Quantitative Evaluations of Pumping-Induced Land Subsidence and Mitigation Strategies by Integrated Remote Sensing and Site-Specific Hydrogeological Observations
Abstract
:1. Introduction
2. Study Area, Datasets, and Methods
2.1. Study Area
2.2. Geodetic Datasets
2.2.1. Continuous Global Positioning System and Precise Leveling Survey
2.2.2. SAR Dataset Overview
2.2.3. SBAS-PSInSAR Processing and Deformation Extraction
2.3. Hydrogeological Datasets
2.3.1. Groundwater Level Dataset Overview
2.3.2. Linear Relation between Groundwater Level Drops and Subsidence
2.3.3. Multilayer Compaction Monitoring Wells
2.3.4. Estimation of Fine-Grained Sedimentary Material Percentage
3. Results
3.1. SBAS-PSInSAR Average Deformation Map
3.2. The Analysis of Cumulative Compactions
3.3. The Percentage of Fine-Grained Materials for the CRFP
4. Discussion
4.1. Subsidence Profile along the THSR
4.2. The Effects of Angular Deflection on the THSR
4.3. Proposing Groundwater Level Drop Threshold for Subsidence Mitigation
4.4. Research Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poland, J.F. Guidebook to Studies of Land Subsidence Due to Groundwater Withdrawal; UNESCO: Paris, France, 1984; Volume 40. [Google Scholar]
- Galloway, D.L.; Jones, D.R.; Ingebritsen, S.E. Land Subsidence in the United States; US Geological Survey: Reston, VA, USA, 1999. [Google Scholar]
- Bagheri-Gavkosh, M.; Hosseini, S.M.; Ataie-Ashtiani, B.; Sohani, Y.; Ebrahimian, H.; Morovat, F.; Ashrafi, S. Land subsidence: A global challenge. Sci. Total Environ. 2021, 778, 146193. [Google Scholar] [CrossRef] [PubMed]
- Gambolati, G.; Teatini, P.; Ferronato, M. Anthropogenic Land Subsidence. In Encyclopedia of Hydrological Sciences; John Wiley & Sons, Ltd.: Chichester, UK, 2006; pp. 231–245. [Google Scholar]
- Galloway, D.L.; Burbey, T.J. Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Faunt, C.C.; Sneed, M.; Traum, J.; Brandt, J.T. Water availability and land subsidence in the Central Valley, California, USA. Hydrogeol. J. 2016, 24, 675–684. [Google Scholar] [CrossRef]
- Ireland, R.L.; Poland, J.F.; Riley, F.S. Land Subsidence in the San Joaquin Valley, California, as of 1980; U.S. Geological Survey: Reston, VA, USA, 1984.
- Francesca, C.; Deodato, T. Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR. Remote Sens. Environ. 2021, 253, 112161. [Google Scholar] [CrossRef]
- Zhou, C.; Gong, H.; Zhang, Y.; Warner, T.A.; Wang, C. Spatiotemporal Evolution of Land Subsidence in the Beijing Plain 2003–2015 Using Persistent Scatterer Interferometry (PSI) with Multi-Source SAR Data. Remote Sens. 2018, 10, 552. [Google Scholar] [CrossRef]
- Nguyen, M.; Lin, Y.N.; Tran, Q.C.; Ni, C.-F.; Chan, Y.-C.; Tseng, K.-H.; Chang, C.-P. Assessment of long-term ground subsidence and groundwater depletion in Hanoi, Vietnam. Eng. Geol. 2022, 299, 106555. [Google Scholar] [CrossRef]
- Tran, D.H.; Wang, S.J. Land subsidence due to groundwater extraction and tectonic activity in Pingtung Plain, Taiwan. Proc. Int. Assoc. Hydrol. Sci. 2020, 382, 361–365. [Google Scholar] [CrossRef]
- Liu, C.-H.; Pan, Y.-W.; Liao, J.-J.; Huang, C.-T.; Ouyang, S. Characterization of land subsidence in the Choshui River alluvial fan, Taiwan. Environ. Geol. 2004, 45, 1154–1166. [Google Scholar] [CrossRef]
- Hung, W.-C.; Hwang, C.; Chang, C.-P.; Yen, J.-Y.; Liu, C.-H.; Yang, W.-H. Monitoring severe aquifer-system compaction and land subsidence in Taiwan using multiple sensors: Yunlin, the southern Choushui River Alluvial Fan. Environ. Earth Sci. 2010, 59, 1535–1548. [Google Scholar] [CrossRef]
- Hung, W.-C.; Hwang, C.-w.; Chen, Y.-A.; Chang, C.-P.; Yen, J.-Y.; Hooper, A.; Yang, C.-Y. Surface deformation from persistent scatterers SAR interferometry and fusion with leveling data: A case study over the Choushui River Alluvial Fan, Taiwan. Remote Sens. Environ. 2011, 115, 957–967. [Google Scholar] [CrossRef]
- Hung, W.-C.; Hwang, C.; Liou, J.-C.; Lin, Y.-S.; Yang, H.-L. Modeling aquifer-system compaction and predicting land subsidence in central Taiwan. Eng. Geol. 2012, 147–148, 78–90. [Google Scholar] [CrossRef]
- Chang, C.-C.; Wang, T.-N. GPS monitoring ground subsidence associated with seasonal underground water level decline: Case analysis for a section of Taiwan High Speed Rail. Surv. Land Inf. Sci. 2006, 66, 45–54. [Google Scholar]
- Terzaghi, K.; Peck, R.B.; Mesri, G. Soil Mechanics in Engineering Practice; John Wiley & Sons: Hoboken, NJ, USA, 1996; p. 592. [Google Scholar]
- Hwang, C.; Hung, W.-C.; Liu, C.-H. Results of geodetic and geotechnical monitoring of subsidence for Taiwan High Speed Rail operation. Nat. Hazards 2008, 47, 1–16. [Google Scholar] [CrossRef]
- Hwang, C.; Yang, Y.; Kao, R.; Han, J.; Shum, C.K.; Galloway, D.L.; Sneed, M.; Hung, W.-C.; Cheng, Y.-S.; Li, F. Time-varying land subsidence detected by radar altimetry: California, Taiwan and north China. Sci. Rep. 2016, 6, 28160. [Google Scholar] [CrossRef] [PubMed]
- Tung, H.; Hu, J.-C. Assessments of serious anthropogenic land subsidence in Yunlin County of central Taiwan from 1996 to 1999 by Persistent Scatterers InSAR. Tectonophysics 2012, 578, 126–135. [Google Scholar] [CrossRef]
- Teatini, P.; Tosi, L.; Strozzi, T.; Carbognin, L.; Wegmüller, U.; Rizzetto, F. Mapping regional land displacements in the Venice coastland by an integrated monitoring system. Remote Sens. Environ. 2005, 98, 403–413. [Google Scholar] [CrossRef]
- Polcari, M.; Palano, M.; Fernández, J.; Samsonov, S.V.; Stramondo, S.; Zerbini, S. 3D displacement field retrieved by integrating Sentinel-1 InSAR and GPS data: The 2014 South Napa earthquake. Eur. J. Remote Sens. 2016, 49, 1–13. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent scatterer interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis, 1st ed.; Springer: Dordrecht, The Netherlands, 2001; Volume 2, p. 308. [Google Scholar]
- Lu, C.-H.; Ni, C.-F.; Chang, C.-P.; Yen, J.-Y.; Chuang, R.Y. Coherence Difference Analysis of Sentinel-1 SAR Interferogram to Identify Earthquake-Induced Disasters in Urban Areas. Remote Sens. 2018, 10, 1318. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Xue, F.; Lv, X.; Dou, F.; Yun, Y. A Review of Time-Series Interferometric SAR Techniques: A Tutorial for Surface Deformation Analysis. IEEE Geosci. Remote Sens. Mag. 2020, 8, 22–42. [Google Scholar] [CrossRef]
- Bao, X.; Zhang, R.; Shama, A.; Li, S.; Xie, L.; Lv, J.; Fu, Y.; Wu, R.; Liu, G. Ground Deformation Pattern Analysis and Evolution Prediction of Shanghai Pudong International Airport Based on PSI Long Time Series Observations. Remote Sens. 2022, 14, 610. [Google Scholar] [CrossRef]
- Bui, L.K.; Le, P.V.V.; Dao, P.D.; Long, N.Q.; Pham, H.V.; Tran, H.H.; Xie, L. Recent land deformation detected by Sentinel-1A InSAR data (2016–2020) over Hanoi, Vietnam, and the relationship with groundwater level change. GISci. Remote Sens. 2021, 58, 161–179. [Google Scholar] [CrossRef]
- de Wit, K.; Lexmond, B.R.; Stouthamer, E.; Neussner, O.; Dörr, N.; Schenk, A.; Minderhoud, P.S.J. Identifying Causes of Urban Differential Subsidence in the Vietnamese Mekong Delta by Combining InSAR and Field Observations. Remote Sens. 2021, 13, 189. [Google Scholar] [CrossRef]
- Luo, Q.; Li, J.; Zhang, Y. Monitoring Subsidence over the Planned Jakarta–Bandung (Indonesia) High-Speed Railway Using Sentinel-1 Multi-Temporal InSAR Data. Remote Sens. 2022, 14, 4138. [Google Scholar] [CrossRef]
- Gao, G.; San, L.H.; Zhu, Y. Flood Inundation Analysis in Penang Island (Malaysia) Based on InSAR Maps of Land Subsidence and Local Sea Level Scenarios. Water 2021, 13, 1518. [Google Scholar] [CrossRef]
- Mirzadeh, S.M.J.; Jin, S.; Parizi, E.; Chaussard, E.; Bürgmann, R.; Delgado Blasco, J.M.; Amani, M.; Bao, H.; Mirzadeh, S.H. Characterization of Irreversible Land Subsidence in the Yazd-Ardakan Plain, Iran From 2003 to 2020 InSAR Time Series. J. Geophys. Res. Solid Earth 2021, 126, e2021JB022258. [Google Scholar] [CrossRef]
- Lu, C.H.; Ni, C.F.; Chang, C.P.; Yen, J.Y.; Hung, W.C. Combination with precise leveling and PSInSAR observations to quantify pumping-induced land subsidence in central Taiwan. Proc. IAHS 2015, 372, 77–82. [Google Scholar] [CrossRef]
- Yang, Y.-J.; Hwang, C.; Hung, W.-C.; Fuhrmann, F.; Chen, Y.-A.; Wei, S.-H. Surface Deformation from Sentinel-1A InSAR: Relation to Seasonal Groundwater Extraction and Rainfall in Central Taiwan. Remote Sens. 2019, 11, 2817. [Google Scholar] [CrossRef]
- Lu, C.-Y.; Hu, J.-C.; Chan, Y.-C.; Su, Y.-F.; Chang, C.-H. The Relationship between Surface Displacement and Groundwater Level Change and Its Hydrogeological Implications in an Alluvial Fan: Case Study of the Choshui River, Taiwan. Remote Sens. 2020, 12, 3315. [Google Scholar] [CrossRef]
- Chen, Y.-A.; Chang, C.-P.; Hung, W.-C.; Yen, J.-Y.; Lu, C.-H.; Hwang, C. Space-Time Evolutions of Land Subsidence in the Choushui River Alluvial Fan (Taiwan) from Multiple-Sensor Observations. Remote Sens. 2021, 13, 2281. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35, 96–106. [Google Scholar] [CrossRef]
- Central Geological Survey. The Investigation of Hydrogeology in the Choshui River Alluvial Fan, Taiwan; Central Geological Survey of Taiwan: Taipei, Taiwan, 1999. [Google Scholar]
- Hung, W.C.; Wang, C.; Hwang, C.; Chen, Y.A.; Chiu, H.C.; Lin, S.H. Multiple sensors applied to monitor land subsidence in Central Taiwan. Proc. IAHS 2015, 372, 385–391. [Google Scholar] [CrossRef]
- Ge, L.; Ng, A.H.-M.; Du, Z.; Chen, H.-Y.; Li, X. Integrated space geodesy for mapping land deformation over Choushui River Fluvial Plain, Taiwan. Int. J. Remote Sens. 2017, 38, 6319–6345. [Google Scholar] [CrossRef]
- Nainggolan, L.; Ni, C.-F.; Darmawan, Y.; Lo, W.-C.; Lee, I.-H.; Lin, C.-P.; Hiep, N.H. Cost-Effective Groundwater Potential Mapping by Integrating Multiple Remote Sensing Data and the Index–Overlay Method. Remote Sens. 2024, 16, 502. [Google Scholar] [CrossRef]
- Chu, H.-J.; Lin, C.-W.; Burbey, T.J.; Ali, M.Z. Spatiotemporal Analysis of Extracted Groundwater Volumes Estimated from Electricity Consumption. Groundwater 2020, 58, 962–972. [Google Scholar] [CrossRef]
- Lee, C.-H.; Chen, W.-P.; Lee, R.-H. Estimation of groundwater recharge using water balance coupled with base-flow-record estimation and stable-base-flow analysis. Environ. Geol. 2006, 51, 73–82. [Google Scholar] [CrossRef]
- Nainggolan, L.; Ni, C.-F.; Darmawan, Y.; Lee, I.-H.; Lin, C.-P.; Li, W.-C. Data-Driven Approach to Assess Spatial-Temporal Interactions of Groundwater and Precipitation in Choushui River Groundwater Basin, Taiwan. Water 2020, 12, 3097. [Google Scholar] [CrossRef]
- G.P.S. Lab of Academia Sinica. GPS Processed Data. 2022. Available online: https://gps.imb.sinica.edu.tw/ (accessed on 16 August 2024).
- Herring, T.A.; King, R.W.; McClusky, S.C. Documentation for the GAMIT GPS Analysis Software; Release 10.0; Department of Earth, Atmospheric and Planetary Sciences, MIT: Cambridge, MA, USA, 2002. [Google Scholar]
- Lyard, F.; Lefevre, F.; Letellier, T.; Francis, O. Modelling the global ocean tides: Modern insights from FES2004. Ocean. Dyn. 2006, 56, 394–415. [Google Scholar] [CrossRef]
- Boehm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett. 2006, 33, L07304. [Google Scholar] [CrossRef]
- Altamimi, Z.; Collilieux, X.; Métivier, L. ITRF2008: An improved solution of the international terrestrial reference frame. J. Geod. 2011, 85, 457–473. [Google Scholar] [CrossRef]
- Chen, K.-H.; Yang, M.; Huang, Y.-T.; Ching, K.-E.; Rau, R.-J. Vertical displacement rate field of taiwan from geodetic levelling data 2000–2008. Surv. Rev. 2011, 43, 296–302. [Google Scholar] [CrossRef]
- De Zan, F.; Guarnieri, A.M. TOPSAR: Terrain Observation by Progressive Scans. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2352–2360. [Google Scholar] [CrossRef]
- Farr, T.G.; Kobrick, M. Shuttle Radar Topography Mission produces a wealth of data. Eos Trans. Am. Geophys. Union 2000, 81, 583–585. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Xu, W.; Cumming, I. A region-growing algorithm for InSAR phase unwrapping. IEEE Trans. Geosci. Remote Sens. 1999, 37, 124–134. [Google Scholar] [CrossRef]
- Mora, O.; Mallorqui, J.J.; Broquetas, A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2243–2253. [Google Scholar] [CrossRef]
- Lu, C.-H.; Ni, C.-F.; Chang, C.-P.; Chen, Y.-A.; Yen, J.-Y. Geostatistical Data Fusion of Multiple Type Observations to Improve Land Subsidence Monitoring Resolution in the Choushui River Fluvial Plain, Taiwan. Terr. Atmos. Ocean. Sci. 2016, 27, 505–520. [Google Scholar] [CrossRef]
- Hsu, S.-K. Plan for a groundwater monitoring network in Taiwan. Hydrogeol. J. 1998, 6, 405–415. [Google Scholar] [CrossRef]
- Wang, G. New Preconsolidation Heads Following the Long-Term Hydraulic-Head Decline and Recovery in Houston, Texas. Ground Water 2023, 61, 674–691. [Google Scholar] [CrossRef] [PubMed]
- Ku, C.-Y.; Liu, C.-Y. Modeling of land subsidence using GIS-based artificial neural network in Yunlin County, Taiwan. Sci. Rep. 2023, 13, 4090. [Google Scholar] [CrossRef] [PubMed]
- Hung, W.-C.; Hwang, C.; Sneed, M.; Chen, Y.-A.; Chu, C.-H.; Lin, S.-H. Measuring and Interpreting Multilayer Aquifer-System Compactions for a Sustainable Groundwater-System Development. Water Resour. Res. 2021, 57, e2020WR028194. [Google Scholar] [CrossRef]
- ASTM D2487-17e1; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International: West Conshohocken, PA, USA, 2017.
- Geological Survey and Mining Management Agency, MOEA. Hydrogeological Information System of Taiwan. 2023. Available online: https://hydro.geologycloud.tw/swagger/api-docs/api#/ (accessed on 16 August 2024).
- Burland, J.B.; Wroth, C.P. Settlement of Buildings and Associated Damage; Building Research Establishment: Hertfordshire, UK, 1975; Volumes 33–75. [Google Scholar]
- Montenegro, P.A.; Carvalho, H.; Ribeiro, D.; Calçada, R.; Tokunaga, M.; Tanabe, M.; Zhai, W.M. Assessment of train running safety on bridges: A literature review. Eng. Struct. 2021, 241, 112425. [Google Scholar] [CrossRef]
- Ma, P.; Zheng, Y.; Zhang, Z.; Wu, Z.; Yu, C. Building risk monitoring and prediction using integrated multi-temporal InSAR and numerical modeling techniques. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103076. [Google Scholar] [CrossRef]
- Huang, M.-H.; Bürgmann, R.; Hu, J.-C. Fifteen years of surface deformation in Western Taiwan: Insight from SAR interferometry. Tectonophysics 2016, 692, 252–264. [Google Scholar] [CrossRef]
Orbit Direction | Ascending |
---|---|
Product type | Single-Look Complex (SLC), Interferometric Wide swath (IW) mode |
Path | 69 |
Frame | 74 |
Incidence angle (degree) | 31–46 |
Heading angle (degree) | 347.6 |
Azimuth resolution (m) | 20 |
Range resolution (m) | 5 |
Polarization | VV + VH |
Number of images | 292 |
Acquisition period | 14 April 2016–28 October 2022 |
Layer | Sublayer | Number of Wells |
---|---|---|
1 | - | 46 |
2 | 2-shallow | 22 |
2-deep | 62 | |
3 | - | 41 |
4 | - | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.-V.-T.; Ni, C.-F.; Hsu, Y.-J.; Chen, P.-E.R.; Hiep, N.H.; Lee, I.-H.; Lin, C.-P.; Gosselin, G. Quantitative Evaluations of Pumping-Induced Land Subsidence and Mitigation Strategies by Integrated Remote Sensing and Site-Specific Hydrogeological Observations. Remote Sens. 2024, 16, 3789. https://doi.org/10.3390/rs16203789
Nguyen T-V-T, Ni C-F, Hsu Y-J, Chen P-ER, Hiep NH, Lee I-H, Lin C-P, Gosselin G. Quantitative Evaluations of Pumping-Induced Land Subsidence and Mitigation Strategies by Integrated Remote Sensing and Site-Specific Hydrogeological Observations. Remote Sensing. 2024; 16(20):3789. https://doi.org/10.3390/rs16203789
Chicago/Turabian StyleNguyen, Thai-Vinh-Truong, Chuen-Fa Ni, Ya-Ju Hsu, Pi-E Rubia Chen, Nguyen Hoang Hiep, I-Hsian Lee, Chi-Ping Lin, and Gabriel Gosselin. 2024. "Quantitative Evaluations of Pumping-Induced Land Subsidence and Mitigation Strategies by Integrated Remote Sensing and Site-Specific Hydrogeological Observations" Remote Sensing 16, no. 20: 3789. https://doi.org/10.3390/rs16203789
APA StyleNguyen, T. -V. -T., Ni, C. -F., Hsu, Y. -J., Chen, P. -E. R., Hiep, N. H., Lee, I. -H., Lin, C. -P., & Gosselin, G. (2024). Quantitative Evaluations of Pumping-Induced Land Subsidence and Mitigation Strategies by Integrated Remote Sensing and Site-Specific Hydrogeological Observations. Remote Sensing, 16(20), 3789. https://doi.org/10.3390/rs16203789