Coastal Groundwater Bodies Modelling Using Geophysical Surveys: The Reconstruction of the Geometry of Alluvial Plains in the North-Eastern Sicily (Italy)
Abstract
:1. Introduction
2. Geology and Hydrogeology
2.1. Geomorphological and Geological Setting
- the Upper Oligocene–Lower Miocene clays and quartzarenites of the Mt. Maragone and Mt. Salici Units;
- the clays and quartzarenites of the Monte Soro and the marly clays unit, Lower Cretaceous in age.
- Capo Sant’Andrea, Longi-Taormina and San Marco d’Alunzio Units, comprising epimetamorphites deriving from an ancient Hercynian basement and Meso-Cenozoic carbonate covers;
- low- to high-grade metamorphic rocks belonging to the Mandanici and Aspromonte Units, derived from the deformation of the innermost sectors of the Kabilo–Calabride domain (Paleozoic);
- the Upper Oligocene–Lower Miocene syntectonic terrigenous deposit of the Capo d’Orlando Flysch;
- the Upper Cretaceous clays and quartzarenites of the Antisicilide Unit, overthrusting the Capo d’Orlando Flysch;
- the Lower-Middle Miocene Floresta calcarenites and the Mt. Pitò marls, unconformably lying on the deposits of the Antisicilide Unit;
- the Middle-Upper Miocene post-orogenic deposits belonging to the San Pier Niceto Fm. and to the evaporitic series upward.
2.2. Hydrogeological Setting
3. Materials and Methods
3.1. Previous Geognostic and Geophysical Investigation
3.2. New Processing and Interpretation of Vertical Electrical Soundings
3.3. New Geophysical Surveys
4. Results and Discussion
4.1. Litho-Stratigraphic Interpretation of the Boreholes
4.2. Results from SR Profiles and New Geophysical Surveys
4.3. Tridimensional Models of the Electrical Resistivity
4.4. Estimate of the Bottom of the SCGWB and BMGWB
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cacas, M.C.; Laigle, J.M.; Albouy, E.; Sulzer, C. Integrating stratigraphic modelling and seismic interpretation: Two practical examples. Pet. Geosci. 2008, 14, 253–261. [Google Scholar] [CrossRef]
- Villa, V.; Virmoux, C.; Chaussé, C.; Degeai, J.P.; Robert, V.; Kuzucuoglu, C.; Boschian, G.; Agostini, S.; Aureli, D.; Pagli, M.; et al. The long sedimentary succession of the Valle Giumentina basin (Abruzzo, Central Italy): New evidence from stratigraphic studies and Electrical Resistivity Tomography (ERT). Alp. Mediterr. Quat. 2016, 29, 193–199. [Google Scholar]
- Martorana, R.; Agate, M.; Capizzi, P.; Cavera, F.; D’Alessandro, A. Seismo-stratigraphic model of “La Bandita” area in the Palermo Plain (Sicily, Italy) through HVSR inversion constrained by stratigraphic data. Ital. J. Geosci. 2018, 137, 73–86. [Google Scholar] [CrossRef]
- Caputo, R.; Salviulo, L.; Piscitelli, S.; Loperte, A. Late Quaternary activity along the Scorciabuoi Fault (Southern Italy) as inferred from electrical resistivity tomographies. Ann. Geophys. 2007, 50, 213–224. [Google Scholar] [CrossRef]
- Imposa, S.; Mele, G.; Corrao, M.; Coco, G. Borehole seismic surveys for the mechanical characterization of a calcarenite cliff in the area of Ispica (southern Sicily). Bull. Eng. Geol. Environ. 2015, 74, 971–980. [Google Scholar] [CrossRef]
- Drahor, M.G.; Berge, M.A. Integrated geophysical investigations in a fault zone located on southwestern part of İzmir city, Western Anatolia, Turkey. J. Appl. Geophys. 2017, 136, 114–133. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, X.; Yan, J.; Wang, J.; Liu, Y.; Zhang, L. Using the integrated geophysical methods detecting active faults: A case study in Beijing, China. J. Appl. Geophys. 2018, 156, 82–91. [Google Scholar] [CrossRef]
- Abbas, A.; Zhu, H.; Zeng, Z.; Zhou, X. Sedimentary facies analysis using sequence stratigraphy and seismic sedimentology in the paleogene Pinghu Formation, Xihu depression, east China sea shelf basin. Mar. Pet. Geol. 2018, 93, 287–297. [Google Scholar] [CrossRef]
- Ni, J.; Zhao, D.; Liao, X.; Li, X.; Fu, L.; Chen, R.; Xia, Z.; Liu, Y. Sedimentary Architecture Analysis of Deltaic Sand Bodies Using Sequence Stratigraphy and Seismic Sedimentology: A Case Study of Jurassic Deposits in Zhetybay Oilfield, Mangeshrak Basin, Kazakhstan. Energies 2022, 15, 5306. [Google Scholar] [CrossRef]
- Todaro, S.; Sulli, A.; Spatola, D.; Basilone, G.; Aronica, S. Seismic stratigraphy of the north-westernmost area of the Malta Plateau (Sicily Channel): The Middle Pleistocene-Holocene sedimentation in a tidally influenced shelf. Mar. Geol. 2022, 445, 106740. [Google Scholar] [CrossRef]
- Abu Zeid, N.; Corradini, E.; Bignardi, S.; Nizzo, V.; Santarato, G. The Passive Seismic Technique ‘HVSR’ as a Reconnaissance Tool for Mapping Paleo-soils: The Case of the Pilastri Archaeological Site, Northern Italy. Archaeol. Prospect. 2017, 24, 245–258. [Google Scholar] [CrossRef]
- Bottari, C.; Martorana, R.; Scudero, S.; Capizzi, P.; Cavallaro, D.; Pisciotta, A.; D’Alessandro, A.; Coltelli, M.; Lodato, L. Coseismic damage at an archaeological site in sicily, italy: Evidence of roman age earthquake surface faulting. Surv.Geophys. 2018, 39, 1263–1284. [Google Scholar] [CrossRef]
- Cafiso, F.; Canzoneri, A.; Capizzi, P.; Carollo, A.; Martorana, R.; Romano, F. Joint interpretation of electrical and seismic data aimed at modelling the foundation soils of the Maredolce monumental complex in Palermo (Italy). Archaeol. Prospect. 2023, 30, 69–85. [Google Scholar] [CrossRef]
- Butchibabu, B.; Khan, P.K.; Jha, P.C. Foundation evaluation of underground metro rail station using geophysical and geotechnical investigations. Eng. Geol. 2019, 248, 140–154. [Google Scholar] [CrossRef]
- Liu, B.; Wang, C.; Liu, Z.; Xu, Z.; Nie, L.; Pang, Y.; Wang, N.; Feng, S. Cascade surface and borehole geophysical investigation for water leakage: A case study of the Dehou reservoir, China. Eng. Geol. 2021, 294, 106364. [Google Scholar] [CrossRef]
- Polonia, A.; Albertazzi, S.; Bellucci, L.G.; Bonetti, C.; Bonetti, J.; Giorgetti, G.; Giuliani, S.; López Correa, M.; Mayr, C.; Peruzza, L.; et al. Decoding a complex record of anthropogenic and natural impacts in the Lake of Cavazzo sediments, NE Italy. Sci. Total Environ. 2021, 787, 147659. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Sekhar, M.; Descloitres, M.; Godderis, Y.; Ruiz, L.; Braun, J.J. Constraining complex aquifer geometry with geophysics (2-D ERT and MRS measurements) for stochastic modelling of groundwater flow. J. Appl. Geophys. 2013, 98, 288–297. [Google Scholar] [CrossRef]
- Kumar, D.; Rao, V.A.; Sarma, V.S. Hydrogeological and geophysical study for deeper groundwater resource in quartzitic hard rock ridge region from 2D resistivity data. J. Earth Syst. Sci. 2014, 123, 531–543. [Google Scholar] [CrossRef]
- Canzoneri, A.; Capizzi, P.; Martorana, R.; Albano, L.; Bonfardeci, A.; Costa, N.; Favara, R. Geophysical Constraints to Reconstructing the Geometry of a Shallow Groundwater Body in Caronia (Sicily). Water 2023, 15, 3206. [Google Scholar] [CrossRef]
- Gondwe, B.R.; Lerer, S.; Stisen, S.; Marín, L.; Rebolledo-Vieyra, M.; Merediz-Alonso, G.; Bauer-Gottwein, P. Hydrogeology of the south-eastern Yucatan Peninsula: New insights from water level measurements, geochemistry, geophysics and remote sensing. J. Hydrol. 2010, 389, 1–17. [Google Scholar] [CrossRef]
- Zouhri, L.; Lutz, P. Hydrogeophysical characterization of the porous and fractured media (chalk aquifer in the Beauvais, France). Environ. Earth. Sci. 2016, 75, 343. [Google Scholar] [CrossRef]
- Muhammad, S.; Ehsan, M.I.; Khalid, P.; Sheikh, A. Hydrogeophysical modeling and physio-chemical analysis of quaternary aquifer in central part of Bari Doab, Punjab, Pakistan. Model. Earth Syst. Environ. 2023, 9, 1427–1443. [Google Scholar] [CrossRef]
- Hasan, M.; Shang, Y.; Jin, W.; Shao, P.; Yi, X.; Akhter, G. Geophysical Assessment of Seawater Intrusion into Coastal Aquifers of Bela Plain, Pakistan. Water 2020, 12, 3408. [Google Scholar] [CrossRef]
- Sendrós, A.; Urruela, A.; Himi, M.; Alonso, C.; Lovera, R.; Tapias, J.C.; Rivero, L.; Garcia-Artigas, R.; Casas, A. Characterization of a shallow coastal aquifer in the framework of a subsurface storage and soil aquifer treatment project using electrical resistivity tomography (Port de la Selva, Spain). Appl. Sci. 2021, 11, 2448. [Google Scholar] [CrossRef]
- Tarallo, D.; Alberico, I.; Cavuoto, G.; Pelosi, N.; Punzo, M.; Di Fiore, V. Geophysical assessment of seawater intrusion: The Volturno Coastal Plain case study. Appl. Water. Sci. 2023, 13, 234. [Google Scholar] [CrossRef]
- Matias, M.S.; Da Silva, M.M.; Ferreira, P.; Ramalho, E. A geophysical and hydrogeological study of aquifers contamination by a landfill. J. Appl. Geophys. 1994, 32, 155–162. [Google Scholar] [CrossRef]
- Ciampi, P.; Esposito, C.; Cassiani, G.; Deidda, G.P.; Flores-Orozco, A.; Rizzetto, P.; Chiappa, A.; Bernaberi, M.; Gardon, A.; Papini, M.P. Contamination presence and dynamics at a polluted site: Spatial analysis of integrated data and joint conceptual modeling approach. J. Contam. Hydrol. 2022, 248, 104026. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.A.; Szabó, N.P.; Szűcs, P. Exploring hydrogeological parameters by integration of geophysical and hydrogeological methods in northern Khartoum state, Sudan. Ground. Sustain. Dev. 2023, 20, 100891. [Google Scholar] [CrossRef]
- Dochartaigh, B.E.O.; Archer, N.A.L.; Peskett, L.; MacDonald, A.M.; Black, A.R.; Auton, C.A.; Merritt, J.E.; Gooddy, D.C.; Bonell, M. Geological structure as a control on floodplain groundwater dynamics. Hydrogeol. J. 2019, 27, 703–716. Available online: https://nora.nerc.ac.uk/id/eprint/521927 (accessed on 23 February 2024). [CrossRef]
- Cianflone, G.; Vespasiano, G.; De Rosa, R.; Dominici, R.; Apollaro, C.; Vaselli, O.; Pizzino, L.; Tolomei, C.; Capecchiacci, F.; Polemio, M. Hydrostratigraphic framework and physicochemical status of groundwater in the Gioia Tauro Coastal Plain (Calabria—Southern Italy). Water 2021, 13, 3279. [Google Scholar] [CrossRef]
- von Suchodoletz, H.; Pohle, M.; Khosravichenar, A.; Ulrich, M.; Hein, M.; Tinapp, C.; Shultz, J.; Ballasus, E.; Veit, U.; Ettel, P.; et al. The fluvial architecture of buried floodplain sediments of the Weiße Elster River (Germany) revealed by a novel method combination of drill cores with two-dimensional and spatially resolved geophysical measurements. Earth Surf. Process. Landf. 2022, 47, 955–976. [Google Scholar] [CrossRef]
- CASMEZ (CASsa per il MEZzogiorno)—Direzione Generale Progetti Speciali. Progetto Speciale n. 30: Utilizzazione delle acque degli schemi idrici intersettoriali della Sicilia. In Indagini Idrogeologiche e Geofisiche per il Reperimento di Acque Sotterranee per L’approvvigionamento Idrico del Sistema IV Zona Nord Orientale Della Sicilia (Messinese); CASMEZ: Palermo, Italy, 1978. [Google Scholar]
- Granata, A.; Castrianni, G.; Pasotti, L.; Favara, R.; Gagliano Candela, E.; Scaletta, C.; Madonia, P.; Morici, S.; Bellomo, S.; La Pica, L.; et al. Studio per la definizione dei modelli concettuali dei corpi idrici sotterranei di Peloritani, Nebrodi e ragusano e indagini geofisiche correlate. In Proceedings of the 37 Convegno del Gruppo Nazionale di Geofisica della Terra Solida-GNGTS, Roma, Italy, 19–21 November 2018; Volume 37, pp. 104–108. Available online: https://hdl.handle.net/10447/316230 (accessed on 10 January 2024).
- Catalano, R.; Di Stefano, P.; Sulli, A.; Vitale, F. Paleogeography and structure of the central Mediterranean: Sicily and its offshore area. Tectonophysics 1996, 260, 291–323. [Google Scholar] [CrossRef]
- Giunta, G.; Luzio, D.; Agosta, F.; Calò, M.; Di Trapani, F.; Giorgianni, A.; Oliveri, E.; Orioli, S.; Perniciaro, M.; Vitale, M.; et al. An integrated approach to investigate the seismotectonics of northern Sicily and southern Tyrrhenian. Tectonophysics 2009, 476, 13–21. [Google Scholar] [CrossRef]
- Catalano, R.; Valenti, V.; Albanese, C.; Accaino, F.; Sulli, A.; Tinivella, U.; Gasparo Morticelli, M.; Zanolla, C.; Giustiniani, M. Sicily’s fold/thrust belt and slab rollback: The SI.RI.PRO. seismic crustal transect. J. Geol. Soc. 2013, 170, 451–464. [Google Scholar] [CrossRef]
- Morticelli, M.G.; Valenti, V.; Catalano, R.; Sulli, A.; Agate, M.; Avellone, G.; Albanese, C.; Basilone, L.; Gugliotta, C. Deep controls on foreland basin system evolution along the Sicilian fold and thrust belt. BSG-Earth Sci. Bull. 2015, 186, 273–290. [Google Scholar] [CrossRef]
- Basilone, L.; Bonfardeci, A.; Romano, P.; Sulli, A. Natural Laboratories for Field Observation About Genesis and Landscape Effects of Palaeo-Earthquakes: A Proposal for the Rocca Busambra and Monte Barracù Geosites (West Sicily). Geoheritage 2018, 11, 821–837. [Google Scholar] [CrossRef]
- Amodio-Morelli, L.; Bonardi, G.; Colonna, V.; Dietrich, D.; Giunta, G.; Ippolito, F.; Liguori, V.; Lorenzoni, F.; Paglionico, A.; Perrone, V.; et al. L’Arco Calabro-Peloritano nell’orogene Appenninico-Maghrebide. Mem. Soc. Geol. Ital. 1976, 17, 1. Available online: https://arpi.unipi.it/handle/11568/1278 (accessed on 10 January 2024).
- Lentini, F.; Catalano, S.; Carbone, S. Note Illustrative Della Carta Geologica Della Provincia di Messina, Scala 1:50.000: S.EL.CA, Firenze. 2000; pp. 1–70. Available online: https://www.isprambiente.gov.it/Media/carg/note_illustrative/601_Messina_Reggio_Calabria.pdf (accessed on 1 February 2024).
- Carbone, S.; Messina, A.; Lentini, F. Note Illustrative dei F. 587–600 “Milazzo–Barcellona Pozzo di Gotto” della Carta Geologica d’Italia Alla Scala 1:50.000; S.EL.CA., 2011; 262, pp. 146 ff., 5 tavv., 4 tabb. ISPRA—Regione Siciliana—Università di Catania; Servizio Geologico d’Italia: Rome, Italy.
- Servizio Geologico d’Italia. Carta Geologica d’Italia Alla Scala 1:50.000, F. 599 Patti; Servizio Geologico d’Italia: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Giunta, G.; Giorgianni, A. Note Illustrative del F.598 “S. Agata di Militello” Della Carta Geologica d’Italia Alla Scala 1:50.000; SystemCart; ISPRA—Università degli Studi di Palermo: Rome, Italy, 2013. Available online: https://www.isprambiente.gov.it/Media/carg/note_illustrative/598_S_Agata_di_Militello.pdf (accessed on 1 February 2024).
- Lentini, F.; Carbone, S. Geologia della Sicilia (Geology of Sicily). Mem. Descr. Carta Geol. d’It. 2014, XCV, 7–414. [Google Scholar]
- Giunta, G.; Nigro, F. Tectono-sedimentary constraints to the Oligocene-to-Miocene evolution of the Peloritani thrust belt (NE Sicily). Tectonophysics 1999, 315, 287–299. [Google Scholar] [CrossRef]
- Nigro, F.; Sulli, A. Plio-Pleistocene extensional tectonics in the Western Peloritani area and its offshore (northeastern Sicily). Tectonophysics 1995, 252, 295–305. [Google Scholar] [CrossRef]
- Giunta, G.; Nigro, F.; Renda, P. Extensional tectonics during Maghrebides chain building since Late Miocene: Examples from Northern Sicily. Ann. Soc. Geol. 2000, 70, 81–89. [Google Scholar]
- Giunta, G.; Nigro, F.; Renda, P.; Giorgianni, A. The Sicilian–Maghrebides Tyrrhenian Margin: A neotectonic evolutionary model. Mem. Soc. Geol. 2000, 119, 553–565. [Google Scholar]
- Renda, P.; Tavarnelli, E.; Tramutoli, M.; Gueguen, E. Neogene deformations of Northern Sicily, and their implications for the geodynamics of the Southern Tyrrhenian Sea margin. Mem. Soc. Geol. 2000, 55, 53–59. [Google Scholar]
- Nigro, F.; Renda, P. Plio-Pleistocene stike-slip deformation in NE Sicily: The example of the area between Capo Calavà and Capo Tindari. Boll. Soc. Geol. 2005, 124, 377–394. [Google Scholar]
- Giunta, G.; Bellomo, D.; Carnemolla, S.; Pisano, A.; Profeta, R.; Runfola, P. La “Linea di Taormina”: Residuo epidermico di una paleostruttura crostale del fronte cinematico maghrebide? Acts 8◦ GNGTS Congr. 1989, 8, 1197–2013. [Google Scholar]
- Gasparo Morticelli, M.; Avellone, G.; Sulli, A.; Agate, M.; Basilone, L.; Catalano, R.; Pierini, S. Mountain building in NW Sicily from the superimposition of subsequent thrusting and folding events during Neogene: Structural setting and tectonic evolution of the Kumeta and Pizzuta ridges. J. Maps 2017, 13, 276–290. [Google Scholar] [CrossRef]
- Lentini, F. Carta Geologica della Provincia di Messina, Scala 1:50.000: S.EL.CA, Firenze. 2000. Available online: https://www2.regione.sicilia.it/beniculturali/dirbenicult/bca/ptpr/documentazione%20tecnica%20messina/CARTOGRAFIA/ANALISI/03_Geologia.pdf (accessed on 1 February 2024).
- Arisco, G.; Arnone, G.; Favara, R.; Nigro, F.; Perricone, M.; Renda, P.; Mondello, C. Integrated neotectonic and morphometric analysis of northern Sicily. Boll. Soc. Geol. 2006, 125, 221–244. Available online: http://hdl.handle.net/2122/2497 (accessed on 10 January 2024).
- Ferrara, V. Vulnerabilità all’inquinamento degli Acquiferi dell’area Peloritana (Sicilia Nord-Orientale), Studi Sulla Vulnerabilità Degli Acquiferi 14. In Quaderni di Tecniche di Protezione Ambientale: Edizione Pitagora; Pitagora Editrice Srl.: Bologna, Italy, 1999. [Google Scholar]
- Cangemi, M.; Madonia, P.; Albano, L.; Bonfardeci, A.; Di Figlia, M.G.; Di Martino, R.M.R.; Nicolosi, M.; Favara, R. Heavy Metal Concentrations in the Groundwater of the Barcellona-Milazzo Plain (Italy): Contributions from Geogenic and Anthropogenic Sources. Int. J. Environ. Res. Public Health 2019, 16, 285. [Google Scholar] [CrossRef] [PubMed]
- Capizzi, P.; Martorana, R.; Favara, R.; Albano, L.; Bonfardeci, A.; Catania, M.; Costa, N.; Gagliano, A. Geophysical Contribution to the Reconstruction of the Hydrological Model of “Barcellona-Milazzo Plain” Groundwater Body, Northen Sicily. In Proceedings of the 25th European Meeting of Environmental and Engineering Geophysics; European Association of Geoscientists & Engineers, Moscow, Russia, 8–12 September 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Celico, P. Prospezioni Idrogeologiche, Vol. I e Vol. II; Liguori Editore Napoli: Naples, Italy, 1988. [Google Scholar]
- Allocca, V.; De Vita, P.; Manna, F. La variabilità climatica in Italia meridionale e gli effetti sulla ricarica degli acquiferi carbonatici. EHE Geol. 2012, 14, 9–10. Available online: https://hdl.handle.net/11588/425079 (accessed on 23 February 2024).
- Castany, G. Idrogeologia. In Principi e Metodi: Edizione Flaccovio Dario, Palermo; Pitagora Editrice Srl.: Bologna, Italy, 1985. [Google Scholar]
- Civita, M. Idrogeologia Applicata e Ambientale; CEA Editore: Rozzano, Italy, 2005; p. 800. ISBN 8808087417. [Google Scholar]
- Cimino, A.; Cosentino, C.; Oieni, A.; Tranchina, L. A geophysical and geochemical approach for seawater intrusion assessment in the Acquedolci coastal aquifer (Northern Sicily). Environ. Geol. 2007, 55, 1473–1482. [Google Scholar] [CrossRef]
- Pantaleone, D.V.; Vincenzo, A.; Fulvio, C.; Silvia, F.; Cesaria, M.; Giuseppina, M.; Ilaria, M.; Vincenzo, P.; Rosa, S.A.; Gianpietro, S.; et al. Hydrogeology of continental southern Italy. J. Maps 2018, 14, 230–241. [Google Scholar] [CrossRef]
- Kosinski, W.K.; Kelly, W.E. Geoelectric Soundings for Predicting Aquifer Properties. Groundwater 1981, 19, 163–171. [Google Scholar] [CrossRef]
- Heigold, P.C.; Gilkeson, R.H.; Cartwright, K.; Reed, P.C. Aquifer Transmissivity from Surficial Electrical Methods. Groundwater 1979, 17, 338–345. [Google Scholar] [CrossRef]
- Van Overmeeren, R.A. Aquifer boundaries explored by geoelectrical measurements in the coastal plain of Yemen: A case of equivalence. Geophysics 1989, 54, 38–48. [Google Scholar] [CrossRef]
- Auken, E.; Christiansen, A.V. Layered and laterally constrained 2D inversion of resistivity data. Geophysics 2004, 69, 752–761. [Google Scholar] [CrossRef]
- Nogoshi, M.; Iragashi, T. On the propagation characteristic of the microtremors. J. Seismol. Soc. Jpn. 1970, 24, 24–40. [Google Scholar]
- Nakamura, Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quat. Rep. Railw. 1989, 30, 25–33. Available online: https://worldcat.org/oclc/3127232 (accessed on 23 February 2024).
- Castellaro, S.; Mulargia, F. VS30 estimates using constrained H/V measurements. Bull. Seismol. Soc. Am. 2009, 99, 761–773. [Google Scholar] [CrossRef]
- Castellaro, S. The complementarity of H/V and dispersion curves. Geophysics 2016, 81, T323–T338. [Google Scholar] [CrossRef]
- Park, C.B.; Miller, R.D.; Xia, J. Multichannel analysis of surface waves. Geophysics 1999, 64, 800–808. [Google Scholar] [CrossRef]
- White, D.J. Two-Dimensional Seismic Refraction Tomography. Geophys. J. Int. 1989, 97, 223–245. [Google Scholar] [CrossRef]
- Koch, K.; Wenninger, J.; Uhlenbrook, S.; Bonell, M. Joint interpretationof hydrological and geophysical data: Electrical resistivityn tomography results from a process hydrological research site in the Black Forest Mountains, Germany. Hydrol. Process. Int. J. 2009, 23, 1501–1513. [Google Scholar] [CrossRef]
- Robert, T.; Dassargues, A.; Brouyère, S.; Kaufmann, O.; Hallet, V.; Nguyen, F. Assessing the contribution of electrical resistivity tomography (ERT) and self-potential (SP) methods for a water well drilling program in fractured/karstified limestones. J. Appl. Geophys. 2011, 75, 42–53. [Google Scholar] [CrossRef]
- Martorana, R.; Lombardo, L.; Messina, N.; Luzio, D. Integrated geophysical survey for 3D modelling of a coastal aquifer polluted by seawater. Near Surf. Geophys. 2014, 12, 45–59. [Google Scholar] [CrossRef]
- Frischknecht, F.C.; Raab, P.V. Time-domain electromagnetic soundings at the Nevada Test Site, Nevada. Geophysics 1984, 49, 981–992. [Google Scholar] [CrossRef]
- Wightman, W.E.; Kaufman, A.A.; Hoekstra, P. Mapping gas-water contacts in shallow producing formations with transient EM. In SEG Technical Program Expanded Abstracts. Soc. Explor. Geophys. 1983, 0059, 59–60. [Google Scholar] [CrossRef]
- Fitterman, D.V.; Stanley, W.D.; Bisdorf, R.J. Electrical structure of Newberry volcano, Oregon. J. Geophys. Res. Solid Earth 1988, 93, 10119–10134. [Google Scholar] [CrossRef]
- Martorana, R.; Capizzi, P.; Avellone, G.; D’Alessandro, A.; Siragusa, R.; Luzio, D. Assessment of a geological model by surface wave analyses. J. Geophys. Eng. 2017, 14, 159–172. [Google Scholar] [CrossRef]
- Di Capua, G.; Peppoloni, S.; Amanti, M.; Cipolloni, C.; Conte, G. Site classification map of Italy based on surface geology. Geol. Soc. Lond. Eng. Geol. Spec. Publ. 2016, 27, 147–158. [Google Scholar] [CrossRef]
- Forte, G.; Chioccarelli, E.; De Falco, M.; Cito, P.; Santo, A.; Iervolino, I. Seismic soil classification of Italy based on surface geology and shear-wave velocity measurements. Soil Dyn. Earthq. Eng. 2019, 122, 79–93. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capizzi, P.; Martorana, R.; Canzoneri, A.; Bonfardeci, A.; Favara, R. Coastal Groundwater Bodies Modelling Using Geophysical Surveys: The Reconstruction of the Geometry of Alluvial Plains in the North-Eastern Sicily (Italy). Water 2024, 16, 1048. https://doi.org/10.3390/w16071048
Capizzi P, Martorana R, Canzoneri A, Bonfardeci A, Favara R. Coastal Groundwater Bodies Modelling Using Geophysical Surveys: The Reconstruction of the Geometry of Alluvial Plains in the North-Eastern Sicily (Italy). Water. 2024; 16(7):1048. https://doi.org/10.3390/w16071048
Chicago/Turabian StyleCapizzi, Patrizia, Raffaele Martorana, Alessandro Canzoneri, Alessandro Bonfardeci, and Rocco Favara. 2024. "Coastal Groundwater Bodies Modelling Using Geophysical Surveys: The Reconstruction of the Geometry of Alluvial Plains in the North-Eastern Sicily (Italy)" Water 16, no. 7: 1048. https://doi.org/10.3390/w16071048
APA StyleCapizzi, P., Martorana, R., Canzoneri, A., Bonfardeci, A., & Favara, R. (2024). Coastal Groundwater Bodies Modelling Using Geophysical Surveys: The Reconstruction of the Geometry of Alluvial Plains in the North-Eastern Sicily (Italy). Water, 16(7), 1048. https://doi.org/10.3390/w16071048