and capable of realizing the transient/time-domain (TEM) electromagnetics method used for studying a uranium object of the paleovalley type. Objects of this type are characterized by a low resistivity of the ore zone located in relatively high-resistivity host rocks and, from the position of the geoelectric structure, can be considered a good benchmark for assessing the capabilities of different electrical exploration technologies in general. The aeromobile part of the geophysical system created is implemented on the basis of a hexacopter carrying a measuring system with an inductive sensor, an analog of a 50 × 50 m loop, an 18-bit ADC with satellite synchronization, and a transmitter. The ground part consists of a galvanically grounded supply line and a current source with a transmitter creating multipolar pulses of quasi-DC current in the line. The survey is carried out with a terrain drape based on a satellite digital terrain model. The article presents the results obtained from the electromagnetic soundings in comparison with the reference (drilled) profile, convincingly proving the high efficiency of UAV-TEM. This approach to pre-processing UAV–electrospecting data is described with the aim of improving data quality by taking into account the movement and swaying of the measuring system’s sensor. On the basis of the real data obtained, the sensitivity of the created semi-airborne system was modeled by solving a direct problem in the class of 3D models, which allowed us to evaluate the effectiveness of the method in relation to other geological cases. Full article
(This article belongs to the Special Issue Geoelectricity and Electrical Methods in Mineral Exploration)
Show Figures

Figure 1

18 pages, 9894 KiB  
Article
Determination of Cenozoic Sedimentary Structures Using Integrated Geophysical Surveys: A Case Study in the Hebei Plain, China
by Yi Yang, Jie Zhang, Junjie Wu, Pei Li, Xingchun Wang, Qingquan Zhi, Guojiang Hao, Jianhua Li and Xiaohong Deng
Sensors 2025, 25(2), 486; https://doi.org/10.3390/s25020486 - 16 Jan 2025
Viewed by 733
Abstract
The strong multi-stage tectonic movement caused the northwest of the North China Plain to rise and the southeast to fall. The covering layer in the plain area was several kilometers thick. In addition to expensive drilling, it is difficult to obtain deep geological [...] Read more.
The strong multi-stage tectonic movement caused the northwest of the North China Plain to rise and the southeast to fall. The covering layer in the plain area was several kilometers thick. In addition to expensive drilling, it is difficult to obtain deep geological information through traditional geological exploration. In this study, gravity, magnetotelluric (MT) sounding and shallow seismic methods are used to explore the basement relief and stratigraphic structure of the alluvial proluvial area in front of Taihang Mount in the North China Plain so as to understand the geological structure and sedimentary evolution of the area. The gravity anomaly map reveals the basement uplift, depression shape and faults distribution on the horizontal plane in the whole area. The MT profile reflects the geoelectric characteristics of the three-layer distribution in the Cenozoic. The seismic profile deployed on the Daxing Uplift depicts the structural style of the uplift area. The well-to-seismic calibration establishes the relationship between the lithostratigraphic and the wave impedance interface so that we can accurately obtain the shape and depth of the bedrock surface and further subdivide Cenozoic strata. Finally, we have improved the accuracy of interface inversion by using a variable density model based on density logging parameter statistics to constrain the depth of geological interfaces determined through drilling and multi-geophysical methods. Through the combination of geology and comprehensive geophysics, we have obtained the undulating patterns of Paleogene and Quaternary bottom interfaces, the structural styles of the basement and the distribution of faults in the survey area, which provide strong support for the study of neotectonic movement and sedimentary environment evolution since the Cenozoic. The successful application of this pattern proves that geophysical surveys based on prior geological information are an important supplementary tool for geological research in thick coverage areas. Full article
(This article belongs to the Special Issue Remote Sensing, Geophysics and GIS)
Show Figures

Figure 1

24 pages, 5243 KiB  
Article
Assessing Shallow Groundwater Quality Around the Sheba Leather Tannery Area, Wikro, North Ethiopia: A Geophysical and Hydrochemical Study
by Kaleab Adhena Abera, Berhane Abrha Asfaw, Yonatan Garkebo Doyoro, Tesfamichael Gebreyohanes, Abdelwassie Hussien, Gebremedhin Berhane, Miruts Hagos, Abadi Romha and Kristine Walraevens
Geosciences 2024, 14(12), 324; https://doi.org/10.3390/geosciences14120324 - 28 Nov 2024
Cited by 1 | Viewed by 1092
Abstract
This study aimed to investigate the shallow groundwater status around the Sheba Leather Tannery area, Wikro, North Ethiopia, through geophysical and hydrochemical methods. Seventeen Vertical Electrical Soundings (VESs) acquisitions, 4 upstream and 13 downstream, of the leather tannery area were conducted. Using the [...] Read more.
This study aimed to investigate the shallow groundwater status around the Sheba Leather Tannery area, Wikro, North Ethiopia, through geophysical and hydrochemical methods. Seventeen Vertical Electrical Soundings (VESs) acquisitions, 4 upstream and 13 downstream, of the leather tannery area were conducted. Using the data, four geoelectric profiles were generated. The aquifers’ geoelectrical layers, depth, and lateral extent were delineated. The VES curves depicted three to four resistivity layers. These alternating layers of low, moderate, and high resistivity values, traced at different VES points, were attributed to the formations’ composition and the groundwater quality status. Besides the geophysical survey, 32 water samples were collected from the area. Parameters such as electrical conductivity (EC), total dissolved solids (TDSs), pH, major ions, and heavy metals were analyzed. Moreover, PHREEQC was used to determine the groundwater mineral saturation indices where most minerals, except halite, were found supersaturated. The quality status for drinking purposes was also evaluated using the water quality index (WQI), and the water was classified as good (56.3%), poor (37.5%), and very poor (6.2%). The sodium adsorption ratio (SAR) and the percentage of sodium (Na+%) were calculated, and the results indicated that the water is suitable for direct use in irrigation. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

19 pages, 29487 KiB  
Article
Geometric Characterization of the Mateur Plain in Northern Tunisia Using Vertical Electrical Sounding and Remote Sensing Techniques
by Wissal Issaoui, Imen Hamdi Nasr, Dimitrios D. Alexakis, Wafa Bejaoui, Ismael M. Ibraheem, Ahmed Ezzine, Dhouha Ben Othman and Mohamed Hédi Inoubli
ISPRS Int. J. Geo-Inf. 2024, 13(9), 333; https://doi.org/10.3390/ijgi13090333 - 18 Sep 2024
Cited by 4 | Viewed by 1930 | Correction
Abstract
The Mateur aquifer system in Northern Tunisia was examined using data from 19 water boreholes, 69 vertical electrical sounding (VES) stations, and a Sentinel-2 satellite image. Available boreholes and their corresponding logs were compared to define precisely the multi-layer aquifer system, including the [...] Read more.
The Mateur aquifer system in Northern Tunisia was examined using data from 19 water boreholes, 69 vertical electrical sounding (VES) stations, and a Sentinel-2 satellite image. Available boreholes and their corresponding logs were compared to define precisely the multi-layer aquifer system, including the Quaternary and Campanian aquifers of the Mateur plain. Quantitative interpretation and qualitative evaluation of VES data were conducted to define the geometry of these reservoirs. These interpretations were enhanced by remote sensing imagery processing, which enabled the identification of the Mateur plain’s superficial lineaments. Based on well log information, the lithological columns show that the Quaternary series in the Ras El Ain region contains a layer of clayey, pebbly, and gravelly limestone. Additionally, in the Oued El Tine area, a clayey lithological unit has been identified as a multi-layer aquifer. The study area, exhibiting apparent resistivity values ranging between 20 and 170 Ohm·m, appears to be rich in groundwater resources. The correlation between the lithological columns and the interpreted VES data, presented as geoelectrical cross-sections, revealed variations in depth (8–106 m), thickness (10 to 55 m), and resistivity (20–98 Ohm·m) of a coarse unit corresponding to the Mateur aquifer. Twenty-three superficial lineaments were extracted from the Sentinel-2 image. Their common superposition indicated that both of them are in a good coincidence; these could be the result of normal faults, creating an aquifer system divided into raised and sunken blocks. Full article
Show Figures

Figure 1

21 pages, 15841 KiB  
Article
Coastal Groundwater Bodies Modelling Using Geophysical Surveys: The Reconstruction of the Geometry of Alluvial Plains in the North-Eastern Sicily (Italy)
by Patrizia Capizzi, Raffaele Martorana, Alessandro Canzoneri, Alessandro Bonfardeci and Rocco Favara
Water 2024, 16(7), 1048; https://doi.org/10.3390/w16071048 - 5 Apr 2024
Cited by 1 | Viewed by 2309
Abstract
The integration of various geophysical methodologies is considered a fundamental tool for accurately reconstructing the extent and shape of a groundwater body and for estimating the physical parameters that characterize it. This is often essential for the management of water resources in areas [...] Read more.
The integration of various geophysical methodologies is considered a fundamental tool for accurately reconstructing the extent and shape of a groundwater body and for estimating the physical parameters that characterize it. This is often essential for the management of water resources in areas affected by geological and environmental hazards. This work aims to reconstruct the pattern and extent of two groundwater bodies, located in the coastal sectors of the North-Eastern Sicily, through the integrated analysis and interpretation of several geoelectrical, seismic and geological data. These are the Sant’Agata-Capo D’Orlando (SCGWB) and the Barcelona-Milazzo (BMGWB) Groundwater Bodies, located at the two ends of the northern sector of the Peloritani geological complex. These two studied coastal plains represent densely populated and industrialized areas, in which the quantity and quality of the groundwater bodies are under constant threat. At first, the resistivity models of the two groundwater bodies were realized through the inversion of a dataset of Vertical Electrical Soundings (VES), constrained by stratigraphic well logs data and other geophysical data. The 3D resistivity models obtained by spatially interpolating 1D inverse VES models have allowed for an initial recognition of the distribution of groundwater, as well as a rough geological framework of the subsoil. Subsequently, these models were implemented by integrating results from active and passive seismic data to determine the seismic P and S wave velocities of the main lithotypes. Simultaneous acquisition and interpretation of seismic and electrical tomographies along identical profiles allowed to determine the specific values of seismic velocity, electrical resistivity and chargeability of the alluvial sediments, and to use these values to constrain the HVSR inversion. All this allowed us to recognize the areal extension and thickness of the various lithotypes in the two investigated areas and, finally, to define the depth and the morphology of the base of the groundwater bodies and the thickness of the filling deposits. Full article
(This article belongs to the Special Issue Application of Geophysical Methods for Hydrogeology)
Show Figures

Figure 1

22 pages, 5683 KiB  
Article
Fictitious Point Technique Based on Finite-Difference Method for 2.5D Direct-Current Resistivity Forward Problem
by Xiaozhong Tong and Ya Sun
Mathematics 2024, 12(2), 269; https://doi.org/10.3390/math12020269 - 14 Jan 2024
Cited by 3 | Viewed by 1754
Abstract
With the widespread application of the direct-current resistivity method, searching for accurate and fast-forward algorithms has become the focus of research for geophysicists and engineers. Three-dimensional forward modeling can be the best way to identify geo-electrical anomalies but are hampered by computational limitations [...] Read more.
With the widespread application of the direct-current resistivity method, searching for accurate and fast-forward algorithms has become the focus of research for geophysicists and engineers. Three-dimensional forward modeling can be the best way to identify geo-electrical anomalies but are hampered by computational limitations because of the large amount of data. A practical compromise, or even alternative, is represented by 2.5D modeling characterized using a 3D source in a 2D medium. Thus, we develop a 2.5D direct-current resistivity forward modeling algorithm. The algorithm incorporates the finite-difference approximation and fictitious point technique that can improve the efficiency and accuracy of numerical simulation. Firstly, from the boundary value problem of the electric potential generated by the point source, the discrete expressions of the governing equation are derived from the finite-difference approach. The numerical solutions of the discrete electric potential are calculated after the approximate treatment of the boundary conditions with a finite-difference method based on a fictitious point scheme. Secondly, through the simulation of a homogeneous half-space model and a one-dimensional model, and compared with the analytical results, the correctness and stability of the finite-difference forward algorithm are verified. Lastly, through the numerical simulation for a two-dimensional model, 2.5D direct-current sounding responses are summarized, which can provide a qualitative interpretation of field data. Full article
(This article belongs to the Special Issue Mathematics in Geophysical Research)
Show Figures

Figure 1

18 pages, 28619 KiB  
Article
Semi-Airborne UAV-TEM System Data Inversion with S-Plane Method—Case Study over Lake Baikal
by Yuriy Davidenko, Valeriya Hallbauer-Zadorozhnaya, Ayur Bashkeev and Alexander Parshin
Remote Sens. 2023, 15(22), 5310; https://doi.org/10.3390/rs15225310 - 10 Nov 2023
Cited by 6 | Viewed by 2027
Abstract
The article presents the results of transient electromagnetic (TEM) prospecting surveys using an unmanned aerial system carried out at Lake Baikal, which is a unique geoelectrical setting where low-resistivity lacustrine sediments are located under a relatively isotropic water body. The task was to [...] Read more.
The article presents the results of transient electromagnetic (TEM) prospecting surveys using an unmanned aerial system carried out at Lake Baikal, which is a unique geoelectrical setting where low-resistivity lacustrine sediments are located under a relatively isotropic water body. The task was to investigate the possibility of using a drone-based TEM survey to delineate the electrical stratigraphy of the subsurface at depths between 50 and 300 m, separated into layers and blocks. A new version of the SibGIS UAV-TEM unmanned system was used, significantly improved compared to the prototype previously described in the literature. The current switch providing bipolar current pulses connected to a grounded electrical line was the source of the electromagnetic field in the geological environment. The hexacopter carrying a measuring system consisting of 18-bit ADC and sensor—analog of 50 × 50 loop, was the receiving system. We measured survey data of 16 traverses over the Baikal going from the shore to the depths. Significant attention is being paid to a new approach to data inversion. For fast interpretation of the TEM data, we used the Sτ-method, which allows for tracing the change in the apparent longitudinal conductivity with depth. It is shown that thanks to the new sensor and current switch, the data quality has increased significantly; now, the UAV system can register sounding curves up to 1 ms. As a result, new data on the geological structure of the shelf zone of Lake Baikal were obtained. They had a good fundamental agreement with the predecessor data obtained from terrestrial measurements (from ice cover), allowing us to conclude that the UAV-TEM technology can already replace conventional ground-based electromagnetic surveys. Full article
(This article belongs to the Special Issue Geological Applications of Remote Sensing and Photogrammetry)
Show Figures

Graphical abstract

16 pages, 5919 KiB  
Article
Coupled Geophysical and Hydrogeochemical Characterization of a Coastal Aquifer as Tool for a More Efficient Management (Torredembarra, Spain)
by Alex Sendrós, Ingrid J. Cubides, Mahjoub Himi, Raúl Lovera, Aritz Urruela, Josefina C. Tapias, Lluís Rivero, Ruben Garcia-Artigas and Albert Casas
Water 2023, 15(19), 3333; https://doi.org/10.3390/w15193333 - 22 Sep 2023
Cited by 2 | Viewed by 1726
Abstract
The aquifers of the Spanish Mediterranean coast are generally subjected to intense exploitation to meet the growing water supply demands. The result of the exploitation is salinization due to the marine saltwater intrusion, causing a deterioration in the quality of the water pumped, [...] Read more.
The aquifers of the Spanish Mediterranean coast are generally subjected to intense exploitation to meet the growing water supply demands. The result of the exploitation is salinization due to the marine saltwater intrusion, causing a deterioration in the quality of the water pumped, limiting its use for community needs, and not always being well delimited. To prevent deterioration, a groundwater control network usually allows precise knowledge of the areas affected by saltwater intrusion but not the extent of the saline plumes. Moreover, the characterization of aquifer systems requires a model that defines the geometry of aquifer formations. For this objective, we integrated hydrogeological, hydrogeochemical, and electrical resistivity subsoil data to establish a hydrogeological model of the coastal aquifer of Torredembarra (Tarragona, NE Spain). In this research, we have carried out a regional and local-scale study of the aquifer system to define the areas prone to being affected by saline intrusion (electrical resistivity values below 10 Ω·m). The obtained results could be used as a support tool for the assessment of the most favorable areas for groundwater withdrawal, as well as enabling the control and protection of the most susceptible areas to be affected by saltwater intrusion. Full article
(This article belongs to the Special Issue Application of Geophysical Methods for Hydrogeology)
Show Figures

Figure 1

21 pages, 5436 KiB  
Article
Geophysical Constraints to Reconstructing the Geometry of a Shallow Groundwater Body in Caronia (Sicily)
by Alessandro Canzoneri, Patrizia Capizzi, Raffaele Martorana, Ludovico Albano, Alessandro Bonfardeci, Nunzio Costa and Rocco Favara
Water 2023, 15(18), 3206; https://doi.org/10.3390/w15183206 - 8 Sep 2023
Cited by 6 | Viewed by 2729
Abstract
The characterization of a groundwater body involves the construction of a conceptual model that constitutes the base knowledge for monitoring programs, hydrogeological risk assessment, and correct management of water resources. In particular, a detailed geological and geophysical approach was applied to define the [...] Read more.
The characterization of a groundwater body involves the construction of a conceptual model that constitutes the base knowledge for monitoring programs, hydrogeological risk assessment, and correct management of water resources. In particular, a detailed geological and geophysical approach was applied to define the alluvial Caronia Groundwater Body (CGWB) and to reconstruct a hydrogeological flow model. The analysis of the CGWB, located in north-eastern Sicily, was initially approached through a reanalysis of previous stratigraphic (boreholes) and geophysical (vertical electrical soundings and seismic refraction profiles) data, subsequently integrated by new seismic acquisitions, such as Multichannel Analysis of Surface Waves (MASW) and horizontal-to-vertical seismic ratio (HVSR). The analysis and reinterpretation of geoelectrical data allowed the construction of a preliminary 3D resistivity model. This initial modeling was subsequently integrated by a geophysical data campaign in order to define the depth of the bottom of the shallow CGWB and the thickness of alluvial deposits. Finally, a preliminary mathematical model flow was generated in order to reconstruct the dynamics of underground water. The results show that integration of multidisciplinary data represent an indispensable tool for the characterization of complex physical systems. Full article
(This article belongs to the Special Issue Application of Geophysical Methods for Hydrogeology)
Show Figures

Figure 1

18 pages, 13584 KiB  
Article
Applying Geophysical and Hydrogeochemical Methods to Evaluate Groundwater Potential and Quality in Middle Egypt
by Esam Ismail, Dimitrios E. Alexakis, Mohamed Abou Heleika, Mohamed Hashem, Mohamed S. Ahmed, Doha Hamdy and Ahmed Ali
Hydrology 2023, 10(8), 173; https://doi.org/10.3390/hydrology10080173 - 18 Aug 2023
Cited by 9 | Viewed by 2407
Abstract
The El-Minia district is a location of interest for future urban development. Using hydrochemistry and electrical resistivity studies, this work aimed to evaluate the groundwater potentiality and it’s suitable for various uses. The groundwater potential in the study area was evaluated based on [...] Read more.
The El-Minia district is a location of interest for future urban development. Using hydrochemistry and electrical resistivity studies, this work aimed to evaluate the groundwater potentiality and it’s suitable for various uses. The groundwater potential in the study area was evaluated based on 24 VESs (vertical electrical soundings), and its quality was determined based on the analyses of 57 groundwater samples. EC (salinity index), Na% (salt hazard), SAR (ratio of sodium adsorption), chloride risks, SSP (soluble sodium percentage), MH (magnesium hazard), and other indicators were used to determine whether the collected water samples were suitable for irrigation. Four layers in the study area are mentioned in the geoelectrical cross-sections that have been constructed. The first is made up of silt and clay from the Nile River, while the second is made up of sandy clay, which has a resistivity range of 15 to 32 Ohm.m and a range thickness of 2 to 68 m. Dry limestone makes up the third layer; its resistivity ranges from 1222 to 3000 Ohm.m and its thickness varies between 75 and 95 m. The Eocene aquifer in the research area is represented by the final layer, which has a thickness of more than 250 m and resistivity values that range from 602 to 860 Ohm.m. Most groundwater samples that were collected are safe for drinking; however, none of them are fit for home usage because of their extreme hardness. According to the SAR and US diagram, RSC, KR, and PI, most groundwater samples from the Pleistocene and Eocene aquifers are fit for irrigation. Full article
(This article belongs to the Special Issue Groundwater Pollution: Sources, Mechanisms, and Prevention)
Show Figures

Figure 1

27 pages, 10704 KiB  
Article
Hydrogeophysical Investigation in Parts of the Eastern Dahomey Basin, Southwestern Nigeria: Implications for Sustainable Groundwater Resources Development and Management
by Kehinde D. Oyeyemi, Ahzegbobor P. Aizebeokhai, Abayomi A. Olaojo, Emmanuel E. Okon, Divine V. Kalu and Mohamed Metwaly
Water 2023, 15(16), 2862; https://doi.org/10.3390/w15162862 - 8 Aug 2023
Cited by 1 | Viewed by 2434
Abstract
Geoelectrical resistivity measurements were conducted in five locations within the eastern portion of the Dahomey basin for the purpose of subsurface evaluation and detecting saturated zones. The locations are Covenant University (L1), Bells University (L2), Oju-Ore-Ilogbo Road (L3), Obasanjo-Ijagba Road (L4), and Iyana [...] Read more.
Geoelectrical resistivity measurements were conducted in five locations within the eastern portion of the Dahomey basin for the purpose of subsurface evaluation and detecting saturated zones. The locations are Covenant University (L1), Bells University (L2), Oju-Ore-Ilogbo Road (L3), Obasanjo-Ijagba Road (L4), and Iyana Iyesi (L5). The study was carried out to avert the common challenges of drilling low-yield groundwater boreholes in the area. A total of 30 Vertical Electrical Soundings (VES) and five two-dimensional Electrical Resistivity Tomography (ERT) data sets have been acquired along the study areas. The geoelectrical resistivity results were integrated with the borehole logs to generate the spatial distribution of the subsurface lithologies in the area. The delineated subsurface lithologies include the topsoil (lateritic clay), clayey sand, sandy clay, fine silty sand, coarse sand, and shale/clay units. The fine silty sand and coarse sand units were identified as the two main aquifer units within the area. The depths to the upper aquifer unit in the area include 31.7–96.7 m, 38.5–94.0 m, 30.7–57.5 m, 39.1–63.4 m, and 46.9–57.5 m for locations L1, L2, L3, L4, and L5, respectively. At the same time, the depths to the lower aquifer unit in the area include 43.4–112.7 m, 52.2–108.0 m, 44.2–72.5 m, 53.7–78.5 m, and 63.5–72.9 m for locations L1, L2, L3, L4, and L5, respectively. The estimated hydraulic parameters for both aquifers show they are highly productive with mean porosity, mean hydraulic conductivity, and mean transmissivity of 20–22%, 12.4–17.0 × 10−2 m/s, 1.56–2.18 m2/s for the upper aquifer, and 48–50%, 371–478 × 10−2 m/s, 50.00–62.14 m2/s for the lower aquifer. By focusing on these aquifer systems during exploration, sustainable groundwater resources can be secured, providing relief to homeowners within the study area who might otherwise face the frustration of drilling unproductive and low-yield boreholes. However, it is crucial to consider the presence of sub-vertical faults in the study area, as these faults can significantly impact groundwater development and management. These sub-vertical structural faults may lead to changes in the permeability, hydraulic conductivity, and transmissivity of the delineated aquifers, affecting their productivity across the divide and ultimately influencing the overall water availability in the area. Careful consideration of these geological factors is essential for effective aquifer management and sustainable groundwater utilisation. Full article
(This article belongs to the Special Issue Application of Geophysical Methods for Hydrogeology)
Show Figures

Figure 1

23 pages, 13223 KiB  
Article
Integrated Geophysical Approach of Groundwater Potential in Wadi Ranyah, Saudi Arabia, Using Gravity, Electrical Resistivity, and Remote-Sensing Techniques
by Ahmed Mohamed, Abdullah Othman, Wael F. Galal and Ahmed Abdelrady
Remote Sens. 2023, 15(7), 1808; https://doi.org/10.3390/rs15071808 - 28 Mar 2023
Cited by 29 | Viewed by 4853
Abstract
In order to cope with the rise in human-caused demands, Saudi Arabia is exploring new groundwater sources. The groundwater potential of Wadi Ranyah was studied using a multi-dataset-integrated approach that included time-variable gravity data from the Gravity Recovery and Climate Experiment (GRACE), vertical [...] Read more.
In order to cope with the rise in human-caused demands, Saudi Arabia is exploring new groundwater sources. The groundwater potential of Wadi Ranyah was studied using a multi-dataset-integrated approach that included time-variable gravity data from the Gravity Recovery and Climate Experiment (GRACE), vertical electrical sounding (VES), and time-domain-electromagnetic (TDEM) data with other related datasets to examine the variations and occurrence of groundwater storage and to define the controlling factors affecting the groundwater potential in Wadi Ranyah in southwestern Saudi Arabia. Between April 2002 and December 2021, the estimated variation in groundwater resources was −3.85 ± 0.15 mm/yr. From 2002 to 2019, the area observed an average yearly precipitation rate of 100 mm. The sedimentary succession and the underlying fractured basement rocks are influenced by the structural patterns that run mainly in three different trends (NW, NE, and NS). The sedimentary cover varies from 0 to 27 m in thickness. The outputs of the electrical sounding revealed four primary geoelectric units in the study area: on top, a highly resistant geoelectrical unit with a resistivity of 235–1020 Ω.m, composed of unsorted, loose, recent sediments; this is followed by a layer of gravel and coarse-grained sands with a resistivity of 225–980 Ω.m; then, a water-bearing unit of saturated sediments and weathered, fractured, basement crystalline rocks with a resistivity of 40–105 Ω.m, its depth varying from 4 to ~9 m; and then the lowest fourth unit composed of massive basement rocks with higher resistivity values varying from 4780 to 7850 Ω.m. The seven built dams store surface-water runoff in the southwestern part of the wadi, close to the upstream section, in addition to the Ranyah dam, as the eighth one is located in the middle of the wadi. The subsurface NW- and NS-trending fault lines impede the groundwater from flowing downstream of the wadi, forming isolated water-bearing grabens. Minimal surface runoff might occur in the northern part of the wadi. The combined findings are beneficial because they provide a complete picture of the groundwater potential of Wadi Ranyah and the controlling structural patterns. Using this integrated technique, the groundwater potential in arid and semiarid regions can now be accurately assessed. Full article
Show Figures

Figure 1

22 pages, 12140 KiB  
Article
Geoelectrical Characterization of Coastal Aquifers in Agbado-Ijaye, Lagos, Southwestern Nigeria; Implications for Groundwater Resources Sustainability
by Kehinde D. Oyeyemi, Joyce Abuka-Joshua, Oluwatosin J. Rotimi, Bastien Dieppois, Modreck Gomo, Abayomi A. Olaojo, Philips O. Falae and Mohamed Metwaly
Sustainability 2023, 15(4), 3538; https://doi.org/10.3390/su15043538 - 14 Feb 2023
Cited by 8 | Viewed by 3013
Abstract
Water is a natural resource; its availability depends on climatic and geological conditions, and it is invariably controlled by human activities. Agbado-Ijaye lies within a coastal area, where local communities have been facing incessant water shortages, especially during the dry season. This study [...] Read more.
Water is a natural resource; its availability depends on climatic and geological conditions, and it is invariably controlled by human activities. Agbado-Ijaye lies within a coastal area, where local communities have been facing incessant water shortages, especially during the dry season. This study investigated the groundwater-bearing geological unit(s) using hydrogeophysical techniques in the coastal environment. The electrical resistivity technique, involving vertical electrical sounding (VES) and two-dimensional (2D) electrical resistivity imaging via Wenner array electrode configuration, was used to characterize the geoelectric distribution. Twenty VES stations were investigated and current electrodes (AB/2 m) spacing expanded from 1–200 m; four 2D electrical resistivity imaging traverses having a length of 200 m each and interelectrode spacing of 10 m (level 1) to 60 m (level 6) was adopted. Four geoelectric units were delineated, namely: topsoil (15–251 Ωm), clayey (28–100 Ωm), clayey sand (125–190 Ωm) and sandy (205–876 Ωm) with thicknesses ranging from 0.7–1.3 m, 4.1–19.0 m, 2.6–15.6 m and undefined depth, respectively. The 2D imaging sections also detected similar geoelectric layers, corroborating the VES-derived sections. The inverted sections delineated two different aquifers: the shallower low-yield aquifer comprising sandy clay/clayey sand units with a maximum depth of about 5.5 m. This layer is adjudged to be the continental plain sand of the Benin Formation. The deeper high-yield aquifer with a maximum depth of 30.4 m is a beach sand unit that belongs to the Tertiary Alluvium of the Dahomey Basin. The study showed that hydrogeophysical investigation is vital in exploring, developing, and managing coastal groundwater resources. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

16 pages, 18267 KiB  
Article
A Systematic Approach of Optimal Land-Use Planning by Applying Geo-Environmental Techniques: A Case Study
by Essam A. Morsy
Appl. Sci. 2023, 13(3), 1749; https://doi.org/10.3390/app13031749 - 30 Jan 2023
Viewed by 2176
Abstract
This article demonstrates the capabilities and integrity of the environmental geological and geophysical techniques for planning the suitability of the extension of Helwan city for construction and engineering purposes. The geological and topographical mapping were utilized as well as environmental geophysical techniques (seismic [...] Read more.
This article demonstrates the capabilities and integrity of the environmental geological and geophysical techniques for planning the suitability of the extension of Helwan city for construction and engineering purposes. The geological and topographical mapping were utilized as well as environmental geophysical techniques (seismic refraction, ground penetrating radar (GPR), and resistivity soundings) for optimal land-use planning. The seismic refraction profiles were conducted to evaluate the geotechnical characteristics of the bedrock, GPR was applied to define the main subsurface reflectors, and the geoelectrical resistivity survey was used to identify the subsurface stratigraphic sequence and the distribution of main structural elements impacting the investigated area. The integrated results and findings of the environmental geological and geophysical survey inferred two major distinctive subsurface layers: a thin surface layer represented by highly weathered limestone, with an average thickness of 3 m, and a bottom layer equivalent to the bedrock composed of hard limestone. In addition, GPR performed an analysis of two remarkable subsurface layers, which supported the generated model of other geophysical surveying techniques. Finally, all the geological and various geophysical techniques were integrated and merged to generate the optimal land-use plan of the extension of Helwan city for construction and engineering purposes and to avoid high-risk areas to reserve the sustainability of the new urban communities. Full article
Show Figures

Figure 1

16 pages, 6864 KiB  
Article
Vertical Electrical Sounding (VES) Technique to Map Potential Aquifers of the Guigou Plain (Middle Atlas, Morocco): Hydrogeological Implications
by Said El Makrini, Mustapha Boualoul, Younes Mamouch, Hassane El Makrini, Abdelhamid Allaoui, Giovanni Randazzo, Allal Roubil, Mohammed El Hafyani, Stefania Lanza and Anselme Muzirafuti
Appl. Sci. 2022, 12(24), 12829; https://doi.org/10.3390/app122412829 - 14 Dec 2022
Cited by 17 | Viewed by 6823
Abstract
Vertical electrical sounding (VES) as a geoelectrical method has proven its effectiveness throughout the history of groundwater geophysical investigation. In this sense, VES was carried out 47 in the study area with the aim of determining the geometry and limits of Quaternary basaltic [...] Read more.
Vertical electrical sounding (VES) as a geoelectrical method has proven its effectiveness throughout the history of groundwater geophysical investigation. In this sense, VES was carried out 47 in the study area with the aim of determining the geometry and limits of Quaternary basaltic aquifer formations and, above all, the location of electrical discontinuities in the area located in the north of Morocco, between the center of Almis Guigou and the city of Timahdite. This area is experiencing an overexploitation of the groundwater due to excessive pumping and the development of intensive agriculture activities, resulting in a continuous decrease in piezometric levels. The processing of the diagrams by WINSEV software showed the presence of an electrically resistant surface level, attributed to basaltic formations, of the Quaternary age, whose thicknesses reach at least 150 m to the SW of the area. This level is superimposed on a moderately conductive horizon which, according to local geology, corresponds to Pliocene marl and limestone alternations. The correlation of VES interpretation models allowed us to elaborate thematic maps and geoelectrical sections which illustrate the vertical and lateral extension of the basaltic reservoir as well as its thickness, which decreases in general from the south-west to the north-east; however, the main electrical discontinuities also correspond to faults and fractures, and they show a NE–SW direction sub-parallel to the major accidents of the Middle Atlas. A prospectivity map of the local aquifer was generated, coinciding with regional fault lines and confirmed by the alignment of very good flowing water boreholes. This geophysical study by electrical sounding shed light on the geometry and extension of the aquifer and opened avenues to draw further conclusions on its physical and hydrodynamic characteristics, as well as to optimize the future siting of groundwater exploitation boreholes through the elaboration of the local aquifer prospectivity map. Full article
(This article belongs to the Special Issue Geomorphology in the Digital Era)
Show Figures

Figure 1

Back to TopTop