An Improved Method of Mitigating Orbital Errors in Multiple Synthetic-Aperture-Radar Interferometric Pair Analysis for Interseismic Deformation Measurement: Application to the Tuosuo Lake Segment of the Kunlun Fault
Abstract
:1. Introduction
2. Methodology
3. Algorithm Testing with Synthetic Data Set
4. Interseismic Surface-Deformation Monitoring along the Tuosuo Lake Segment
4.1. SAR Data and InSAR Processing
4.2. Interseismic Velocity Field along the Tuosuo Lake Segment
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res. Solid Earth 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, L.; Liao, M.S.; Gong, J. Improved correction of seasonal tropospheric delay in InSAR observations for landslide deformation monitoring. Remote Sens. Environ. 2019, 233, 111370. [Google Scholar] [CrossRef]
- Shamshiri, R.; Motagh, M.; Nahavandchi, H.; Haghshenas Haghighi, M.; Hoseini, M. Improving tropospheric corrections on large-scale Sentinel-1 interferograms using a machine learning approach for integration with GNSS-derived zenith total delay (ZTD). Remote Sens. Environ. 2020, 239, 111608. [Google Scholar] [CrossRef]
- Yang, Y.H.; Hu, J.C.; Chen, Q.; Lei, X.L.; Zhao, J.J.; Li, W.L.; Xu, R.; Chiu, C.Y. Shallow slip of blind fault associated with the 2019 Ms 6.0 Changning earthquake in fold-and-thrust belt in salt mines of Southeast Sichuan, China. Geophys. J. Int. 2021, 224, 909–922. [Google Scholar] [CrossRef]
- Chaussard, E.; Johnson, C.W.; Fattahi, H.; Burgmann, R. Potential and limits of InSAR to characterize interseismic deformation independently of GPS data: Application to the southern San Andreas Fault system. Geochem. Geophys. Geosyst. 2016, 17, 1214–1229. [Google Scholar] [CrossRef]
- Jin, L.; Funning, G.J. Testing the inference of creep on the northern Rodgers Creek fault, California, using ascending and descending persistent scatterer InSAR data. J. Geophys. Res. Solid Earth 2017, 122, 2373–2389. [Google Scholar] [CrossRef]
- Ryder, I.; Bürgmann, R. Spatial variations in slip deficit on the central San Andreas Fault from InSAR. Geophys. J. Int. 2008, 175, 837–852. [Google Scholar] [CrossRef]
- Aslan, G.; Lasserre, C.; Cakir, Z.; Ergintav, S.; Özarpaci, S.; Dogan, U.; Renard, F. Shallow creep along the 1999 Izmit Earthquake rupture (Turkey) from GPS and high temporal resolution interferometric synthetic aperture radar data (2011–2017). J. Geophys. Res. Solid Earth 2019, 124, 2218–2236. [Google Scholar] [CrossRef]
- Cakir, Z.; Akoglu, A.M.; Belabbes, S.; Ergintav, S.; Meghraoui, M. Creeping along the Ismetpasa section of the North Anatolian fault (Western Turkey): Rate and extent from InSAR. Earth Planet. Sci. Lett. 2005, 238, 225–234. [Google Scholar] [CrossRef]
- Rousset, B.; Jolivet, R.; Simons, M.; Lasserre, C.; Riel, B.; Milillo, P.; Renard, F. An aseismic slip transient on the North Anatolian Fault. Geophys. Res. Lett. 2016, 43, 3254–3262. [Google Scholar] [CrossRef]
- Xu, C.J.; Zhu, S. Temporal and spatial movement characteristics of the Altyn Tagh fault inferred from 21 years of InSAR observations. J. Geod. 2019, 93, 1147–1160. [Google Scholar] [CrossRef]
- Zhu, S.; Xu, C.; Wen, Y.; Liu, Y. Interseismic deformation of the altyn tagh fault determined by interferometric synthetic aperture radar (INSAR) measurements. Remote Sens. 2016, 8, 233. [Google Scholar] [CrossRef]
- Ji, L.Y.; Zhang, W.T.; Liu, C.J.; Zhu, L.Y.; Xu, J.; Xu, X.X. Characterizing interseismic deformation of the Xianshuihe fault, eastern Tibetan Plateau, using Sentinel-1 SAR images. Adv. Space Res. 2020, 66, 378–394. [Google Scholar] [CrossRef]
- Li, Y.X.; Bürgmann, R. Partial coupling and earthquake potential along the Xianshuihe Fault, China. J. Geophys. Res. Solid Earth 2021, 126, 7. [Google Scholar] [CrossRef]
- Qiao, X.; Zhou, Y. Geodetic imaging of shallow creep along the Xianshuihe fault and its frictional properties. Earth Planet. Sci. Lett. 2021, 567, 117001. [Google Scholar] [CrossRef]
- Cavalie, O.; Lasserre, C.; Doin, M.P.; Peltzer, G.; Sun, J.; Xu, X.; Shen, Z. Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR. Earth Planet. Sci. Lett. 2008, 275, 246–257. [Google Scholar] [CrossRef]
- Jolivet, R.; Lasserre, C.; Doin, M.P.; Guillaso, S.; Peltzer, G.; Dailu, R.; Xu, X. Shallow creep on the Haiyuan fault (Gansu, China) revealed by SAR interferometry. J. Geophys. Res. Solid Earth 2012, 117, B6. [Google Scholar] [CrossRef]
- Song, X.; Jiang, Y.; Shan, X.; Gong, W.; Qu, C. A fine velocity and strain rate field of present-day crustal motion of the northeastern tibetan plateau inverted jointly by InSAR and GPS. Remote Sens. 2019, 11, 435. [Google Scholar] [CrossRef]
- Mousavi, Z.; Pathier, E.; Walker, R.T.; Walpersdorf, A.; Tavakoli, F.; Nankali, H.; Sedighi, M.; Doin, M.P. Interseismic deformation of the Shahroud fault system (NE Iran) from space-borne radar interferometry measurements. Geophys. Res. Lett. 2015, 42, 5753–5761. [Google Scholar] [CrossRef]
- Tong, X.; Sandwell, D.T.; Schmidt, D.A. Surface creep rate and moment accumulation rate along the aceh segment of the sumatran fault from L-band ALOS-1/PALSAR-1 observations. Geophys. Res. Lett. 2018, 45, 3404–3412. [Google Scholar] [CrossRef]
- Fattahi, H.; Amelung, F. InSAR uncertainty due to orbital errors. Geophys. J. Int. 2014, 199, 549–560. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K. Radar interferometry and its applications to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
- Biggs, J.; Wright, T.; Lu, Z.; Parsons, B. Multi-interferogram method for measuring interseismic deformation: Denali fault, Alaska. Geophys. J. Int. 2007, 170, 1165–1179. [Google Scholar] [CrossRef]
- Gourmelen, N.; Amelung, F.; Lanari, R. Interferometric synthetic aperture radar–GPS integration: Interseismic strain accumulation across the Hunter Mountain fault in the eastern California shear zone. J. Geophys. Res. Solid Earth 2010, 115, B9. [Google Scholar] [CrossRef]
- Lundgren, P.E.; Hetland, A.; Liu, Z.; Fielding, E.J. Southern San Andreas–San Jacinto fault system slip rates estimated from earthquake cycle models constrained by GPS and interferometric synthetic aperture radar observations. J. Geophys. Res. Solid Earth 2009, 114, B2. [Google Scholar] [CrossRef]
- Wang, H.; Wright, T.J. Satellite geodetic imaging reveals internal deformation of western Tibet. Geophys. Res. Lett. 2012, 39, L07303. [Google Scholar] [CrossRef]
- Wei, M.; Sandwell, D.; Smith-Konter, B. Optimal combination of InSAR and GPS for measuring interseismic crustal deformation. Adv. Space Res. 2010, 46, 236–249. [Google Scholar] [CrossRef]
- Barnhart, W.D. Fault creep rates of the Chaman fault (Afghanistan and Pakistan) inferred from InSAR. J. Geophys. Res. Solid Earth 2017, 122, 372–386. [Google Scholar] [CrossRef]
- Lin, Y.N.; Simons, M.; Hetland, E.A.; Muse, P.; DiCaprio, C. A multiscale approach to estimating topographically correlated propagation delays in radar interferograms. Geochem. Geophys. Geosystem 2010, 11, 9. [Google Scholar] [CrossRef]
- Zhao, D.; Qu, C.Y.; Bürgmann, R.; Gong, W.; Shan, X.; Qiao, X.; Zhao, L.; Chen, H.; Liu, L. Large-scale Crustal Deformation, Slip-Rate Variation and Strain Distribution along the Kunlun Fault (Tibet) from Sentinel-1 InSAR Observations (2015–2020). J. Geophys. Res. Solid Earth 2022, 127, 1. [Google Scholar] [CrossRef]
- Jian, H.; Gong, W.; Li, Y.; Wang, L. Bayesian inference of fault slip and coupling along the Tuosuo Lake segment of the Kunlun fault, China. Geophys. Res. Lett. 2022, 49, e2021GL096882. [Google Scholar] [CrossRef]
- Prescott, W.; Nur, A. The accommodation of relative motion at depth on the San Andreas Fault System in California. J. Geophys. Res. 1981, 88, 999–1004. [Google Scholar] [CrossRef]
- Savage, J.; Burford, R. Geodetic determination of relative plate motion in California. J. Geophys. Res. 1973, 78, 832–845. [Google Scholar] [CrossRef]
- Wang, H.; Wright, T.J.; Jing, L.Z.; Peng, L. Strain rate distribution in south-central Tibet from two decades of InSAR and GPS. Geophys. Res. Lett. 2019, 46, 5170–5179. [Google Scholar] [CrossRef]
- Wright, T.J.; Parsons, B.; Fielding, E.J. Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry. Geophys. Res. Lett. 2001, 28, 2117–2120. [Google Scholar] [CrossRef]
- Liao, C.T.; Zhang, C.S.; Wu, M.L.; Ma, Y.S.; Ou, M.Y. Stress change near the Kunlun fault before and after the Ms 8.1 Kunlun earthquake. Geophys. Res. Lett. 2003, 30, 2027. [Google Scholar] [CrossRef]
- Van Der Woerd, J.; Ryerson, F.J.; Tapponnier, P.; Meriaux, A.S.; Gaudemer, Y.; Meyer, B.; Finkel, R.C.; Caffee, M.W.; Zhao, G.G.; Xu, Z.Q. Uniform slip-rate along the Kunlun Fault: Implications for seismic behaviour and large-scale tectonics. Geophys. Res. Lett. 2000, 27, 2353–2356. [Google Scholar] [CrossRef]
- Zhu, L.; Ji, L.; Liu, C. Interseismic slip rate and locking along the Maqin–Maqu Segment of the East Kunlun Fault, Northern Tibetan Plateau, based on Sentinel-1 images. J. Asian Earth Sci. 2021, 211, 104703. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z.K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J. Geophys. Res. Solid Earth 2020, 125, 2. [Google Scholar] [CrossRef]
- Diao, F.; Xiong, X.; Wang, R.; Walter, T.R.; Wang, Y.; Wang, K. Slip rate variation along the Kunlun fault (Tibet): Results from new GPS observations and a viscoelastic earthquake-cycle deformation model. Geophys. Res. Lett. 2019, 46, 2524–2533. [Google Scholar] [CrossRef]
- Wegmüller, U.; Werner, C. Gamma SAR processor and ineterferometry software. In Proceedings of the 3rd ERS Symposium, Florence, Italy, 14–21 March 1997; pp. 1687–1692. [Google Scholar]
- Chen, Q.; Cheng, H.Q.; Yang, Y.H.; Liu, G.X.; Liu, L.Y. Quantification of mass wasting volume associated with the giant landslide Daguangbao induced by the 2008 Wenchuan earthquake from persistent scatterer InSAR. Remote Sens. Environ. 2014, 152, 125–135. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, Q.; Zhao, J.J.; Liu, X.W.; Yang, Y.H.; Zhang, Y.J.; Liu, G.X. Sequential modelling of the 2016 central italy earthquake cluster using multisource satellite observations and quantitative assessment of coulomb stress change. Geophys. J. Int. 2020, 221, 451–466. [Google Scholar] [CrossRef]
- Yang, Y.H.; Tsai, M.C.; Hu, J.C.; Chen, Q.; Aurelio, M.; Xu, Q.; Jiang, Z.Q.; Xu, L.; Yang, C.; Li, L. Assessment of the Seismic Hazards of the Marikina Valley Fault from 2019 Mw 6.1 Castillejos Earthquake and Historical Events. Seismol. Res. Lett. 2021, 92, 3360–3374. [Google Scholar] [CrossRef]
- Deng, Q.D.; Zhang, P.Z.; Ran, Y.K.; Yang, X.P.; Min, W.; Chen, L.C. Active tectonics and earthquake activities in China. Earth Sci. Front. 2003, 10, 66–73. (In Chinese) [Google Scholar] [CrossRef]
- Styron, R.; Pagani, M. The GEM Global Active Faults Database. Earthq. Spectra 2020, 36, 160–180. [Google Scholar] [CrossRef]
- Hao, M.; Wang, Q.; Shen, Z.; Cui, D.; Ji, L.; Li, Y.; Qin, S. Present day crustal vertical movement inferred from precise leveling data in eastern margin of Tibetan Plateau. Tectonophysics 2014, 632, 281–292. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F. New, improved version of Generic Mapping Tools released. EOS Trans. Am. Geophys. Union 1998, 79, 579. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Yang, Y.; Chen, Q.; Wang, D.; Liu, S.; He, Y.; Xu, L.; Zi, C. An Improved Method of Mitigating Orbital Errors in Multiple Synthetic-Aperture-Radar Interferometric Pair Analysis for Interseismic Deformation Measurement: Application to the Tuosuo Lake Segment of the Kunlun Fault. Remote Sens. 2024, 16, 2564. https://doi.org/10.3390/rs16142564
Xu Q, Yang Y, Chen Q, Wang D, Liu S, He Y, Xu L, Zi C. An Improved Method of Mitigating Orbital Errors in Multiple Synthetic-Aperture-Radar Interferometric Pair Analysis for Interseismic Deformation Measurement: Application to the Tuosuo Lake Segment of the Kunlun Fault. Remote Sensing. 2024; 16(14):2564. https://doi.org/10.3390/rs16142564
Chicago/Turabian StyleXu, Qian, Yinghui Yang, Qiang Chen, Dechao Wang, Su Liu, Yucong He, Lang Xu, and Chengdai Zi. 2024. "An Improved Method of Mitigating Orbital Errors in Multiple Synthetic-Aperture-Radar Interferometric Pair Analysis for Interseismic Deformation Measurement: Application to the Tuosuo Lake Segment of the Kunlun Fault" Remote Sensing 16, no. 14: 2564. https://doi.org/10.3390/rs16142564
APA StyleXu, Q., Yang, Y., Chen, Q., Wang, D., Liu, S., He, Y., Xu, L., & Zi, C. (2024). An Improved Method of Mitigating Orbital Errors in Multiple Synthetic-Aperture-Radar Interferometric Pair Analysis for Interseismic Deformation Measurement: Application to the Tuosuo Lake Segment of the Kunlun Fault. Remote Sensing, 16(14), 2564. https://doi.org/10.3390/rs16142564