Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (129)

Search Parameters:
Keywords = geodetic imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 6652 KiB  
Review
Remote Sensing Perspective on Monitoring and Predicting Underground Energy Sources Storage Environmental Impacts: Literature Review
by Aleksandra Kaczmarek and Jan Blachowski
Remote Sens. 2025, 17(15), 2628; https://doi.org/10.3390/rs17152628 - 29 Jul 2025
Viewed by 319
Abstract
Geological storage is an integral element of the green energy transition. Geological formations, such as aquifers, depleted reservoirs, and hard rock caverns, are used mainly for the storage of hydrocarbons, carbon dioxide and increasingly hydrogen. However, potential adverse effects such as ground movements, [...] Read more.
Geological storage is an integral element of the green energy transition. Geological formations, such as aquifers, depleted reservoirs, and hard rock caverns, are used mainly for the storage of hydrocarbons, carbon dioxide and increasingly hydrogen. However, potential adverse effects such as ground movements, leakage, seismic activity, and environmental pollution are observed. Existing research focuses on monitoring subsurface elements of the storage, while on the surface it is limited to ground movement observations. The review was carried out based on 191 research contributions related to geological storage. It emphasizes the importance of monitoring underground gas storage (UGS) sites and their surroundings to ensure sustainable and safe operation. It details surface monitoring methods, distinguishing geodetic surveys and remote sensing techniques. Remote sensing, including active methods such as InSAR and LiDAR, and passive methods of multispectral and hyperspectral imaging, provide valuable spatiotemporal information on UGS sites on a large scale. The review covers modelling and prediction methods used to analyze the environmental impacts of UGS, with data-driven models employing geostatistical tools and machine learning algorithms. The limited number of contributions treating geological storage sites holistically opens perspectives for the development of complex approaches capable of monitoring and modelling its environmental impacts. Full article
(This article belongs to the Special Issue Advancements in Environmental Remote Sensing and GIS)
Show Figures

Figure 1

34 pages, 7293 KiB  
Article
Evaluation of Photogrammetric Methods for Displacement Measurement During Structural Load Testing
by Ante Marendić, Dubravko Gajski, Ivan Duvnjak and Rinaldo Paar
Remote Sens. 2025, 17(15), 2569; https://doi.org/10.3390/rs17152569 - 24 Jul 2025
Viewed by 287
Abstract
The safety and longevity of engineering structures depend on precise and timely monitoring, especially during load testing inspections. Conventional displacement measurement methods—such as LVDT sensors, GNSS, RTS, and levels—each present benefits and limitations in terms of accuracy, applicability, and practicality. Photogrammetry has emerged [...] Read more.
The safety and longevity of engineering structures depend on precise and timely monitoring, especially during load testing inspections. Conventional displacement measurement methods—such as LVDT sensors, GNSS, RTS, and levels—each present benefits and limitations in terms of accuracy, applicability, and practicality. Photogrammetry has emerged as a promising alternative, offering non-contact measurement, cost-effectiveness, and adaptability in challenging environments. This study investigates the potential of photogrammetric methods for determining structural displacements during load testing in real-world conditions where such approaches remain underutilized. Two photogrammetric techniques were tested: (1) a single-image homography-based approach, and (2) a multi-image bundle block adjustment (BBA) approach using both UAV and tripod-mounted imaging platforms. Displacement results from both methods were compared against reference measurements obtained by traditional LVDT sensors and robotic total station. The study evaluates the influence of different camera systems, image acquisition techniques, and processing methods on the overall measurement accuracy. The findings suggest that the photogrammetric method, especially when optimized, can provide reliable displacement data with sub-millimeter accuracy, highlighting their potential as a viable alternative or complement to established geodetic and sensor-based approaches in structural testing. Full article
Show Figures

Figure 1

35 pages, 12716 KiB  
Article
Bridging the Gap Between Active Faulting and Deformation Across Normal-Fault Systems in the Central–Southern Apennines (Italy): Multi-Scale and Multi-Source Data Analysis
by Marco Battistelli, Federica Ferrarini, Francesco Bucci, Michele Santangelo, Mauro Cardinali, John P. Merryman Boncori, Daniele Cirillo, Michele M. C. Carafa and Francesco Brozzetti
Remote Sens. 2025, 17(14), 2491; https://doi.org/10.3390/rs17142491 - 17 Jul 2025
Viewed by 418
Abstract
We inspected a sector of the Apennines (central–southern Italy) in geographic and structural continuity with the Quaternary-active extensional belt but where clear geomorphic and seismological signatures of normal faulting are unexpectedly missing. The evidence of active tectonics in this area, between Abruzzo and [...] Read more.
We inspected a sector of the Apennines (central–southern Italy) in geographic and structural continuity with the Quaternary-active extensional belt but where clear geomorphic and seismological signatures of normal faulting are unexpectedly missing. The evidence of active tectonics in this area, between Abruzzo and Molise, does not align with geodetic deformation data and the seismotectonic setting of the central Apennines. To investigate the apparent disconnection between active deformation and the absence of surface faulting in a sector where high lithologic erodibility and landslide susceptibility may hide its structural evidence, we combined multi-scale and multi-source data analyses encompassing morphometric analysis and remote sensing techniques. We utilised high-resolution topographic data to analyse the topographic pattern and investigate potential imbalances between tectonics and erosion. Additionally, we employed aerial-photo interpretation to examine the spatial distribution of morphological features and slope instabilities which are often linked to active faulting. To discern potential biases arising from non-tectonic (slope-related) signals, we analysed InSAR data in key sectors across the study area, including carbonate ridges and foredeep-derived Molise Units for comparison. The topographic analysis highlighted topographic disequilibrium conditions across the study area, and aerial-image interpretation revealed morphologic features offset by structural lineaments. The interferometric analysis confirmed a significant role of gravitational movements in denudating some fault planes while highlighting a clustered spatial pattern of hillslope instabilities. In this context, these instabilities can be considered a proxy for the control exerted by tectonic structures. All findings converge on the identification of an ~20 km long corridor, the Castel di Sangro–Rionero Sannitico alignment (CaS-RS), which exhibits varied evidence of deformation attributable to active normal faulting. The latter manifests through subtle and diffuse deformation controlled by a thick tectonic nappe made up of poorly cohesive lithologies. Overall, our findings suggest that the CaS-RS bridges the structural gap between the Mt Porrara–Mt Pizzalto–Mt Rotella and North Matese fault systems, potentially accounting for some of the deformation recorded in the sector. Our approach contributes to bridging the information gap in this complex sector of the Apennines, offering original insights for future investigations and seismic hazard assessment in the region. Full article
Show Figures

Figure 1

24 pages, 3003 KiB  
Article
Fault Geometry and Slip Distribution of the 2023 Jishishan Earthquake Based on Sentinel-1A and ALOS-2 Data
by Kaifeng Ma, Yang Liu, Qingfeng Hu, Jiuyuan Yang and Limei Wang
Remote Sens. 2025, 17(13), 2310; https://doi.org/10.3390/rs17132310 - 5 Jul 2025
Viewed by 422
Abstract
On 18 December 2023, a Mw 6.2 earthquake occurred in close proximity to Jishishan County, located on the northeastern edge of the Qinghai–Tibet Plateau. The event struck the structural intersection of the Haiyuan fault, Lajishan fault, and West Qinling fault, providing empirical [...] Read more.
On 18 December 2023, a Mw 6.2 earthquake occurred in close proximity to Jishishan County, located on the northeastern edge of the Qinghai–Tibet Plateau. The event struck the structural intersection of the Haiyuan fault, Lajishan fault, and West Qinling fault, providing empirical evidence for investigating the crustal compression mechanisms associated with the northeastward expansion of the Qinghai–Tibet Plateau. In this study, we successfully acquired a high-resolution coseismic deformation field of the earthquake by employing interferometric synthetic aperture radar (InSAR) technology. This was accomplished through the analysis of image data obtained from both the ascending and descending orbits of the Sentinel-1A satellite, as well as from the ascending orbit of the ALOS-2 satellite. Our findings indicate that the coseismic deformation is predominantly localized around the Lajishan fault zone, without leading to the development of a surface rupture zone. The maximum deformations recorded from the Sentinel-1A ascending and descending datasets are 7.5 cm and 7.7 cm, respectively, while the maximum deformation observed from the ALOS-2 ascending data reaches 10 cm. Geodetic inversion confirms that the seismogenic structure is a northeast-dipping thrust fault. The geometric parameters indicate a strike of 313° and a dip angle of 50°. The slip distribution model reveals that the rupture depth predominantly ranges between 5.7 and 15 km, with a maximum displacement of 0.47 m occurring at a depth of 9.6 km. By integrating the coseismic slip distribution and aftershock relocation, this study comprehensively elucidates the stress coupling mechanism between the mainshock and its subsequent aftershock sequence. Quantitative analysis indicates that aftershocks are primarily located within the stress enhancement zone, with an increase in stress ranging from 0.12 to 0.30 bar. It is crucial to highlight that the structural units, including the western segment of the northern margin fault of West Qinling, the eastern segment of the Daotanghe fault, the eastern segment of the Linxia fault, and both the northern and southern segment of Lajishan fault, exhibit characteristics indicative of continuous stress loading. This observation suggests a potential risk for fractures in these areas. Full article
Show Figures

Figure 1

18 pages, 10338 KiB  
Article
Visual Geolocalization for Aerial Vehicles via Fusion of Satellite Remote Sensing Imagery and Its Relative Depth Information
by Maoan Zhou, Dongfang Yang, Jieyu Liu, Weibo Xu, Xiong Qiu and Yongfei Li
Remote Sens. 2025, 17(13), 2291; https://doi.org/10.3390/rs17132291 - 4 Jul 2025
Viewed by 345
Abstract
Visual geolocalization for aerial vehicles based on an analysis of Earth observation imagery is an effective method in GNSS-denied environments. However, existing methods for geographic location estimation have limitations: one relies on high-precision geodetic elevation data, which is costly, and the other assumes [...] Read more.
Visual geolocalization for aerial vehicles based on an analysis of Earth observation imagery is an effective method in GNSS-denied environments. However, existing methods for geographic location estimation have limitations: one relies on high-precision geodetic elevation data, which is costly, and the other assumes a flat ground surface, ignoring elevation differences. This paper presents a novel aerial vehicle geolocalization method. It integrates 2D information and relative depth information, which are both from Earth observation images. Firstly, the aerial and reference remote sensing satellite images are fed into a feature-matching network to extract pixel-level feature-matching pairs. Then, a depth estimation network is used to estimate the relative depth of the satellite remote sensing image, thereby obtaining the relative depth information of the ground area within the field of view of the aerial image. Finally, high-confidence matching pairs with similar depth and uniform distribution are selected to estimate the geographic location of the aerial vehicle. Experimental results demonstrate that the proposed method outperforms existing ones in terms of geolocalization accuracy and stability. It eliminates reliance on elevation data or planar assumptions, thus providing a more adaptable and robust solution for aerial vehicle geolocalization in GNSS-denied environments. Full article
Show Figures

Figure 1

27 pages, 6659 KiB  
Article
Structural Failures in an Architectural Heritage Site: Case Study of the Blagoveštenje Monastery Church, Kablar, Serbia
by Jelena Ivanović-Šekularac, Neda Sokolović, Nikola Macut, Tijana Žišić and Nenad Šekularac
Buildings 2025, 15(13), 2328; https://doi.org/10.3390/buildings15132328 - 2 Jul 2025
Viewed by 408
Abstract
Authenticity is a core principle in conservation guidelines and a key goal of heritage preservation, especially in Serbia, where many aging objects face ongoing deterioration. The subject of this study is the church within the Blagoveštenje Monastery complex in the Ovčar-Kablar gorge, built [...] Read more.
Authenticity is a core principle in conservation guidelines and a key goal of heritage preservation, especially in Serbia, where many aging objects face ongoing deterioration. The subject of this study is the church within the Blagoveštenje Monastery complex in the Ovčar-Kablar gorge, built using stone from a local quarry at the beginning of the 17th century. The inclination of the structure, observed as progressively increasing over the centuries, raises important concerns regarding its stability. This research focuses on identifying the underlying causes of this phenomenon in order to support its long-term preservation. The methods used the study are long-term in situ observations including analysis, geodetic research, 3D laser imaging, geophysical, geological, archaeological research, evaluation of current condition, determination of structural failures and their cause and monitoring the structural behavior of elements. All methods were carried out in accordance with the definition of rehabilitation measures and the protection of masonry buildings. The main contribution of this study is identifying that the church’s inclination and deviation result from the northern foundation resting on weaker soil and a deeper rock mass compared to the southern side. The research approach and findings presented in this paper can serve as a guide for future endeavors aimed at identifying the causes of deformations and the restoration and structural rehabilitation of masonry buildings as cultural heritage. Full article
(This article belongs to the Special Issue Advanced Research on Cultural Heritage)
Show Figures

Figure 1

22 pages, 15733 KiB  
Article
Monitoring Fast-Growing Megacities in Emerging Countries Through the PS-InSAR Technique: The Case of Addis Ababa, Ethiopia
by Eyasu Alemu and Mario Floris
Land 2025, 14(5), 1020; https://doi.org/10.3390/land14051020 - 8 May 2025
Viewed by 590
Abstract
In the past three decades, the city of Addis Ababa, a capital city of Africa, has grown significantly in population, facilities, and infrastructure. The area involved in the recent urbanization is prone to slow natural subsidence phenomena that can be accelerated due to [...] Read more.
In the past three decades, the city of Addis Ababa, a capital city of Africa, has grown significantly in population, facilities, and infrastructure. The area involved in the recent urbanization is prone to slow natural subsidence phenomena that can be accelerated due to anthropogenic factors such as groundwater overexploitation and loading of unconsolidated soils. The main aim of this study is to identify and monitor the areas most affected by subsidence in a context, such as that of many areas of emerging countries, characterized by the lack of geological and technical data. In these contexts, advanced remote sensing techniques can support the assessment of spatial and temporal patterns of ground instability phenomena, providing critical information on potential conditioning and triggering factors. In the case of subsidence, these factors may have a natural or anthropogenic origin or result from a combination of both. The increasing availability of SAR data acquired by the Sentinel-1 mission around the world and the refinement of processing techniques that have taken place in recent years allow one to identify and monitor the critical conditions deriving from the impressive recent expansion of megacities such as Addis Ababa. In this work, the Sentinel-1 SAR images from Oct 2014 to Jan 2021 were processed through the PS-InSAR technique, which allows us to estimate the deformations of the Earth’s surface with high precision, especially in urbanized areas. The obtained deformation velocity maps and displacement time series have been validated using accurate second-order geodetic control points and compared with the recent urbanization of the territory. The results demonstrate the presence of areas affected by a vertical rate of displacement of up to 21 mm/year and a maximum displacement of about 13.50 cm. These areas correspond to sectors that are most predisposed to subsidence phenomena due to the presence of recent alluvial deposits and have suffered greater anthropic pressure through the construction of new buildings and the exploitation of groundwater. Satellite interferometry techniques are confirmed to be a reliable tool for monitoring potentially dangerous geological processes, and in the case examined in this work, they represent the only way to verify the urbanized areas exposed to the risk of damage with great effectiveness and low cost, providing local authorities with crucial information on the priorities of intervention. Full article
(This article belongs to the Special Issue Assessing Land Subsidence Using Remote Sensing Data)
Show Figures

Figure 1

26 pages, 9183 KiB  
Article
Water Surface Spherical Buoy Localization Based on Ellipse Fitting Using Monocular Vision
by Shiwen Wu, Jianhua Wang, Xiang Zheng, Xianqiang Zeng and Gongxing Wu
J. Mar. Sci. Eng. 2025, 13(4), 733; https://doi.org/10.3390/jmse13040733 - 6 Apr 2025
Viewed by 469
Abstract
Spherical buoys serve as water surface markers, and their location information can help unmanned surface vessels (USVs) identify navigation channel boundaries, avoid dangerous areas, and improve navigation accuracy. However, due to the presence of disturbances such as reflections, water obstruction, and changes in [...] Read more.
Spherical buoys serve as water surface markers, and their location information can help unmanned surface vessels (USVs) identify navigation channel boundaries, avoid dangerous areas, and improve navigation accuracy. However, due to the presence of disturbances such as reflections, water obstruction, and changes in illumination for spherical buoys on the water surface, using binocular vision for positioning encounters difficulties in matching. To address this, this paper proposes a monocular vision-based localization method for spherical buoys using elliptical fitting. First, the edges of the spherical buoy are extracted through image preprocessing. Then, to address the issue of pseudo-edge points introduced by reflections that reduce the accuracy of elliptical fitting, a multi-step method for eliminating pseudo-edge points is proposed. This effectively filters out pseudo-edge points and obtains accurate elliptical parameters. Finally, based on these elliptical parameters, a monocular vision ranging model is established to solve the relative position between the USV and the buoy. The USV’s position from satellite observation is then fused with the relative position calculated using the method proposed in this paper to estimate the coordinates of the buoy in the geodetic coordinate system. Simulation experiments analyzed the impact of pixel noise, camera height, focal length, and rotation angle on localization accuracy. The results show that within a range of 40 m in width and 80 m in length, the coordinates calculated by this method have an average absolute error of less than 1.2 m; field experiments on actual ships show that the average absolute error remains stable within 2.57 m. This method addresses the positioning issues caused by disturbances such as reflections, water obstruction, and changes in illumination, achieving a positioning accuracy comparable to that of general satellite positioning. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 25079 KiB  
Article
Subsidence Monitoring in Emilia-Romagna Region (Italy) from 2016 to 2021: From InSAR and GNSS Integration to Data Analysis
by Gabriele Bitelli, Alessandro Ferretti, Chiara Giannico, Eugenia Giorgini, Alessandro Lambertini, Marco Marcaccio, Marianna Mazzei and Luca Vittuari
Remote Sens. 2025, 17(6), 947; https://doi.org/10.3390/rs17060947 - 7 Mar 2025
Cited by 2 | Viewed by 1383
Abstract
This study investigates vertical soil movement, a subsidence phenomenon affecting infrastructure and communities in the Emilia-Romagna region (Italy). Building upon previous research—initially based on leveling and GNSS observations and later expanded with interferometric synthetic aperture radar (InSAR)—this study focuses on recent data from [...] Read more.
This study investigates vertical soil movement, a subsidence phenomenon affecting infrastructure and communities in the Emilia-Romagna region (Italy). Building upon previous research—initially based on leveling and GNSS observations and later expanded with interferometric synthetic aperture radar (InSAR)—this study focuses on recent data from 2016 to 2021. A key innovation is the use of dual-geometry ascending and descending acquisitions to derive the vertical and the east–west movement components, a technique not previously applied at a regional scale in this area. The integration of advanced geodetic techniques involved processing 1208 Sentinel-1 satellite images with the SqueeSAR® algorithm and analyzing data from 28 GNSS permanent stations using the precise point positioning (PPP) methodology. By calibrating the InSAR data with GNSS measurements, we generated a comprehensive subsidence map for the study period, identifying trends and anomalies. The analysis produced 13.5 million measurement points, calibrated and validated using multiple GNSS stations. The final dataset, processed through geostatistical methods, provided a high-resolution (100-m) regional subsidence map covering nearly 11,000 square kilometers. Finally, the vertical soil movement map for 2016–2021 was developed, featuring isokinetic curves with an interval of 2.5 mm/year. The results underscore the value of integrating these geodetic techniques for effective environmental monitoring in subsidence-prone areas. Furthermore, comparisons with previous subsidence maps reveal the evolution of soil movement in Emilia-Romagna, reinforcing the importance of these maps as essential tools for precise subsidence monitoring. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Land Subsidence Monitoring)
Show Figures

Figure 1

18 pages, 39500 KiB  
Article
Pre-, Co-, and Post-Failure Deformation Analysis of the Catastrophic Xinjing Open-Pit Coal Mine Landslide, China, from Optical and Radar Remote Sensing Observations
by Fengnian Chang, Houyu Li, Shaochun Dong and Hongwei Yin
Remote Sens. 2025, 17(1), 19; https://doi.org/10.3390/rs17010019 - 25 Dec 2024
Cited by 4 | Viewed by 1184
Abstract
Landslide risks in open-pit mine areas are heightened by artificial slope modifications necessary for mining operations, endangering human life and property. On 22 February 2023, a catastrophic landslide occurred at the Xinjing Open-Pit Coal Mine in Inner Mongolia, China, resulting in 53 fatalities [...] Read more.
Landslide risks in open-pit mine areas are heightened by artificial slope modifications necessary for mining operations, endangering human life and property. On 22 February 2023, a catastrophic landslide occurred at the Xinjing Open-Pit Coal Mine in Inner Mongolia, China, resulting in 53 fatalities and economic losses totaling 28.7 million USD. Investigating the pre-, co-, and post-failure deformation processes and exploring the potential driving mechanisms are crucial to preventing similar tragedies. In this study, we used multi-source optical and radar images alongside satellite geodetic methods to analyze the event. The results revealed pre-failure acceleration at the slope toe, large-scale southward displacement during collapse, and ongoing deformation across the mine area due to mining operations and waste accumulation. The collapse was primarily triggered by an excessively steep, non-compliant artificial slope design and continuous excavation at the slope’s base. Furthermore, our experiments indicated that the commonly used Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) significantly underestimated landslide deformation due to the maximum detectable deformation gradient (MDDG) limitation. In contrast, the high-spatial-resolution Fucheng-1 provided more accurate monitoring results with a higher MDDG. This underscores the importance of carefully assessing the MDDG when employing InSAR techniques to monitor rapid deformation in mining areas. Full article
(This article belongs to the Special Issue Synthetic Aperture Radar Interferometry Symposium 2024)
Show Figures

Figure 1

20 pages, 9642 KiB  
Article
Quantitative Evaluations of Pumping-Induced Land Subsidence and Mitigation Strategies by Integrated Remote Sensing and Site-Specific Hydrogeological Observations
by Thai-Vinh-Truong Nguyen, Chuen-Fa Ni, Ya-Ju Hsu, Pi-E Rubia Chen, Nguyen Hoang Hiep, I-Hsian Lee, Chi-Ping Lin and Gabriel Gosselin
Remote Sens. 2024, 16(20), 3789; https://doi.org/10.3390/rs16203789 - 12 Oct 2024
Viewed by 2113
Abstract
Land subsidence is an environmental hazard occurring gradually over time, potentially posing significant threats to the structural stability of civilian buildings and essential infrastructures. This study presented a workflow using the SBAS-PSInSAR approach to analyze surface deformation in the Choushui River Fluvial Plain [...] Read more.
Land subsidence is an environmental hazard occurring gradually over time, potentially posing significant threats to the structural stability of civilian buildings and essential infrastructures. This study presented a workflow using the SBAS-PSInSAR approach to analyze surface deformation in the Choushui River Fluvial Plain (CRFP) based on Sentinel-1 SAR images and validated against precise leveling. Integrating the InSAR results with hydrogeological data, such as groundwater levels (GWLS), multilayer compactions, and borehole loggings, a straightforward model was proposed to estimate appropriate groundwater level drops to minimize further subsidence. The results showed a huge subsidence bowl centered in Yunlin, with maximal sinking at an average 60 mm/year rate. High-resolution subsidence maps enable the quantitative analyses of safety issues for Taiwan High-Speed Rail (THSR) across the areas with considerable subsidence. In addition, the analysis of hydrogeological data revealed that half of the major compaction in the study area occurred at shallow depths that mainly included the first and second aquifers. Based on a maximal subsidence control rate of 40 mm/year specified in the CRFP, the model results indicated that the groundwater level drops from wet to dry seasons needed to be maintained from 3 to 5 m for the shallowest aquifer and 4–6 m for Aquifers 3 and 4. The workflow demonstrated the compatibility of InSAR with traditional geodetic methods and the effectiveness of integrating multiple data sources to assess the complex nature of land subsidence in the CRFP. Full article
(This article belongs to the Special Issue Remote Sensing in Urban Infrastructure and Building Monitoring)
Show Figures

Figure 1

18 pages, 10116 KiB  
Article
UAV, GNSS, Total Station, and Data Management Applied to an Ancient Clay Structure as a Historic Building Information Modeling Proposal: A Case Study of Huaca Arco Iris (Trujillo, Peru)
by Carlos Antonio Espinoza Brugman, Frank Kevin Neri Caipo and Alexandre Almeida Del Savio
Heritage 2024, 7(9), 4962-4979; https://doi.org/10.3390/heritage7090234 - 9 Sep 2024
Cited by 1 | Viewed by 1416
Abstract
In light of current risks and environmental impacts, HBIM (historic building information modeling) offers a highly efficient and interactive method for managing historical data and representing the current states of ancient clay structures. In this study, traditional geodetic techniques were employed to digitally [...] Read more.
In light of current risks and environmental impacts, HBIM (historic building information modeling) offers a highly efficient and interactive method for managing historical data and representing the current states of ancient clay structures. In this study, traditional geodetic techniques were employed to digitally locate a structure without compromising its topographic information to create an accurate model. Tools such as total stations, GNSS receivers, and UAVs were utilized to generate detailed topography of the study site and its surroundings. An ontology-based data management structure was also developed to store historical data and site intervention projects, adhering to the ISO 12006-2 standard. This was achieved through automated scripts in Dynamo softwarev.2.18.1. A comparison between the point cloud (279 images) and total station data (600 points) revealed a georeferencing accuracy difference of +/−0.003 m. Consequently, the developed methods can effectively represent similar structures digitally. The proposed ontological structure facilitates automated storage of internal and external information. Full article
Show Figures

Figure 1

21 pages, 11353 KiB  
Article
Exploring the Ground-Penetrating Radar Technique’s Effectiveness in Diagnosing Hydropower Dam Crest Conditions: Insights from Gura Apelor and Herculane Dams, Romania
by Alexandra Georgiana Gerea and Andrei Emilian Mihai
Appl. Sci. 2024, 14(16), 7212; https://doi.org/10.3390/app14167212 - 16 Aug 2024
Cited by 2 | Viewed by 1433
Abstract
When it comes to hydropower dam safety, continuous and comprehensive monitoring is increasingly important. Especially for aging dams, this can pose a difficult challenge that benefits from a multimethod analysis. Here, we present the use and suitability of a geophysical method, Ground Penetrating [...] Read more.
When it comes to hydropower dam safety, continuous and comprehensive monitoring is increasingly important. Especially for aging dams, this can pose a difficult challenge that benefits from a multimethod analysis. Here, we present the use and suitability of a geophysical method, Ground Penetrating Radar (GPR), for the non-invasive assessment of two distinct types of hydropower dams in Romania: Herculane (a concrete arch dam) and Gura Apelor (an embankment dam with a rockfill and clay core). Unlike traditional monitoring methods for dam safety in Romania, which might provide an incomplete overview, GPR offers a broader, non-destructive approach to evaluating some elements of dam integrity. Here, we present the results of surveys carried out with a 200 MHz antenna on the crests of both dams. The aim was to conduct a rapid assessment of the crest condition and identify the potential damage to the crest that may elude standard monitoring techniques. The surveys provide an imaging indicative of the structural integrity, although this is more challenging in the embankment dam, and additionally we provide significant information regarding the deformations in the upper layers. This complements data from routine topo-geodetical surveys, offering a potential explanation for the vertical displacements observed therein. We highlight several areas of potential deformation as well as degradation in subsurface structures such as rebars. The results underscore the value of GPR in supplementing established dam monitoring methods, highlighting its effectiveness in different contexts and dam types, as well as its potential in shaping future standards for dam safety management in Romania. Full article
(This article belongs to the Special Issue Advances in Geosciences: Techniques, Applications, and Challenges)
Show Figures

Figure 1

22 pages, 24332 KiB  
Article
Using Nighttime Light Data to Explore the Extent of Power Outages in the Florida Panhandle after 2018 Hurricane Michael
by Diana Mitsova, Yanmei Li, Ross Einsteder, Tiffany Roberts Briggs, Alka Sapat and Ann-Margaret Esnard
Remote Sens. 2024, 16(14), 2588; https://doi.org/10.3390/rs16142588 - 15 Jul 2024
Cited by 2 | Viewed by 2422
Abstract
The destructive forces of tropical cyclones can have significant impacts on the land, contributing to degradation through various mechanisms such as erosion, debris, loss of vegetation, and widespread damage to infrastructure. Storm surge and flooding can wash away buildings and other structures, deposit [...] Read more.
The destructive forces of tropical cyclones can have significant impacts on the land, contributing to degradation through various mechanisms such as erosion, debris, loss of vegetation, and widespread damage to infrastructure. Storm surge and flooding can wash away buildings and other structures, deposit debris and sediments, and contaminate freshwater resources, making them unsuitable for both human use and agriculture. High winds and flooding often damage electrical disubstations and transformers, leading to disruptions in electricity supply. Restoration can take days or even weeks, depending on the extent of the damage and the resources available. In the meantime, communities affected by power outages may experience difficulties accessing essential services and maintaining communication. In this study, we used a weighted maximum likelihood classification algorithm to reclassify NOAA’s National Geodetic Survey Emergency Response Imagery scenes into debris, sand, water, trees, and roofs to assess the extent of the damage around Mexico Beach, Florida, following the 2018 Hurricane Michael. NASA’s Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) was processed to estimate power outage duration and rate of restoration in the Florida Panhandle based on the 7-day moving averages. Percent loss of electrical service at a neighborhood level was estimated using the 2013–2017 American Community Survey block group data. Spatial lag models were employed to examine the association between restoration rates and socioeconomic factors. The analysis revealed notable differences in power-restoration rates between urbanized and rural areas and between disadvantaged and more affluent communities. The findings indicated that block groups with higher proportions of minorities, multi-family housing units, rural locations, and households receiving public assistance experienced slower restoration of power compared to urban and more affluent neighborhoods. These results underscore the importance of integrating socioeconomic factors into disaster preparedness and recovery-planning efforts, emphasizing the need for targeted interventions to mitigate disparities in recovery times following natural disasters. Full article
(This article belongs to the Special Issue Land Degradation Assessment with Earth Observation (Second Edition))
Show Figures

Figure 1

16 pages, 19634 KiB  
Article
An Improved Method of Mitigating Orbital Errors in Multiple Synthetic-Aperture-Radar Interferometric Pair Analysis for Interseismic Deformation Measurement: Application to the Tuosuo Lake Segment of the Kunlun Fault
by Qian Xu, Yinghui Yang, Qiang Chen, Dechao Wang, Su Liu, Yucong He, Lang Xu and Chengdai Zi
Remote Sens. 2024, 16(14), 2564; https://doi.org/10.3390/rs16142564 - 12 Jul 2024
Viewed by 961
Abstract
It is challenging to precisely measure the slow interseismic crustal-deformation rate from Synthetic Aperture Radar (SAR) data. The long-wavelength orbital errors, owing to the uncertainties in satellite orbit vectors, commonly exist in SAR interferograms, which degrade the precision of the Interferometric SAR (InSAR) [...] Read more.
It is challenging to precisely measure the slow interseismic crustal-deformation rate from Synthetic Aperture Radar (SAR) data. The long-wavelength orbital errors, owing to the uncertainties in satellite orbit vectors, commonly exist in SAR interferograms, which degrade the precision of the Interferometric SAR (InSAR) products and become the main barrier to extracting interseismic tectonic deformation. In this study, we propose a novel temporal-network orbital correction method that is able to isolate the far-fault tectonic deformation from the mixed long-wavelength signals based on its spatio–temporal characteristic. The proposed approach is straightforward in methodology but could effectively separate the subtle tectonic deformation from glaring orbital errors without ancillary data. Both synthetic data and real Sentinel-1 SAR images are used to validate the reliability and effectiveness of this method. The derived InSAR velocity fields clearly present the predominant left-lateral strike-slip motions of the Tuosuo Lake segment of the Kunlun fault in western China. The fault-parallel velocity differences of 5–6 mm/yr across the fault between areas ~50 km away from the fault trace are addressed. The proposed method presents a significantly different performance from the traditional quadratic approximate method in the far field. Through the implementation of the proposed method, the root mean square error (RMSE) between the LOSGPS and our derived descending InSAR LOS (line of sight) measurements is reduced to less than one-third of the previous study, suggesting its potential to enhance the availability of InSAR technology for interseismic crustal-deformation measurement. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

Back to TopTop